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Abstract

Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more
than eighty known causative genes. However, in the clinical setting, a large number of NSHI
families have unexplained etiology, suggesting that there are many more genes to be identi-
fied. In this study we used SNP-based linkage analysis and follow up microsatellite markers
to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish
family with dominantly inherited NSHI. By locus specific capture and next-generation
sequencing, we identified a ¢.574C>T heterozygous nonsense mutation (p.R192*) in
CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endo-
lyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migra-
tion. The mutation segregated with the phenotype and was absent in 1200 Danish control
individuals and in databases with whole-genome and exome sequence data. The predicted
effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic
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tail of CD164, including a highly conserved canonical sorting motif (YXX®). In whole blood
from an affected individual, we found by RT-PCR both the wild-type and the mutated tran-
script suggesting that the mutant transcript escapes nonsense mediated decay. Functional
studies in HEK cells demonstrated that the truncated protein was almost completely
retained on the plasma cell membrane in contrast to the wild-type protein, which targeted
primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible
disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer
hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclu-
sion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated
CD164 as a novel gene for hearing impairment.

Author Summary

It is known that hearing impairment running in families can be caused by mutations in
more than eighty different genes. However, there are still families where the responsible
gene is unknown. By studying a large Danish family with dominant inherited hearing
impairment, we found that the disorder cosegregates with genetic markers on chromo-
some 6, suggesting that the responsible mutation lies within this chromosomal region. By
sequencing this genetic locus, we discovered a mutation in the CD164 gene that is passed
on to all the affected individuals. In the mouse ear, we demonstrated that the CD164 pro-
tein is expressed in hair cells and other sites known to be important for correct hearing.
The identified mutation is predicted to result in shortening of the protein, leading to loss
of an evolutionary conserved sequence important for cellular trafficking of CD164. Using
cell lines, we show that the truncated protein is trapped on the cell surface while the nor-
mal protein is internalized. This finding is important because it implicates for the first
time a role for CD164 in the complex physiological processes of hearing and suggests that
failed endocytosis may be a possible disease mechanism for some types of hearing
impairment.

Introduction

Nonsyndromic hearing impairment (NSHI) is the most frequent hereditary sensory defect in
humans worldwide. The condition is clinically and genetically extremely heterogeneous, with
more than 160 loci identified today. Autosomal dominant NSHI (ADNSHI) shows great varia-
tion in age of onset, rate of progression, severity and frequencies affected in contrast to autoso-
mal recessive NSHI (ARNSHI) that is usually congenital/prelingual and non-progressive [1].

Currently, around 30 causative genes for ADNSHI have been identified. These genes are
involved in a wide variety of molecular processes such as gene regulation, cytoskeleton dynam-
ics, cell-cell junction formation, endocytosis and membrane transport [2]. Additional causative
genes are expected to be discovered, since over 20 loci have been mapped without the corre-
sponding genes being identified, and novel loci and/or genes are regularly being uncovered
(http://hereditaryhearingloss.org) [1,3].

In the clinical field, identification of these hearing loss genes has greatly aided genetic coun-
selling on hearing impairment. With the advances in next-generation sequencing technologies
it is now possible to quickly screen most known genes implicated in NSHI simultaneously
either by using customized capture arrays for targeted genes or exome sequencing [3,4] for the
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benefit of families, where the causative mutation can be identified. For these cases, diagnosis as
well as important predictive information for the remaining family members can be offered [5].
However, with the extreme genetic heterogeneity in NSHI, a large proportion of the screened
families still have an unexplained etiology.

In this study, we identified a novel locus (DFNA66) for dominant inherited NSHI on 6q15-
21 in a large Danish family. By the use of a custom capture array and next-generation sequenc-
ing, we searched for the causative mutation in the region and identified a nonsense mutation in
CD164 [OMIM 603356]. The gene encodes CD164, a small transmembrane sialomucin protein
involved in adhesion, migration and endocytosis and we provide data on the variant-, gene-,
and functional level implicating the gene in hearing impairment.

Results

Linkage of hearing impairments to chromosome 6g15-21 in a large
Danish family

A multi-generational family from Denmark with ADNSHI, affecting 17 individuals in five gen-
erations (Fig 1 A) participated in the study. Audiograms and audiological data were collected
from 13 individuals born between 1931 and 2003. The hearing impairment is moderate to
severe (Fig 1B). Age of onset varied from newborn (detected through neonatal screening), age
3-6 or early twenties. The audiograms showed variable patterns with either a flat audiogram
affecting all frequencies, or, at least initially, a basin shape with the most severe affection on the
mid-frequencies. In some cases the hearing impairment remained stable, in others it progressed
somewhat affecting a broader spectrum of frequencies over the years. Representative audio-
grams can be found in S1 Fig. One family member (IV-21, Fig 1A) with hearing impairment
had experienced severe recurrent otitis media in childhood. From careful assessment of his
audiograms (S1 Fig) we were not able to unequivocally determine if his hearing impairment
was conductive or sensorineural. His phenotype was therefore set to unknown (grey pedigree
symbol, Fig 1A).

Initial sequencing of seven known hearing loss genes (WFS1 [OMIM 606201], GRHL2
[OMIM 608576], EYA4 [OMIM 603550], ACTGI [OMIM 102560], GJB2 [OMIM 121011},
MYO6 (exon 25) [OMIM 600970], and SLC26A4 [OMIM 605646]) failed to identify any muta-
tions, prompting us to perform a genome-wide linkage analysis to identify the responsible
locus for the hearing impairment in the family. Eleven individuals were then selected for single
nucleotide polymorphism (SNP) genotyping using the Affymetrix 50K Xba240 array. The gen-
otyped individuals are indicated with yellow squares in Fig 1A. After quality control and SNP
pruning, 11,034 markers in approximate linkage equilibrium were included in a parametric
linkage analysis using an autosomal dominant model with full penetrance and allele frequen-
cies obtained from the CEU population. A single 25 Mb genome-wide significant linkage peak
was identified on chromosome 6q15-q21 (LOD score = 3.6), with the critical haplotype flanked
by markers rs9294390 (88,556,380 bp) and rs6910441 (113,518,576 bp) (hgl9) (S1 Table). This
region contains 101 annotated genes (S2 Table). The locus is relatively close to EYA4
(DFNA10) [6], however a meiotic cross-over in three affected individuals excluded DFNA10 as
the cause of the hearing loss in this family, consistent with the initial sequencing where no vari-
ations were found in EYA4.

To validate and possibly narrow down the locus, 26 family members were genotyped for
seven microsatellite markers across the locus. A multipoint linkage analysis was carried out
with allele frequencies determined from all genotyped founders and penetrance set to 1. In the
analysis, the affection status was set to “unknown” for three individual in total. These were IV-
21, because of the uncertainty about the origin of his hearing impairment (see description of

PLOS Genetics | DOI:10.1371/journal.pgen.1005386 July 21,2015 3/25



@’PLOS | GENETICS

CD164 and Hearing Impairment

A
|
001| 002
I o o—e
1007 1008 1012 1004 1005| 1013 1006 11 | 1003
1] i'_ —O IJ—-I 6
1020 1029 12 11 1032 | 17 32 4 1022 il 16
-/- -+ -/- -/+ -/+ -/-
\Y; * O ﬁ o) JD (5
20 5 34 31 36 13 10 21 18
/- I+ of= -/+ - - -/- -/- I+
\Y é) 6 ‘ ﬁ * Analysed on genotyping array (n=11)
27 28 23 19 38 39 24 30 ) L
+ - J+ - g+ o+ I+ + -/-  Wild-type at position ¢.574
-+ Heterozygous for ¢.574C>T (p.Arg192*)
B C D
Frequency (Hz) ¢ 8 c.574C>T
6 [/t «
250 500 1000 2000 4000 8000 ; 8 _8 (p-R192%)
10 . - - :
0 {-normal_hearing 4 K E R/* N
10 1 2 2 A c A = &
~ 20 5 bW G R B A B E S
T .l e
3 7 @ o
z 50 (=] 0 20 200
2 & B LV
2 70 2 Affected
'580- -3 A A € A A C 6 A A A
o 90 -4
T 100 .
110
120 @
7
——Rightear,31y —=Leftear, 31y
——Right ear, 35y ——Leftear,35y Unaffected

Individual V-5

Chromosome 6 (Marshfield cM)

Fig 1. Pedigree, audiograms and linkage peak for a novel locus for dominant inherited nonsyndromic hearing impairment (NSHI). (A) Pedigree of a
large Danish family with moderate hearing impairment, with the proband indicated with an arrow. DNA was available from all individuals except those with a
four-digit ID. The presence (+) or absence (-) of the CD164 mutation c.574C>T (p.R192*) is listed underneath each individual. The phenotype of individual
(IV-21) was set to unknown (shown in grey) because of uncertainties about the origin of his hearing loss. (B) Audiograms of left and right ear of a
representative affected family members (individual IV-5). Mid-frequencies are more severely affected than lower and higher frequencies termed basin
shaped or cookie bite hearing loss. The age of the individual at the time of each analysis is indicated. (C) Genome-wide significant linkage to chromosome
6q15-21 was identified in an initial SNP-array analysis including 11 individuals (indicated in yellow, Fig 1A). (D) Chromatograms of the ¢.574C>T mutation in
CD164 exon 6 in an affected family member compared to a healthy control individual. Nomenclature refers to RefSeq NM_006016.4 (CD164 isoform 1), with

nucleotide number +1 being A of the start codon ATG.

doi:10.1371/journal.pgen.1005386.g001

the family) and individual V-19 and V-38 because of their young age (16 and 10 years respec-
tively) being below the upper observed age of onset of the hearing impairment in this family.
The analysis including 23 individuals mapped the locus between D6S462 (90,928,511 bp) and
D6S433 (first marker outside region), thus narrowing down the locus by approximately 2 Mb
in the proximal end and increasing the LOD score to 5.1 (Fig 1C). The genomic position of the

locus is 90,928,511 to 113,518,576 bp (hgl9).
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Next-generation sequencing and identification of a CD164 nonsense
mutation

In an attempt to identify the causal mutation, nine candidate genes within the linked region
were Sanger sequenced: SOBP [OMIM 613667] and FOXO3 [OMIM 602681], known to cause
deafness in mice [7,8], and seven other genes (GJA10 [OMIM 611924], POU3F2 [OMIM
600494], FAXC (also known as C60rf168) [no OMIM], LIN28B [OMIM 611044], Hsa-mir-587
[no OMIM], AMDI [OMIM 180980], and LAMA4 [OMIM 600133]), selected based on
homology to known hearing loss genes or expression in the inner ear. Only common sequence
variations (MAF above 1% in ESP6500), unlikely to cause hearing loss, were identified in these
genes. We then applied a NimbleGen customized targeted capture array and next-generation
sequencing (NGS) in order to sequence the entire locus in one affected individual (IV-31) (Fig
1A). Statistics for the bioinformatics analysis can be seen in 54 Table. After uploading the VCF
file to Ingenuity Variant Analysis, an initial filtering based on mapping quality and chromo-
somal position identified 28,200 variations across the entire locus. After filtering out common
variants (MAF above 1%), 1609 variants remained. Of these, two were found in coding regions;
a variant ¢.574C>T [NM_006016.4] in CD164 and rs143143212 in MMS22L. Filtering the
1609 variants for functional effect (S2 Fig), one variant passed through the filter i.e. c.574C>T
in CD164. The variant is predicted to cause a truncation of CD164 by introducing a premature
stop codon at amino acid position 192 (p.R192*) [UniProtKB NP_006007.2]) and is not pres-
ent in any available databases. Genotyping of all 26 family members with DNA available con-
firmed that the CD164 mutation was found in all individuals carrying the critical haplotype
(Fig 1A and 1D). Genotyping of 1200 unrelated Danish control individuals for the ¢.574C>T
nonsense mutation did not identify anyone carrying the ¢.574C>T variant. By genotyping
2400 control chromosomes from the same background population as the family, the power is
80% to detect a variant with a minor allele frequency as low as 0.001, suggesting that the muta-
tion is unlikely to be a rare polymorphism in the Danish population.

To ask if other nonsense or frameshift mutations in CD164 had been reported, we searched
all relevant, available databases. In dbSNP138, we found a nonsense mutation (rs11542733)
which was originally submitted to dbSNP120 by a large-scale sequencing effort of expressed
sequence tags in 2001 [9]. The mutation was reported in individual NA06993 (CEPH 1341.13).
We obtained genomic DNA from this individual (Coriell Cell Repositories, New Jersey, USA)
and by Sanger sequencing we were not able to confirm the presence of this mutation (S3 Fig),
suggesting that the record is likely due to an artefact from early high throughput sequencing.
In conclusion, the ¢.574C>T mutation is to our knowledge the first CD164 nonsense mutation
identified in humans.

To estimate the frequency of CD164 mutations among patients with unknown cause of
hearing impairment, we sequenced all coding exons and splice junctions of CD164 using DNA
samples from 46 independent index cases. The cases were 15 unrelated probands from Den-
mark (the index patient from 12 families and 3 sporadic cases) selected based on their hearing
impairment phenotype with basin shaped audiograms, 25 index patients from the Netherlands
based on phenotype with postlingual onset (1 or 2" decade), progression of the hearing
impairment and cookie-bite or flat audiogram configuration, and 6 probands of Pakistani fam-
ilies with ARNSHI that displayed linkage to chromosome 6. The recessive families were
included as several hearing impairment genes (e.g. TMCI1 [OMIM 606706], TECTA [OMIM
602574], MYO7A [OMIM 276903]) have been found to underlie both autosomal-dominant
and recessive NSHI (http://hereditaryhearingloss.org/). However, no sequence variants likely
to cause hearing impairment were found, suggesting that mutations in CD164 are not a com-
mon cause of NSHL
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CD164 contains seven coding exons and expresses a protein referred to as CD164, MUC-24
or endolyn [10]. Five splice variants of the gene have been reported, with isoforms 1-3 encod-
ing a membrane bound form by the use of the full exon 6, and isoforms 4 and 5 encoding a sol-
uble form of the protein by alternative splicing of exon 6 or the alternative use of exon 7 (Fig
2A). Isoform 1 (ENST00000413644) and 4 (ENST00000310786) account for the vast majority
of expressed transcripts across different tissues, found by the Genotype-Tissue Expression proj-
ect (GTEx) [11]. As the ¢.574C>T mutation is located at the end of exon 6, the mutation is pre-
dicted to affect only the membrane bound forms of CD164 (isoforms 1-3). Isoform 1 encodes
a 197 amino acid long protein with a large extracellular region with two heavily glycosylated
mucin-like domains, separated by a cysteine-rich domain, a transmembrane domain, and a
short cytoplasmic region containing a canonical YXX® sorting motif (where X stands for any
residue and @ for a large hydrophobic residue) (YHTL) (Fig 2B). As previously mentioned, the
¢.574C>T mutation causes a substitution of an arginine (R192) for a stop codon (p.R192*),
thereby deleting the last six amino acids of the CD164 C-terminus (RNYHTL), including the
sorting motif. An amino acid sequence alignment of CD164 from different species shows a
100% conservation of these six C-terminal CD164 residues from human to roundworm (Fig
2C), indicating a high selective pressure against amino acid changes in this sequence, consistent
with its role in subcellular trafficking of proteins to the lysosomal compartment in cells [12].

The p.R192 mutation causes abnormal trafficking of CD164

To assess the functional effect of the truncating mutation on sorting and localization of CD164,
we first studied the subcellular localization of the C-terminal region (CTR) of wild-type and
mutant CD164 fused to fluorescent marker proteins. We co-transfected human embryonic kid-
ney (HEK)-293 cells with plasmids encoding two fusion proteins: (i) an mCherry fluorescent
protein N-terminally fused to the transmembrane segment and the CTR of CD164 (mCherry-
CD164-WT-CTR) and (ii) an eGFP fluorescent protein N-terminally fused to the transmem-
brane segment and the CTR of CD164 lacking the last 6 amino acids (eGFP-CD164-R192*-
CTR) (Fig 3A). This was done to detect and distinguish the subcellular localization of wild-
type and truncated CD164 C-terminal regions simultaneously in the same experiment. Using
confocal microscopy, images of live cells were captured two days after transfection. This dem-
onstrated that in the steady-state, the truncated fusion protein (green) was found mostly at the
plasma membrane, while the wild-type fusion protein (red) was predominantly located in
intracellular vesicles, suggesting a grossly abnormal sorting of the truncated fusion protein (Fig
3B). Identical findings were obtained when cells were transfected with plasmids encoding the
opposite combination of fluorescent marker proteins (colour swap) (Fig 3C). In both dye swap
experiments a small amount of truncated fusion protein was detected in the cytosol. Passive
internalization is the most likely explanation for this because the truncated fusion protein was
present at very high levels in the plasma membrane.

To investigate if wild-type and R192* CD164 with intact extracellular domain would exhibit
a similar trafficking difference as the C-terminal region, HEK cells were stably transfected with
constructs encoding human full-length wild-type CD164 and the truncated CD164 R192*,
respectively. A qPCR assay, able to distinguish wild-type and mutant transcripts and quantify-
ing total CD164, were used to select two cell lines expressing wild-type and mutant CD164,
respectively, at comparable levels (53 Table and S4 Fig). The assay showed that endogenous
CD164 expression in the mutant cell line accounting for around 20% of the total CD164
expression. Due to the high amount of CD164 (>95%) in the endo-lysosomal system under
normal steady-state conditions, and in order to observe the timing of the endocytic trafficking
of wild-type and mutant proteins, all CD164 present at the cell surface on living transfectants
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doi:10.1371/journal.pgen.1005386.9002
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objective. (A) Schematic of the constructs (B) Wild-type fusion protein (mCherry-CD164-WT-CTR) (red) was intracellularly located while the truncated fusion
protein (eGFP-CD164-R192*-CTR) was primarily present at the plasma membrane. (C) Same result was found when reversing mCherry and eGFP (colour
swap).

doi:10.1371/journal.pgen.1005386.9003
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were saturated with anti-CD164 antibodies at 0°C, as cooling arrests internalisation (T0). At
T0, CD164 was present at the plasma membrane in both cell lines, as expected (Fig 4A and
4B). The fate of CD164 was then followed after raising the temperature to 37°C to initiate inter-
nalization. After 10 minutes, most of the wild-type CD164 was internalized (Fig 4C) with no
further change in localization after 30 min (T30) (Fig 4E), indicating that wild-type CD164 was
rapidly (within minutes) cleared from the cell surface and that no recycling of CD164 took
place within this timeframe. In contrast, only low levels of CD164 R192* were internalized
after 10 and 30 minutes (Fig 4D and 4F). Untransfected HEK cells did not produce a CD164
signal over background in these stainings. This experiment demonstrated that CD164 R192*
was trapped at the plasma membrane.

CD164 and CD164 R192* can form heterodimers

Because CD164 has been shown to form disulfide-linked homodimers [13,14], we speculated
whether CD164 R192* could heterodimerize with CD164 WT. To this end, we generated
expression constructs in which FLAG, HA or myc epitope tags were inserted at various positions
in a relatively poorly conserved region immediately following the signal peptide of CD164. We
first tested the expression of various tagged constructs compared to their untagged counter
parts by transient transfection in HEK cells followed by immunoblotting analysis using antibody
to human CD164. Untagged CD164 migrated as several bands with predominant species
around 80-100 kDa under reducing conditions (Fig 5A). This is consistent with previous studies
reporting migration of reduced CD164 as several bands ranging from 60-100 kDa depending
on the cell line or tissue analysed. This migratory behavior is believed to be due to extensive and
variable glycosylation of CD164 molecules [13-15]. We found that CD164 R192* expressed at
similar or slightly higher levels and with identical molecular size as wild-type CD164, indicating
that the mutation did not impair protein stability or glycosylation state. No signal was detected
in empty vector transfected cells, showing that the endogenous CD164 was expressed at a low
level compared to the exogenous CD164 in these experiments. The various epitope tags affected
somewhat the CD164 expression level and the FLAG tag also the size distribution, with
enhancement of species around 65 and 140 kDa, probably via effects on the glycosylation pat-
tern. We next co-transfected HEK cells with distinctly tagged CD164 and CD164 R192* (or
empty vector) in various combinations as indicated. Two days post-transfection, cells were lysed
and wild-type or mutant CD164 immunoprecipitated using the appropriate anti-tag antibody,
followed by immunoblotting for co-precipitation of the other CD164 form. This analysis
showed that HA4-CD164 R192* was able to co-immunoprecipitate FLAG4-CD164 (Fig 5B left
upper panel). Upon swapping of the tags, FLAG4-CD164 R192* was co-immunoprecipitated
with HA2-CD164 (Fig 5B right upper panel). Control immunoblots demonstrated appropriate
co-expression of the two constructs (Fig 5B middle and lower panel). Thus, in our experiments
mutant CD164 was able to co-precipitate wild-type CD164 and vice versa demonstrating that
mutant CD164 can form heterodimers with wild-type CD164 in HEK cells.

No apparent effect of CD164 R192* on wild-type CD164 internalisation

Given their ability to form heterodimers, we next tested if the internalization-deficient CD164
R192* mutant could negatively affect internalization of wild-type CD164. We co-transfected
HEK cells with HA4-CD164 R192* and FLAG4-CD164 followed by double-staining of the cells
with HA and FLAG antibodies at 0°C (Fig 6). Under these conditions of arrest of the endocytic
machinery both wild-type and truncated CD164 was localized at the plasma membrane (Fig
6A-6C). However, after shifting the cells to internalization permitting conditions (37°C) most
of the wild-type CD164 was internalized after 10 min with no further change at 30 min, whereas
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Fig 4. Failure of internalization of CD164 R192*. HEK cells stably overexpressing wild-type CD164 (CD164 WT) (A, C, E), and truncated CD164 (CD164
R192*) (B, D, F) were seeded on cover slides and were incubated with anti-CD164 antibody on ice. Next, cells were either fixed (TO, 0 min) or incubated at
37°C in complete medium without antibody for 10 (T10) and 30 (T30) minutes, respectively, and then fixed. Finally, CD164 was visualized using Alexa Fluor
488-labeled secondary antibody (green). Nuclear DNA was stained with DAPI (blue). Imaging was performed on a confocal laser scanning microscope using

40xoil-immersion objective. Scale bar =6 pm.

doi:10.1371/journal.pgen.1005386.9004
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Fig 5. CD164 and CD164 R192* form heterodimers. HEK-293 cells were transiently transfected with
empty vector, CD164 and CD164 R192*, either untagged or harboring various epitope tags and in various
combinations. After 2 days, the cells were (A) lysed in SDS-PAGE sample buffer and analysed by
immunoblotting using anti-human CD164 antibody or (B) lysed in immunoprecipitation buffer, whereafter
CD164 or CD164 R192* were immunoprecipitated from the cell lysates using anti-HA antibody indicated.
Aliquots of the immunoprecipitates or the pre-immunoprecipitation lysates were analysed by immunoblotting
using the antibody indicated. SDS-PAGE was performed under reducing conditions. The asterisks indicate a
non-specific band.

doi:10.1371/journal.pgen.1005386.g005
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Fig 6. Internalization of full-length wild-type-FLAG and R192*-HA tagged CD164. Co-transfected HEK cells expressing wild-type CD164 tagged with the
FLAG epitope (FLAG-CD164-WT) and truncated endolyn tagged with the HA epitope (HA-CD164-R192*) were seeded on cover slides. Following incubation
with anti-FLAG and anti-HA antibodies on ice, the cells were either fixed (TO, 0 min) or incubated in complete medium without antibody for 10 (T10) and 30
(T30) minutes, respectively, and then fixed. FLAG-CD164-WT (A, D, G) and HA-CD164-R192* (B, E, H) was visualized using Alexa Fluor 488-labeled
secondary antibody (green) and Alexa Fluor 568-labeled secondary antibody (red), respectively. Nuclear DNA was stained with DAPI (blue). Merged images
are shownin (C, F, I). Imaging was performed on a confocal laser scanning microscope using 40xoil-immersion objective. Scale bar =6 pm.

doi:10.1371/journal.pgen.1005386.g006

the majority of CD164 R192* maintained localisation on the plasma membrane (Fig 6D-6I).
Thus, while these results support the findings on the internalization of wild-type and lack
thereof for mutant CD164 presented in Fig 4, they do not support the idea that mutant CD164
R192* negatively affects internalization of wild-type CD164. It should be mentioned that in a
minority of cells, we observed slow or no internalization of both wild-type and truncated
CD164. Although we cannot completely rule out an effect of mutant CD164, we believe this
observation is more likely explained by a non-functional internalization system in these cells.
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The CD164 ¢.574C>T mutant transcript survives nonsense-mediated
MRNA decay

Given the large effect of the p.R192* mutation on CD164 subcellular trafficking in our cell
based assays, we speculated whether the transcript containing the mutation was expressed in
cells from the affected family members. In mammalian cells, transcripts containing premature
stop codons are generally degraded by nonsense-mediated mRNA decay (NMD). The effi-
ciency of NDM, however, depends on the exact position of the premature stop codon [16]. We
extracted RNA from a blood sample from the index patient (IV-5, Fig 1A) and after RT-PCR
using intron spanning primers and Sanger sequencing, we aligned the obtained sequence to the
human genome using BLAT to validate that it was from cDNA and not from genomic DNA
(Fig 7A). We found that both the normal and mutated CD164 transcripts were expressed in
peripheral blood cells (Fig 7B), demonstrating that the CD164 ¢.574C>T transcript escapes
NMD. This is consistent with the “55 bp rule” described for NMD, where the surveillance sys-
tem in general seem to fail to distinguish premature stop codons if they are positioned in the
last exon or in the second to last exon and located less than 55 bp from the final intron [17],
which is the case for the present mutation.

CD164 is expressed in the cochlea of the rodent organ of Corti

For the gene to have a likely role in disease pathology, it should be expressed in the relevant tis-
sue. From the publicly available BioGPS [18] database CD164 transcripts appear to be widely
expressed across different tissues in the human body, with high expression levels in the thyroid,
whole blood, colon and small intestine, and medium expression in many other organs and low-
est expression levels in the brain [18]. CD164 transcripts are also expressed in the human fetal
cochlea, according UniGene Hs. 520313, with inner ear data derived from Morton Human
Fetal cDNA Library [19]. The detailed cellular distribution of CD164 at the protein level within
the inner ear has however not been determined [20]. The protein expression pattern of cd164
in the inner ear was therefore investigated by staining of sections of mouse cochlea at postnatal
day five using two different antibodies (Fig 8 and S5 Fig). This analysis indicated cd164 expres-
sion in the cochlear neurons, inner and outer hair cells of the organ of Corti, cells of Kolliker’s
organ, cells in the lateral cochlear wall behind the spiral prominence and cells of the stria vas-
cularis. The two antibodies showed the same expression pattern in the cochlea. The expression
in the hair cells was weaker than in the other cell types, consistent with the mRNA expression
pattern of cd164 in the Shared Harvard Inner-Ear Laboratory Database (SHIELD) database.

Discussion

In this study, we mapped a novel locus (DFNA66) for NSHI to chromosome 6q15-21. The
locus contained FOXO3 and SOBP, known to cause deafness in mice, but Sanger sequencing
and careful assessment did not identify any variation in these genes. By targeted sequence cap-
ture combined with NGS we instead identified a novel nonsense mutation in CD164, which
was the only rare variant with a predicted functional impact, and thereby the best candidate in
the region.

In our filtering strategy we did not filter solely on the presence in dbSNP, because with the
increasing number of pathogenic variants being submitted to public databases, this may lead to
low frequency causal variants being missed. Instead, we chose a conservative minor allele fre-
quency threshold of 1%, which is a rather conservative threshold when performing mapping
studies of high penetrant rare variants in Mendelian disorders [21].
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Fig 7. CD164 transcripts with the ¢.574C>T (p.R192*) nonsense mutation escape NMD. (A) BLAT alignment of the sequenced cDNA (labeled “CD164
transcript” in the “your sequence from Blat search” track) from peripheral blood from a patient. The transcript does not contain intronic sequence indicating
that the sequence is from mRNA. (B) Chromatogram of the ¢.574C>T mutation showed equal expression of both alleles in peripheral blood cells,
demonstrating that the nonsense mutation is not degraded through NMD

doi:10.1371/journal.pgen.1005386.9007

In the family, the nonsense mutation segregated in all affected individuals, as well as to a
10-year old girl reported to be unaffected from multiple audiological examinations during her
early childhood (Fig 1A, individual V-38). Interestingly, in a recent audiological follow-up
after the finding of the mutation, a small dip in mid frequencies in her audiogram was found,

Fig 8. Cd164 expression in the mouse cochlea at postnatal day five. Inmunohistochemistry shows cd164 expression (brown) in the cochlear neurons
(arrows in A and C), inner hair cells (ihc) and outer hair cells (ohc) of the organ of Corti (black arrowheads in C), cells of Kolliker's organ (red arrowhead in C),
cells of the lateral wall behind the spiral prominence (open arrowhead in A) and in the stria vascularis (B). Scale bars: A: 10 ym, B, C: 5 um.

doi:10.1371/journal.pgen.1005386.9008
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which could be the first signs of an effect of the mutation, consistent with the broad range of
age of onset observed in the family for the trait. If her hearing impairment progresses, all indi-
viduals carrying the variant will then display the phenotype, suggesting a high to complete pen-
etrance with variable age of onset. Individual IV-21, who was not included in the linkage
analysis due to recurrent severe otitis media in childhood, did not have the mutation. We there-
fore concluded that his hearing impairment is likely caused by the many ear infections.

In the search for rare disease causing mutations with high impact, linkage is an effective
method for eliminating large fractions of the genome, but segregation and rarity alone is not
sufficient to implicate a specific variant as pathogenic. In this study we therefore performed a
number of functional studies to characterise CD164 and the effect of the mutation.

The YHTL motif, deleted by the ¢.574C>T nonsense mutation, is a canonical sorting motif
known to be recognized by specific adaptor proteins in the cytosol, leading to subcellular traf-
ficking of the transmembrane protein to endosomes and lysosomes [22]. In many transmem-
brane receptors (e.g. mannose 6-phosphate receptor and sortilin) the sorting motif mediates
direct transport between the trans-Golgi network and endosomes, due to interaction with AP1
[22]. For other transmembrane proteins like CD164 and CD1 cellular trafficking to lysosomes
also depend on AP3, but through different routes. Whereas newly synthesized CD1 seems to
be captured by AP3 in the TGN for direct sorting to lysosomes, CD164's lower affinity for AP3,
combined with a sorting signal residing in the luminal/extracellular domain, results in direct
transport to the cell surface [23]. At the plasma membrane, the YHTL motif is recognized by
AP2 and CD164 is subsequently rapidly endocytosed into early endosomes, a process known
as the indirect route [10]. This is consistent with our functional data showing that CD164
R192* lacking the sorting motif is accumulated on the cell surface.

Such a dramatic effect on localisation of CD164 when perturbing the YHTL sorting motif
has also been seen in other cell types, where point mutations of the critical tyrosine (Y) and leu-
cine (L) residues in the YHTL motif were shown to lead to retention of CD164 at the plasma
membrane [10,23,24]. We are the first to study the effect of an YHTL-disrupting CD164 muta-
tion identified in humans. Taken together, the data suggest that abnormal trafficking of CD164
is consistently observed across different cell types when the YHTL sorting motif is perturbed.

The molecular mechanism through which truncated CD164 causes hearing loss is currently
unknown. We have shown that the ¢.574C>T mutant transcript is not degraded by NMD in
whole blood in patients, and that CD164 R192* is able to dimerize with wild-type CD164. We
have also shown that CD164 R192* is trapped at the plasma membrane, but that the truncated
protein does not appear to hold back wild-type CD164 on the surface in HEK cells, arguing
against a direct dominant negative effect on wild-type CD164 internalization. However, it is
possible that CD164 R192* may suppress other functions of wild-type CD164 via dimerization
to cause hearing loss. It is also possible that the increased amounts of CD164 R192* protein at
the plasma membrane could exert a “toxic” effect in cells in the inner ear. Other organ-specific
diseases arising as a consequence of alterations in the sorting signals of individual plasma
membrane proteins has been reviewed in [25,26].

CD164 has been shown to regulate CXCR4 signaling in hematopoietic precursor cells [27]
and myoblasts [24]. However, none of the affected family members was evaluated for hemato-
poietic disorders.

Previously, CD164 have been studied in Drosophila and recently in zebrafish. In a study
from 2006, Zhou et al. found that endolyn-deficient Drosophila mutants were arrested in
embryonic and early larval development [28], and that a proportion of the growth-inhibited
cells were undergoing apoptosis, suggesting a role for CD164 in cell proliferation. More
recently, Mo et al., studied the kidney function in zebrafish embryos after morpholino knock-
down of endolyn expression, and found that despite the pronephric kidney appeared
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morphologically normal, clearance of fluorescent dextran injected into the common cardinal
vein was delayed, suggesting a defect in the regulation of water balance in the morphant
embryos [29]. Interestingly, the authors found that the defects could be rescued by expression
of rat endolyn, but not by expression of endolyn lacking the canonical YXX® sorting motif,
suggesting that correct kidney function require endolyn endocytosis at least in zebrafish [29].
In the present family there were no reports of renal disease. The creatinine and carbamide lev-
els, measured in peripheral plasma in one of the affected family members, were found to be
within normal range, and no microscopic kidney abnormalities were reported in an autopsy
report of an affected family member, deceased in 2008. The phenotype of the morpholino zeb-
rafish may however still be of some interest, since both the kidney and the inner ear contain
polarised epithelial cells important for maintenance of fluid homeostasis. Furthermore, cd164
expression was detected in the stria vascularis (among other key functional sites) of the mouse
cochlea, supporting the possibility of a role in endolymph homeostasis. As fluid homeostasis is
important for correct hearing, this could be one possible mechanism through which CD164 is
involved in hearing loss.

In conclusion we have identified a novel locus for hearing impairment with LOD score 5.1
and identified CD164 as the most likely causative gene in the locus. Our data points towards an
important role of CD164 in the function of the inner ear and suggest that the lack of the YXX®
motif, which is important for AP2 mediated endocytosis, underlies the hearing impairment in
this family, however the exact molecular disease mechanism needs to be further investigated.

Materials and Methods

The study was approved by the Danish Research Ethical Committee (reference numbers
20020036, KF 01-234/02 and KF 01-108/03), the medical ethics committee of the Radboud
University Medical Center, the Institutional Review Boards of Quaid-i-Azam University and
Baylor College of Medicine and Affiliated Hospitals. Informed consent was obtained from all
family members who participated in the study.

Mouse studies were carried out in accordance with UK Home Office regulations and the
UK Animals (Scientific Procedures) Act of 1986 (ASPA) under a UK Home Office licence, and
the study was approved by the Wellcome Trust Sanger Institute’s Ethical Review Committee.
Mice were culled using methods approved under this licence to minimize any possibility of
suffering.

Ascertainment of family

The proband was ascertained and the family pedigree constructed in collaboration between
Department of Clinical Genetics, Vejle Hospital and Department of Audiology, Bispebjerg
Hospital.

Audiological examinations

One male (IV-5), with hearing impairment first diagnosed at about age 10 y, was examined sev-
eral times. The audiograms at age 31 and at age 35 were similar, with 40 dB HL at 500 Hz,
increasing to 70 dB HL at the frequencies 1000-4000 Hz, and improving to 20 dB HL at 8000
Hz (Fig 1B). His daughter (V-39) was diagnosed at neonatal hearing screening and carefully
followed. She had at age 5 a sloping audiogram with 30-40 dB HL at frequencies 250-500 Hz,
and 60-70 dB HL at 1000-2000 HZ and 50-60 dB HL at 4000-8000 Hz (S1 Fig). Between age 5
and 6, no progression was observed. A male in another branch of the family (V-24), experi-
enced hearing impairment from the age of 3, and at age 6 an audiogram showed a basin shaped
curve with 30dB HL at 500 HZ, dipping to 60 dB HL at 1000 HZ and 40 dB HL at 4000 HZ. At
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age 19, his audiogram showed 50 dB HL at 500 Hz, and a 60 dB HL at 1000-8000 HZ, thus
illustrating progression (S1 Fig). Vestibular complaints were not reported subjectively. Individ-
ual IV-21 had symptoms of hearing impairment and numerous purulent childhood middle ear
infections > 20 punctures of the eardrum, culminating with an operation for choleastoma,
which is a known complication of middle ear infection. From his audiogram (S1 Fig) it was not
possible unequivocally to determine if his hearing impairment was sensorineural or conductive
(caused by the infections). His phenotype was considered unknown through the study.

Genome-wide linkage analysis

Genomic DNA was extracted from peripheral blood samples. Ten affected and one unaffected
individual (indicated in yellow in Fig 1A) were genotyped using the Human Mapping 50K SNP
Xba240 Array (Affymetrix, High Wycombe, UK). Genotypes were called using the Genotyping
Console (Affymetrix) and uploaded to the BCSNP data management platform (BC Platforms,
Espoo, Finland). Data on a total of 58,958 markers was generated. Those markers with Mende-
lian errors, which were detected with MERLIN, were removed from the dataset (491 markers).
Removal of monomorphic markers and LD pruning (using a sliding window of 50 SNPs and a
rA2 threshold of 0.5) was performed using PLINK resulting in a filtered dataset of 11,034 mark-
ers in approximate linkage equilibrium with each other. MERLIN was also used to identify
unlike genotypes, resulting in the removal of 221 genotypes from the dataset. Parametric link-
age analysis was carried out with Merlin using an autosomal-dominant mode of inheritance
with complete penetrance and a disease gene frequency of 0.0001, SNP allele frequencies from
CEU and genetic distances from the Affymetrix 100K Marshfield cM map.

A follow-up analysis was performed by genotyping 26 available family members with seven
microsatellite markers (D6S1595, D6S1644, D6S1613, D6S462, D65S416, D6S432, and D6S433)
positioned within and just outside the linked region from the SNP analysis (S3 Table). Primer
sequences were retrieved from the NCBI UniSTS database After PCR, the fragments were
shipped to Eurofins Genomics (Ebersberg, Germany) for fragment analysis. Alleles were
uploaded to BCSNP and parametric linkage analysis was performed with Mega2 [30] and Sim-
Walk2 [31], which can handle large pedigrees. Allele frequencies were calculated from foun-
ders. Due to the variable age of onset of the hearing impairment in this family, the affection
status of two apparently healthy children (16 years and 10 years old, respectively) was set to
unknown. Similarly for one affected individual with multiple ear infections during childhood.
Thus 23 individuals contributed to the follow-up linkage analysis. Disease allele frequency was
set to 0.0001 and penetrance to 1.

Sanger sequencing of eight candidate genes from the locus

All intron-exon boundaries and coding exons were sequenced for nine genes (GJA10, POU3E2,
C60rf168, LIN28B, Hsa-mir-587, SOBP, FOXO3 AMDI, and LAMA4). For POU3EF2, we were
able to PCR amplify, but not to Sanger sequence through a highly GC rich region (98% GCs)
encoding a total of 21 glycine (Gly) residues in exon 1. Attempts to sequence this GC rich
region (chr6:99,282,960-99,283,007) were performed by Sanger sequencing of two different
PCR products, as well as providing the purified PCR product to Eurofins Genomics for direct
Sanger sequencing using their custom service for difficult templates. As the same difficulty was
found in two affected and two healthy control individuals, we assume that the failure is likely
caused by polymerase failure and not by a mutation in the family. To exclude the presence of a
trinucleotide expansion in this region, we amplified the region using a fluorescence-labeled
primer pair followed by fragment length analysis at Eurofins Genomics. This analysis yielded a
single peak for all samples analyzed (four affected, four control individuals), excluding that the
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sequencing failure across this region was caused by a trinucleotide expansion. Oligo sequences
are listed in S3 Table.

NimbleGen target-region capture and next-generation sequencing

A custom designed sequence capture array covering chr6:88,511,939-113,377,048 (hg19) was
obtained from NimleGen (Roche NimbleGen, Madison, W1, USA). Genomic DNA from indi-
vidual IV-31 (Fig 1A) was sheared by nebulization and universal adaptor oligonucleotides were
ligated to the DNA. After this step, in order to enrich for the specific 6q region, the library was
hybridized to the custom capture array. After washing to remove unhybridized material, cap-
tured molecules are recovered by heat-based elution and subjected to PCR amplification. The
target-enriched library was quantified and subjected to deep sequencing on an Illumina
Genome Analyzer, GAII using 36 bp reads. One lane of the flow cell was used for the sample.

The raw sequence reads were aligned to the reference genome (hg19, NCBI build 37) using
Burrows-Wheeler Aligner (BWA) [32]. This generated a total of 3.8 Gb of sequence. In order
to identify single nucleotide variants and indels Genome Analysis Toolkit (GATK) was used
described in “Best Practice Variant Detection with the GATK v4” [33], which included removal
of duplicate reads, local realignment around indels and base quality score recalibration before
calling of genetic variants [34]. The sequencing depth and summary mapping statistics of the
target region (54 Table) were calculated using BEDTools [35], PICARD (http://picard.
sourceforge.net), SamTools [36] and custom scripts. SNVs and indels were called using
GATKs Unified genotyper [34] and subsequently SNVs were filtered in order to exclude SNVs
with low mapping quality, low coverage and/or low quality scores. All variants passing this QC
were indicated as PASS in the VCF file.

Filtering in Ingenuity Variant Analysis

The VCF file was uploaded to Ingenuity Variant Analysis for variant filtering. The filtering
steps were (1) kept PASS upstream pipeline filtering AND kept that are on chromosome 6
AND between positions 88556380 and 113518576, (2) excluded that are observed with an allele
frequency greater than or equal to 1.0% of the genomes in the 1000 genomes project OR greater
than or equal to 1.0% of the public Complete Genomics genomes OR greater than or equal to
1.0% of the NHLBI ESP exomes (All) (3) kept that are Frameshift, in-frame indel, or stop
codon change OR Missense OR disrupt splice site upto 2.0 bases into intron OR structural vari-
ant (S2 Fig). We used Ingenuity Variant Analysis version 3.0.20140520 Content versions: Inge-
nuity Knowledge Base (Arrakis 140408.002), COSMIC (v68), dbSNP (Build 138 (08/09/2013)),
1000 Genome Frequency (v3), TargetScan (v6.2), EVS (ESP6500 0.0.21), JASPAR (10/12/
2009), PhyloP hg18 (11/2009), PhyloP hg19 (01/2009), Vista Enhancer hg18 (10/27/2007),
Vista Enhancer hg19 (12/26/2010), CGI Genomes (11/2011), SIFT (01/2013), BSIFT (01/
2013), TCGA (09/05/2013), PolyPhen-2 (HumVar Training set 2011_12), Clinvar (02/11/
2014).

Genotyping of the CD764 mutation

The CD164 ¢.574C>T genotyping assays were developed by TIB MOLBIOL (Berlin, Germany)
for the LightCycler 480 instrument (Roche, Hvidovre, Denmark). Oligo sequences are listed in
S3 Table. Genotyping was performed on 26 members of the Danish family and 1200 Danish
control individuals (500 medical students from Aarhus University and 700 anonymous Danish
blood donors). No information on the hearing ability of the control individuals was available.
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Sequencing of CD164 in individuals with unknown cause of hearing
impairment

PCR primers were designed to amplify exons and surrounding intronic regions of the 7 exons
of CD164 (RefSeq nos. NM_006016.4 and NM_001142404.1). Primer sequences are available
in S3 Table. PCR conditions are available upon request. In total 46 individuals were screened
for CD164 mutations. Among the tested individuals were the probands from five consanguine-
ous Pakistani families with presumed recessive NSHL displaying linkage compatible with a
locus on chromosome 6. These five hearing impaired probands were from families DEM4010
(LOD score 2.70), DEM4026 (LOD score 2.13), DEM4028 (LOD 1.23), DEM4059 (LOD score
3.00) and DEM4446B (LOD score 2.54).

Plasmid constructions

Fusion proteins. To generate fluorescence constructs containing the C-terminal (CTR) of
CD164, wild-type and CD164 R192* (with CD164 R192* lacking the last six residues
RNYHTL), mCherry and eGFP were amplified by PCR and subcloned into pPSECTAG2bzeo
(Invitrogen) in reading frame with the ER signal peptide present in this vector. Overlapping
oligodeoxynucleotides that contain the coding sequence for the transmembrane domain and
C-terminal region (CTR) of CD164 wild-type as well as transmembrane domain and CD164
R192* truncated C-terminal domain of CD164, were annealed and filled up with deoxy-nucleo-
tides before EcoRI/Xhol subcloning in pPSECTAG2bzeo (Invitrogen). The resulting constructs
were named pcSECTAG2bzeo-mCherry-CD164-WT-CTR, pcSECTAG2bzeo-
eGFP-CD164-WT-CTR, SECTAG2bzeo-Cherry-CD164-R192*-CTR and SECTAG2bzeo-
eGFP-CD164- R192*-CTR.

Intact proteins. To generate full-length CD164, wild-type and R192* CD164 cDNA was
cloned into Zeo, Hyg or Neo versions of pcDNA3.1(+) (Invitrogen, Taastrup, Denmark) using
the unique restriction sites BamHI and Xbal, thereby forming the respective
pcDNA3.1-CD164-WT-Zeo, pcDNA3.1-CD164-WT-Hyg and pcDNA3.1-CD164- R192*-Neo
plasmids.

Tagged proteins. To generate epitope-tagged versions of CD164, the HA tag (YPYDVP-
DYA), triple FLAG tag (DYKDHDGDYKDHDIDYKDDDDK) or the myc tag (EQKLISEEDL)
were inserted in a phylogenetically poorly conserved 34 amino acid region C-terminal to the
signal peptide at the indicated positions: DKN(FLAG1)TTQ(HA2, myc2)HPNVTTLA-
PISNVTSA(FLAG3)PVTSLPLVTT(HA4, FLAG4)PA, with arbitrary numerals referring to the
position of insertion. DNA encompassing this region and inserted tags were synthesized by
Gene Oracle Inc (Mountain View, CA, USA) and cloned into CD164 or CD164 R192* in
pcDNA3.1. Expression of the various CD164 variants was under transcriptional control of the
cytomegalovirus (CMV) promoter. All constructs were verified by restriction analysis and
sequencing.

Transfection of cells

The human embryonic kidney cell line, HEK-293 (cat. no. CRL-1573, American Type Culture
Collection, Boras, Sweden) was maintained and cultivated according to standard techniques
[37]. Transiently transfected cells were obtained by means of X-tremeGENE 9 (Roche Applied
Science, Hvidovre, Denmark) transfection experiments following the manufacturer’s instruc-
tions using 1.5 pg total plasmid DNA and 9 ul X-tremeGENE 9 transfection reagent. In brief,
HEK cells were seeded in 35 mm glass bottom microwell dishes (MatTek, Ashland, MA, USA),
and the next day they were co-transfected with pcDNA3.1-mCherry-CD164-WT-CTR and
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pcDNA3.1-eGFP-CD164-R192*-CTR. Stable transfected cells HEK cells were generated in T75
flasks using a total of 11.25 ug DNA (pcDNA3.1-CD164-WT-Zeo,
pcDNA3.1-CD164-WT-Hyg or pcDNA3.1-CD164- R192*-Neo) and 33.75 ul X-tremeGENE 9
transfection reagent and selection of transfected cells were done using medium containing anti-
biotics (Zeocine 100 ug/ml (Invitrogen), Hygromycin 100 pg/ml (Invitrogen), or Neomycine
(G418) 1.5 mg/ml (VWR, Herlev, Denmark)). Approximately one week after initiation of the
selection procedure, non-transfected cells were dead and several positive clones were harvested
after an additional week of the selection. Expression of CD164 was validated either by fluores-
cent microscopy of fluorescent marker genes (mCherry and eGFP), immunostaining of CD164
or by qPCR.

Live imaging, immunostaining and internalization

For live imaging of CD164 fusion proteins, HEK cells were co-transfected in glass bottom
35mm dishes (MatTek) with pcDNA3.1-CD164-WT-CTR-mCherry and
pcDNA3.1-CD164R192*-CTR-eGFP. Two days post transfection the medium was replaced
with DMEM without phenol red and live pictures was captured on a confocal laser scanning
microscope (LSM 780, Zeiss, Jena, Germany) using 63x water-immersion objective with a NA
of 1.2. Immunostaining and internalization was performed essentially as previously described
[38]. In brief, stable transfected HEK cells or HEK cells co-transfected with
FLAG4-CD164-WT and HA4-CD164-R192* seeded on glass were incubated on ice for 10 min
to stop the endocytic machinery and subsequently incubated on ice for 90 min in medium con-
taining 5 pg/ml purified mouse anti-human CD164 antibodies (cat. no. 551296, BD Biosci-
ences), or a mixture of monoclonal anti-FLAG M2 antibodies (cat. no. F3165, Sigma) and
rabbit anti-HA antibodies (cat. no. H6908, Sigma). One fraction of the cells (designated T0)
were fixed in 4% paraformaldehyde (Lillies buffer) (Buch & Holm, Herlev, Denmark) for 15
min at RT, and permeabilized with PBS containing 0.25% (w/v) Saponin (Sigma-Aldrich). The
remaining cells were incubated further at 37°C in complete medium (without antibody) for 10
and 30 min, respectively. At the indicated time points cells were washed, fixed, and permeabi-
lized as described above. Detection of CD164 in the stable transfected HEK cells was performed
using secondary Alexa Fluor 488 goat anti-mouse antibody (1:400, cat. no. A11029, Invitrogen,
Taastrup, Denmark). Detection of FLAG- and HA-tagged CD164 was obtained by using sec-
ondary Alexa Fluor 488 goat anti-mouse antibody (1:400, cat. no. A11029, Invitrogen) and
Alexa Fluor 568 donkey anti-rabbit antibody (1:400, cat. no. A10042, Invitrogen), respectively.
Nuclei were stained with 4',6-Diamidino-2-phenylindole (Sigma-Aldrich) and mounted on
SuperFrost glass slides (Hounisen, Risskov, Denmark). Sequential imaging was done on a con-
focal laser scanning microscope (LSM 780, Zeiss, Jena, Germany) using 40x oil-immersion
objective with a NA of 1.3.

Dimer formation analysis

HEK-293 cells in 35 mm plastic dishes were transiently transfected with untagged or epitope-
tagged CD164 and CD164 R192* or empty pcDNA3.1 vector using X-tremeGENE 9, as
described above, and cultured for 2 days. For CD164 protein expression analysis, cells were
thereafter lysed in reducing SDS-PAGE sample buffer and subjected to immunoblotting using
sheep anti-human CD164 primary antibody (AF5790) and horseradish peroxidase-coupled
anti-sheep secondary antibody (HAF016), both from R&D Systems. For CD164 dimer forma-
tion analysis, cells were solubilized in immunoprecipitation buffer, as described [39]. Cell
lysates were then incubated with 2 pug antibody to the HA tag (12CA5 clone) and immune com-
plexes were precipitated using protein G agarose beads (16-266, Millipore). Aliquots of the
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immunoprecipitates or the pre-immunoprecipitation lysates were subjected to SDS-PAGE
under reducing conditions followed by immunoblotting with horseradish peroxidase-coupled
antibodies to the FLAG tag (Sigma-Aldrich A8592, M2 clone) or the HA tag. Secondary anti-
bodies were detected by chemiluminescence (SuperSignal West Femto, #34095, Pierce).

gPCR assay of cell lines

A gPCR assay to detect the ratio between wild-type and mutant transcripts as well as total
expression of CD164 in the double transfected cell lines was developed. Primers were designed
to amplify total CD164 transcripts (recognising both transcripts) as well as the mutated and
wild-type transcript (allele specific primers). For each cell lines RNA was extracted from cell
pellets using RNeasy (Qiagen) and cDNA was synthesized using iScript cDNA Synthesis kit
(BIO-RAD) and 500 ng input RNA. Minus RT reactions were included to control for genomic
DNA contamination. qPCR with was carried out for the transfected cell lines as well as
untransfected HEK cells for control. The geometric mean of three genes (ACTB, HTRP and
TBP) was used to normalize for cDNA content. All reactions were performed in triplicates.
Fold changes were calculated relative to untransfected HEK cell. The relative amount of
mutated and wild-type transcript within each cell line was calculated by taking the ratio of each
transcript level to the level of total CD164 transcripts.

RT-PCR analysis of CD164 transcript from an affected family member

Total RNA from peripheral blood lymphocytes was isolated from one of the affected family
members (Fig 1A, IV-5) using the PAXgene Blood RNA System consisting of a blood collection
tube (PAXgene Blood RNA Tube) and nucleic acid purification kit (PAXgene Blood RNA Kit)
(Qiagen). The RNA was reverse-transcribed onto cDNA by using HT,;V primers and the
Superscript IT kit (Invitrogen). RT-PCR was carried out with forward and revers primers posi-
tioned in exon 5 and 6 respectively, thereby spanning intron 5 (NM_006016.4) (S3 Table). The
PCR product was sequenced on both strands using Sanger sequencing and aligned to the
CD164 gene using the BLAT program (BLAST like alignment tool).

CD164 expression in mouse inner ear

Three wild-type mice at postnatal day five from the albino C57BL/6]-Tyr" ™ inbred strain

were used for the expression analysis. The heads of all samples were dissected in PBS before fix-
ation for two days in 10% formalin at 4°C, washing, dehydrating and embedding in paraffin
wax. Embedded samples were cut into 8pum thick sections along the sagittal plane. Immunohis-
tochemistry was then carried out according to the manufacturer’s instructions on slides using
the Ventana Discovery machine with the manufacturer’s reagents CC1 (cat.no 950-124),
EZPrep (cat.no 950-100), LCS (cat.no 650-010), RiboWash (cat.no 760-105), Reaction Buffer
(cat.no 95-300), and RiboCC (cat.no 760-107). The DABMap Kit (Ventana; cat.no 760-124)
with hematoxylin counterstain (cat.no 760-2021) and bluing reagent (cat.no 760-2037) were
used. All antibodies were diluted in ‘Antibody staining solution’: 10% fetal calf serum, 0.1%
Triton, 2% BSA and 0.5% sodium azide in PBS. The primary antibodies used were anti-CD164
(SantaCruz, sc-33124, 1:75 and St.John’s Laboratory, STJ92095, 1:500). The secondary anti-
body used was Jackson ImmunoResearch biotin-conjugated donkey anti-rabbit (711-065-152,
1:100). The stained slides were examined and images obtained using an AxioCam HRc camera
mounted on a Zeiss microscope.
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Web resources

The Hereditary Hearing loss Homepage (http://hereditaryhearingloss.org)

OMIM—Online Mendelian Inheritance in Man (www.omim.org/)

PICARD (http://picard.sourceforge.net)

SMART database (smart.embl-heidelberg.de)

NetOGlyc 4.0 Server (http://www.cbs.dtu.dk/services/NetOGlyc/)

dbSNP (http://www.ncbi.nlm.nih.gov/SNP/)

1000 Genomes project (http://www.1000genomes.org)

Exome Variant Server database (http://evs.gs.washington.edu/EVS/)

UCSC Genome Browser (http://genome.ucsc.edu)

BioGPS (http://biogps.org)

GTEx (http://www.gtexportal.org/home/)

Morton Human Fetal Cochlea cDNA Library EST Data (http://brighamandwomens.org/
Research/labs/BWH_Hearing/Cochlear ESTs.aspx)

SHIELD: Shared Harvard Inner-Ear Laboratory Database (https://shield.hms.harvard.edu)

Supporting Information

S1 Fig. Audiograms from six individuals in the large Danish family with NSHI. Audiograms
are from individual IV-22, IV-31, IV-21, V-23, V-39, and V-24.
(TIF)

S2 Fig. Variant analysis and filtering. An algorithm in Ingenuity Variant Analysis was used
for filtering all variants identified in the locus from the custom capture array, with numbers of
variants left after each filtering step indicated.

(TTF)

$3 Fig. Chromatogram of the region containing rs11542733. Sanger sequencing was not
able to verify the presence of rs11542733 in CEPH 1341-13.
(TIF)

$4 Fig. Quantitative PCR assay. A. The ratio of wild-type and mutant CD164 transcript for
each cell line. B. The total CD164 expression indicated as foldchange compared to untrans-
fected HEK cells. The average of three housekeeping genes was used for normalization. WT:
HEK cell line transfected with wild-type construct. MUT: HEK cell line transfected with
mutant transcript.

(TIF)

S5 Fig. Cd164 expression in the mouse cochlea at postnatal day five performed with a dif-
ferent antibody (St. John’s Laboratory). Cd164 expression was confirmed in the spiral gangli-
ons neurons, hair cells in the organ of Corti, cells of Kolliker’s organ, cells of the spiral
prominence and in the stria vascularis. This antibody also shows cd164 expression in Claudius
cells. Scale bar; 10 um.

(TIFF)

S1 Table. Parametric LOD score on chromosome 6 from the initial SNP-based genome-
wide linkage analysis including 11 individuals.
(DOCX)

S2 Table. Genes within the locus identified from the SNP analysis. The region contain SOBP
and FOXO3, which are genes involved in deafness in the mouse, but Sanger sequencing and
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careful check of all coding exons did not identify any variation in these genes.
(DOCX)

§3 Table. Oligo and primer sequences used in this study.
(DOCX)

$4 Table. Statistics on target sequence capture array and NGS of the DNA sample from
individual IV-31.
(DOCX)
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