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Abstract

This study presents a new approach for evaluating bioheat transfer equation (BHTE) models used 

in treatment planning, control and evaluation of all thermal therapies. First, 3D magnetic 

resonance temperature imaging (MRTI) data are used to quantify blood flow-related energy losses, 

including the effects of perfusion and convection. Second, that information is used to calculate 

parameters of a BHTE model; in this paper the widely used Pennes BHTE. As a self-consistency 

check, the BHTE parameters are utilized to predict the temperatures from which they were 

initially derived. The approach is evaluated with finite-difference simulations and implemented 

experimentally with focused ultrasound heating of an ex vivo porcine kidney perfused at 0, 20 and 

40 ml/min (n = 4 each). The simulation results demonstrate accurate quantification of blood flow-

related energy losses, except in regions of sharp blood flow discontinuities where the transitions 

are spatially smoothed. The smoothed transitions propagate into estimates of the Pennes perfusion 

parameter but have limited effect on the accuracy of temperature predictions using those 

estimates. Longer acquisition time periods mitigate the effects of MRTI noise, but worsen the 

effect of flow discontinuities. For the no-flow kidney experiments, the estimates of a uniform, 

constant Pennes perfusion parameter are approximately zero, and at 20 and 40 ml/min, the average 

estimates increase with flow rate to 3.0 and 4.2 kg/m3/s, respectively. When Pennes perfusion 

parameter values are allowed to vary spatially, but remain temporally constant, BHTE temperature 

predictions are more accurate than when using spatially uniform, constant Pennes perfusion 

values, with reductions in RMSE values of up to 79%. Locations with large estimated perfusion 

values correspond to high flow regions of the kidney observed in T1-weighted MR images. This 

novel, MRTI-based technique holds promise for improving understanding of thermal therapy 

biophysics and for evaluating biothermal models.
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3D MR temperature data following focused ultrasound heating are used to quantify energy losses 

caused by blood flow for evaluation of biothermal models. Results in ex vivo perfused kidney 

demonstrate that the Pennes model with spatially varying blood flow is up to 79% more accurate 

at predicting temperatures than when assuming spatially uniform blood flow. This novel process is 

a step forward from past evaluations, because dynamic 3D temperatures allow for improved 

spatial and temporal sensitivity in evaluating biothermal models.
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ultrasound; bioheat transfer

Introduction

Blood flow and biothermal modeling

Blood flow plays a significant role in magnetic resonance-guided focused ultrasound 

(MRgFUS) treatments (1–4) and other thermal therapies (5–8) by drawing energy away 

from the heated region, lowering temperatures and reducing the therapeutic effects of the 

applied energy. The increased heating time required to ablate high blood flow regions 

extends the overall treatment time, which may already be a significant treatment-limiting 

factor (2–3). The associated accumulation of thermal dose in the near- and far-fields may 

endanger healthy tissues (9). If achievable, accurate pretreatment predictions of blood flow-

related energy losses and temperature distributions would provide clinicians the information 

necessary to preemptively adjust treatment plans for improved outcomes. Quantifying the 

effects of blood flow is also crucial to developing and evaluating the bioheat transfer 

equation (BHTE) models proposed for use in treatment planning, control and evaluation 

(10–11).

In a generic BHTE used for MRgFUS predictions of the absolute tissue temperature T (°C),

(1)

the tissue thermal properties- thermal conductivity k (W/m/°C), specific heat c (J/kg/°C), 

and density r (kg/m3)- and the power deposition pattern Q̇FUS (W/m3) can be accurately 

determined from noninvasive methods (12–16), published tissue data (17–20), or ultrasound 

simulation algorithms (21–22). For MRgFUS applications, contributions of the metabolic 

heat generation rate Q̇m are insignificant and therefore neglected in this work. Thus, 

determining the final term of Equation 1 representing blood flow-related energy losses Q̇bl 

(W/m3) is the primary challenge when creating and evaluating biothermal models.
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This study introduces a novel magnetic resonance temperature imaging (MRTI)-based 

process for quantifying blood flow-related energy losses and evaluating biothermal models. 

First, 3D MRTI data are used to quantify Q̇bl. Those data are then utilized to calculate blood 

flow parameters of a BHTE model of interest. Finally, the BHTE model parameters are used 

to check the self-consistency of the model by predicting the temperatures from which they 

were derived. As an illustrative example, this study examines the widely applied Pennes 

BHTE (23) through finite-difference thermal simulations and MRgFUS experiments in an ex 

vivo perfused kidney.

Pennes bioheat transfer equation

In Pennes BHTE, blood flow-related energy losses are commonly characterized as a scalar 

thermal energy sink,

(2)

where w is the Pennes perfusion parameter (kg/m3/s), cbl is the specific heat of blood (J/kg/

°C), and T and Tar represent the temperature (°C) of the tissue and arterial blood. While 

several investigators have attempted to formulate better tissue heat transfer models (e.g. 24–

27), Pennes BHTE remains the most widely implemented.

Despite its frequent application, there are few experimental evaluations of the Pennes BHTE 

(23,28–34), all relying upon a small number of discrete thermocouple or thermistor 

measurements. This paper extends previous efforts by using 3D MRTI to quantify Q̇bl, 

determine the Pennes perfusion parameter w, and test the predictive ability of the Pennes 

BHTE.

Theory

Quantifying blood flow-related energy losses

After the tissue has been heated and the ultrasound turned off, Equation 1 (assuming 

uniform thermal conductivity) becomes

(3)

where exp indicates 3D MRTI data. Since the thermal properties k, ρ, and c can be measured 

or found in property tables, direct estimates of Q̇bl can be made since all other terms in 

Equation 3 are known. However, early attempts to directly estimate Qḃl were extremely 

susceptible to MRTI noise (35). A major source of this noise susceptibility seems to arise 

from evaluating the Laplacian conduction term k∇2Texp, which is calculated from each 

voxel’s noise-influenced temperature and those of six adjacent voxels.

Replacing the Laplacian conduction term through the use of a finite-difference thermal 

model can mitigate the MRTI noise effects. To illustrate, consider two successive 3D MRTI 

measurements obtained during the cooling period at time points n and n+1. Using the first 

experimental temperature distribution, Tn,exp, as an initial condition, the temperature decay 
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for the next MRTI acquisition time interval, Δtacq, is calculated via finite-difference 

methods in a pure conduction model,

(4)

Subscript mod is for modeled data.

If the effects of conduction and blood flow are separable for the short time period involved 

(Δtacq) (36–37), then

(5)

and Equation 3 becomes

(6)

wherein the noisy Laplacian conduction term has been replaced by a smoother, modeled 

temperature term, .

Time derivatives in Equation 6 are approximated using Δtacq, temperature changes from 

consecutive experimental measurements (ΔTexp = Tn+1,exp − Tn,exp), and the corresponding 

modeled temperature changes (ΔTmod = Tn+1,mod − Tn,exp). Simplifying Equation 6 yields

(7)

For each voxel, Equation 7 gives the average value of Q̇bl between consecutive MRTI 

measurements; Qḃl is assigned to the midpoint in time. By stepping sequentially through the 

MRTI data during the cooling period, updating the initial condition (Tn,exp) and endpoint 

temperatures (Tn+1,exp and Tn+1,mod) for each consecutive pair of images, the dynamic 3D 

distribution of Q̇bl can be evaluated.

Evaluating the Pennes BHTE

In the next step, the BHTE model parameters are calculated from Qḃl. For our illustrative 

example, Pennes perfusion parameter w is calculated using Equation 2, in which the tissue 

temperatures T are replaced with Tave (the average of Tn,exp and Tn+1,exp) to align in time 

with Qḃl. Individual Q̇bl and Tave values can be used to calculate estimates of w for each 

voxel and MR acquisition time interval. Alternatively, subsets of Q̇bl and Tave values can be 

used to optimize averaged w values that are uniform in space and/or constant in time.

The BHTE model parameters are then substituted into Equation 3 and the BHTE model is 

utilized to predict the temperatures for the entire cooling period. Comparing the predicted 

and experimental temperatures assesses the quality of the model and its ability to reflect the 

details of the heat transfer process.
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Simulation studies

Simulation methods

The simulations utilized Pennes BHTE in a two-tissue model (Figure 1). Parameters studied 

included blood flow, Δtacq, and MRTI noise. Tissue properties (except blood flow) in Table 

1 were from the literature; fat (tissue 1) and muscle (tissue 2) (19–20). Blood flow was 

modeled with spatially uniform, temporally constant perfusion values, set to 1 kg/m3/s in 

tissue 1, and adjusted in tissue 2 between 5, 10, and 50 kg/m3/s. The blood specific heat cbl 

was equal to the tissue specific heat and Tar was set equal to the tissues’ initial, uniform 

value. Adiabatic boundary conditions were applied.

Heating was simulated using scanned focused ultrasound with eight focal locations, each 

electronically steered 4.0 mm from the geometric focus. The emitted acoustic power was 40 

W. The eight focused ultrasound power deposition patterns (Q̇FUS) were calculated via the 

hybrid angular spectrum method (21), superimposed, and averaged to simulate rapid 

scanning (Figure 1). Heating lasted for 40 s and cooling temperatures were calculated for an 

additional 40 s. The isotropic grid spacing was 0.4 mm, and the time step was 0.1 s. The 

finite-difference temperatures were subsampled at Δtacq values of 1, 2, 4, and 8 s. For a few 

cases (w = 1, 5 kg/m3/s and Δtacq = 1, 2, 4, and 8 s), zero-mean Gaussian noise was added to 

the temperature data (standard deviation (SD) = 0.2 °C).

Q̇bl values were then estimated for each position during each Δtacq from the simulated 

cooling temperature data. To examine the assumption of separability between conduction 

and blood flow, the values of k∇2Texp (from the Pennes BHTE simulated experiments) and 

k∇2Tmod (from the pure conduction model) in Equation 5 were compared after each Δtacq. 

The Q̇bl estimates (Equation 7) were also compared to the values from Equation 2 (using the 

true perfusion values).

The estimated Q̇bl and Tacq values were used to estimate a temporally constant w for each 

location. Finally, those constant w values were used in the Pennes BHTE (with the 

temperature distribution at the end of heating as the initial condition) to predict temperatures 

throughout the cooling period.

Simulation results and discussion

Figure 2 shows how Δtacq (left column; w = 1, 5 kg/m3/s) and Pennes perfusion parameter 

(right column; Δtacq = 4 s) affect the estimation outcomes. Note, the columns’ scales differ, 

but the blue lines in each column are equivalent, both using w = 1, 5 kg/m3/s and Δtacq = 4 s.

The first row in Figure 2 assesses the conduction and blood flow separability assumption 

represented by Equation 5 by defining the error in Qċond as a percentage of the maximum 

k∇2Texp value, i.e. (k∇2Tmod − k∇2Texp)/k∇2Texp,max × 100. This metric preserves 

comparisons of the errors’ magnitudes at different locations while also providing a sense of 

their size relative to the overall conduction. It is clear that the separability assumption is 

least valid near the tissue interface, with error increasing with tissue perfusion differences 

(Top right). Interface errors also increase with larger Δtacq (Top left); more importantly, the 

tissue region with significant Q̇cond errors widens with increasing Δtacq (the >1% error 
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region near the interface spans 2.4 and 7.6 mm for Δtacq of 1 and 8 s, respectively). While 

the Q̇cond errors presented in Figure 2 are taken at tcool = 40 s, results from the rest of the 

cooling period are very similar (<10% variation).

The second row of Figure 2 shows how errors in the separability assumption affect estimates 

of Q̇bl; the magnitude of errors near the interface increases with increasing perfusion 

differences (second row, right), and the magnitude and spread of errors increase with 

increasing Δtacq (second row, left). In essence, the sharp transition in Q̇bl values at the tissue 

interface is changed into a smooth transition by the estimation approach. In tissue regions 

with gradual changes in Q̇bl, the estimates are excellent, consistently with <1% error. Again, 

the presented Q̇bl values at the end of cooling are representative of the entire cooling period, 

though in general the magnitude of Q̇bl decreases with time.

The smoothing of Q̇bl values then blends the tissue discontinuity in the Pennes perfusion 

parameter w (Figure 2, third row) estimates. Larger Δtacq widens the region affected by this 

effect (third row, left). At distances greater than 1.6 mm from the tissue interface, errors in w 

estimates are consistently less than 5% for all perfusion levels (third row, right).

When w estimates are used in the Pennes BHTE to predict the temperatures from which they 

were derived (Figure 2, bottom row), the variations caused by different Δtacq (left) and 

perfusion levels (right) have minimal effect upon the predicted temperatures, with all errors 

in predicted temperatures less than 0.1 °C.

Figure 3 demonstrates the effects of MRTI noise. First, the approach clearly requires 

adequate signal-to-noise ratio (SNR) to produce accurate estimates of w. The white outline 

in the leftmost image identifies the region with > 5 °C temperature rise in the noiseless data. 

Mean estimates of perfusion in this region approach the true values (Table 2). Outside this 

region, MRTI noise confounds the results. Second, the smoothing effect seen at perfusion 

discontinuities now beneficially reduces variation in w estimates caused by noise. Longer 

Δtacq therefore produces cleaner estimates of the perfusion profile. Table 2 shows this trend 

quantitatively, where the SD of w decreases with increasing Δtacq.

In conclusion, the approach introduces a finite-difference conduction model based on 

separability of conduction and blood flow effects during Δtacq. Simulations demonstrate that 

this approach smooths sharp transitions in blood flow, with a broadening of the affected 

region for longer Δtacq. The smoothing effect reduces errors introduced by MRTI noise. A 

strong temperature signal is necessary for obtaining meaningful results with this approach. 

In regions without sharp discontinuities in blood flow, the approach generates correct Qḃl 

and w estimates with accurate temperature predictions.

Experimental study

Experimental methods

The experimental study was performed in an ex vivo perfused porcine kidney (Figure 4). 

Following excision and cannulation of the renal artery, the kidney was flushed with a 

heparin and saline solution (38). The kidney was secured in a gelatin phantom to provide a 

region for referenceless temperature reconstruction (39). In the coronal T1-weighted 
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magnitude image of Figure 4, acquired during 40 ml/min flow with no heating, the yellow 

box identifies the region of interest (ROI) used for presenting the experimental results. This 

ROI has been magnified in the top right inset of Figure 4 where high flow locations can be 

identified by their bright intensity.

Heating was achieved by electronically steering a 256-element phased-array ultrasound 

transducer (Imasonics, Besancon, France and Image Guided Therapy, Pessac, France) 

rapidly in an 8-mm radius circle (blue circle, Figure 4) for 120 s at 90 acoustic watts. The 

kidney was perfused with a heparin-H2O solution at fixed flow rates (0, 20, and 40 ml/min) 

(40). To obtain a high, consistent temperature distribution at the start of cooling, flow was 

kept at zero during heating and initiated at the start of the cooling period. Two heating scans 

were performed at each of the three flow rates in two different locations yielding twelve data 

sets. For the second heating location, the blue circle for focused ultrasound heating and 

yellow box for results was shifted and centered on the asterisk in Figure 4.

MR data were acquired in 10 coronal slices with a 3T Siemens Trio MRI (3D segmented-

EPI, TR/TE = 30/11 ms, FOV = 192×156×30 mm3, FA = 15°, 694 Hz/pixel, EPI factor = 9, 

2×2×3 mm3, Δtacq = 3.3 s) using a custom-built, single-channel loop coil. Temperatures 

were reconstructed via the proton resonance frequency method (41–42) with a 2D 

referenceless reconstruction technique using a fifth-order polynomial (39), and zero filled 

interpolated to 0.5-mm isotropic spacing (43–44). Kidney properties were obtained via 

invasive probe measurements (KD2 Pro, Decagon Devices, Pullman, WA) and the 

displaced-water technique following the experiment.

The temperature data were utilized to quantify Q̇bl using Equation 7 for each voxel and 

acquisition interval. Conduction model calculations used a finite-difference spacing that 

matched the zero-filled interpolated voxel size (0.5 mm-isotropic) and a time step of 0.1 s. 

Adiabatic boundary conditions were assumed.

Over the course of the experiment, fiberoptic probes in the gelatin phantom indicated that 

the background tissue temperature increased from 21.8 to 27.6 °C. Since the background 

tissue temperature is used as a reference baseline for MRTI and the perfusate temperature 

(23.0 °C) was constant throughout the experiment, Tar, defined as the difference between the 

perfusate and the background tissue temperatures, changed slowly from 1.2 to −4.6 °C 

during the experiment; however, for the few minutes needed to acquire MRTI data from 

each individual heating scan, Tar was assumed to be constant. A minimum of 10 minutes 

cooling was implemented between experiments to allow for thermal equilibrium before data 

acquisition.

Two approaches were implemented for determining the Pennes perfusion parameter w. First 

(spatially varying w), 60 s of Q̇bl and Tave data were used to optimize for a temporally 

constant w in each voxel. The optimization routine (MATLAB function fminsearch) updated 

w to minimize the least-squares error between experimentally determined Q̇bl values 

(Equation 7) and those predicted by Equation 2. Q̇bl values from the first two MRTI 

acquisitions of the cooling period were not used to avoid non-steady state perfusate flows. 
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Therefore, Q̇bl and Tave values from tcool = 10.7–69.6 s were used to find w on a voxel-by-

voxel basis.

Second (spatially uniform w), all of the Qḃl and Tave values in a 2×2×2 cm3 region (centered 

in the yellow box of Figure 4) over the time period from tcool = 10.7–69.6 s were used to 

optimize for a single average w value in space and time. To determine whether those MRTI-

based w values were of appropriate magnitude, simplified uniform perfusion values were 

also calculated according to

(8)

Finally, the predictive ability of w values obtained in this study was tested in simulations 

using the Pennes BHTE. Temperatures were predicted for 68.0 s of cooling using both 

spatially varying and spatially uniform w values. Experimental temperatures just prior to 

cooling were used as the initial condition with adiabatic boundary conditions. Maximum 

errors and root-mean-squared errors (RMSE) were calculated for the inset ROI of Figure 4.

Experimental results and discussion

Representative temperature change profiles at different times and flow rates are shown in 

Figure 5. The initial temperature distributions (left column) are similar for all flow 

conditions as expected (mean temperature differences < 0.2 °C), because the perfusate flow 

was always off during heating and the applied power was equivalent. Later in the cooling 

period (center and right columns), temperature profiles at different flow rates diverge, with 

regions of greatest cooling (blue) corresponding to high flow locations (Figure 4, inset).

Figure 6 shows the values of Q̇bl corresponding to the temperature profiles of Figure 5 (the 

left column has been delayed several MR acquisitions to ensure a steady perfusate flow). For 

the 0 ml/min case (top row), there are no energy losses caused by flow and, as expected, the 

calculated Q̇bl values are approximately zero; nonzero Q̇bl values represent variations caused 

by MRTI noise and/or errors in the approach’s approximations. For 20 ml/min (middle row) 

and 40 ml/min (bottom row), the locations of greatest Q̇bl (red) correspond to the locations 

of greatest cooling (blue) in Figure 5. As time progresses, the initially large Q̇bl values 

decrease because energy is continually being drawn away by the perfusate. All blood flow 

related-energy losses, both convective losses to large vessels and Pennes sink-like perfusion 

losses, are accounted for in Q̇bl, with no indication of the specific mechanism.

Q̇bl is a function of both the flow magnitude and the amount of thermal energy in the tissue. 

Early in cooling, Q̇bl is larger for the 40 ml/min case than the 20 ml/min case, because the 

flow rate is greater and the thermal energy in the tissue is approximately the same at this 

time. Later, the Q̇bl values are greater for the 20 ml/min case than the 40 ml/min case. It 

appears that the tissue quickly reaches thermal equilibrium with the perfusate in high flow 

regions at 40 ml/min, so there is limited residual energy to be drawn away by the perfusate 

at the later times.
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Once the 3D distributions of Q̇bl are determined, they can be used to evaluate the Pennes 

BHTE. While the empirically derived Pennes perfusion parameter is only equal to the true 

capillary blood perfusion in limited situations (25), reported capillary blood perfusion values 

can help identify appropriate magnitudes of w. For reference, average fat and resting muscle 

perfusions are 0.55 and 0.65 kg/m3/s, respectively, brain perfusion is 9.3 kg/m3/s, liver is 15 

kg/m3/s, and kidney is 69 kg/m3/s (20). If large vessels traverse the MRgFUS heated region, 

much larger local perfusion values could be calculated since the Pennes model does not 

distinguish between convective and perfusion effects. In such cases, w is only an empirical 

parameter accounting for blood flow-related energy losses.

Spatially varying estimates of w (assumed constant in time) are presented in Figure 7. For 

the no-flow case (top), w values have a mean of −0.7 kg/m3/s and range from −13.7 to 15.1 

kg/m3/s. Ideally, all of these values should be zero. Despite the optimization in time, MRTI 

noise (SD = 0.2 °C for these data) is still introducing variation in w estimates. For flow 

situations (middle and bottom), values of w increase with increasing flow rate and the largest 

w values correspond to high flow locations identified in Figure 4.

Figures 5–7 show only a single, representative 2D slice from three data sets. Figure 8 

highlights the three-dimensional nature of this study, showing projections of the spatially 

varying w values (flow rate = 40 ml/min) that are greater than 125 kg/m3/s in a 2×2×2 cm3 

region centered on the heated volume. The two projections, from different heating locations, 

approximately trace the discrete kidney vasculature.

Figure 9 shows results from all twelve data sets using a spatially uniform w. Red × markers 

indicate the average of w estimates at each flow rate (n=4) with vertical bars identifying the 

range of measured values. The average values increase as anticipated, −0.3, 3.0, and 4.2 

kg/m3/s for flow rates of 0, 20, and 40 ml/min, respectively. These are a fraction of 

published values (69 kg/m3/s) for in vivo kidney (20), because the experimental flow rates 

are much lower than those experienced in vivo (estimated at ~700 ml/min using Equation 8). 

Attempts to perfuse the ex vivo kidney at in vivo flow rates caused cannulation sutures to 

fail. However, comparison with the simplified uniform perfusion values (blue circle 

markers) calculated from Equation 8 for the ex vivo experimental flow rates shows that the 

MRTI-based w values are of an appropriate magnitude. One might expect that experimental 

values would increase linearly with flow rate, but this was not observed in our experiments, 

potentially due to the limited sample size, residual noise effects, or non-uniform increases of 

perfusate flow in the kidney as the flow rate was increased.

Considering the four 0 ml/min data sets where estimates should be zero, MRTI-based values 

of w range from −0.7 to 0.1 kg/m3/s. These errors are approximately the range of perfusion 

values for fat and resting muscle and suggest that this technique may need to be improved to 

have sufficient sensitivity for measurements in those and other low perfusion tissues, unless 

improvements in MRTI SNR are made. However, such small perfusion values would have 

little impact on MRgFUS temperatures and may not be critical for pretreatment planning 

purposes.
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Without independent measurements of perfusion or blood flow, testing the ability of w 

estimates to predict temperature changes is an appropriate method for assessing their 

magnitude. The left column of Figure 10 repeats the experimental temperatures at tcool = 

68.0 s from Figure 5. Temperature predictions from simulations of the Pennes BHTE using 

either spatially varying w (center) or spatially uniform w (right) are shown in the adjacent 

columns. Maximum temperature errors and RMSE for the Pennes BHTE temperature 

predictions are found in Table 3. By using spatially varying instead of spatially uniform w, 

maximum errors in temperature prediction are reduced by an average of 27% for the no-flow 

case, 72% for the 20 ml/min case, and by 73% for the 40 ml/min case. RMSE values are 

reduced on average by 2%, 67%, and 79% for the 0, 20, and 40 ml/min cases, respectively. 

Such predictions help assess the self-consistency of the model being evaluated.

The Pennes BHTE using spatially uniform values for w is least accurate near large blood 

vessels (25,31,33,45–47). This study supports that conclusion, since temperature predictions 

using a spatially uniform w (right column of Figure 10) are especially poor in the high flow 

regions identified in Figure 4. However, most methods for experimentally estimating w will 

only identify a single uniform value (12–13,48–49), and property tables only provide 

average values (17–18,20). The inclusion of discrete vasculature in thermal modeling 

significantly improves temperature prediction, but requires a priori knowledge of the vessel 

network and increases the complexity of thermal models (50–52).

The accurate predictive power of the spatially varying Pennes model used in this study 

suggests that the Pennes BHTE, while not ideal, may be useful and appropriate for some 

cases of vascularized tissues if w can be evaluated and implemented on a voxel-by-voxel 

basis instead of uniformly. Errors in the temperature predictions are still greatest near large 

vessels, but are significantly smaller than those made using spatially uniform w values. 

Thus, while the Pennes model may not accurately represent the details of convective heat 

transfer, the self-consistency demonstrated in temperature predictions suggests that it can at 

least coarsely reflect the nature of thermal energy losses to large vessels. For considerations 

of pretreatment planning in vascularized tissues like this kidney model, the spatially varying 

Pennes model is superior to the spatially uniform Pennes model. The residual RMSE seen in 

Table 3 suggest that further improvements are possible. Future models of increased 

complexity should provide better results. However, residual RMSE may in part be attributed 

to sources beyond model insufficiencies, such as MRTI drift or noise and the variability of 

equipment or experimental execution.

The technique used in this study for quantifying Q̇bl can also be applied using MRTI heating 

data, but introduces an additional source of uncertainty by requiring knowledge of Q̇FUS in 

Equation 1. Utilizing heating data would be particularly helpful for the more realistic case of 

continuous blood flow through the heating and cooling periods. Clinically, it is not practical 

to restrict blood flow during heating as was artificially done in the presented experiment, 

though some pre-clinical studies have shown it is possible (53). Blood flow during the 

heating period would lower the magnitude of the temperature rise and create large local 

temperature gradients. If Q̇FUS is known, the additional heating data could help offset these 

adverse effects by providing more information for Q̇bl quantification and model evaluations.
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In equating the two conduction terms of Equation 5, this approach assumes that blood flow 

and conduction effects are separable over short time intervals (Δtacq). In practice, where the 

assumption is least valid (at blood flow discontinuities), the finite-difference model smooths 

sharp transitions and introduces a blending effect in Q̇bl and w values. This effect is seen in 

simulations at the interface between tissues (Figure 2) and is likely present on the edges of 

the high flow locations in the kidney. With very localized blood flow discontinuities such as 

those at high flow vessels, the smoothing effect may prevent this approach from capturing 

the true magnitude of Q̇bl, most likely resulting in underestimation of Q̇bl within the vessel. 

Improving the temporal resolution of MRTI will mitigate such errors by minimizing the time 

for which the finite-difference model approximation is applied, but will also reduce the SNR 

of MRTI data and the ability of the model to smooth errors introduced by MRTI noise.

The accuracy of results depends in part upon the accuracy of the approximations and a priori 

knowledge required by the technique. In this paper, we have assumed uniform, constant 

tissue thermal properties. Errors in the assumed local tissue property values will be reflected 

in the estimated Qḃl values, as the technique will compensate for errors by adjusting Q̇bl. 

This is not a limitation of the technique itself, since if the thermal properties were known, 

they could be implemented in the technique.

In spite of the challenges described above, the self-consistency demonstrated by this 

approach when implementing the relatively simple, spatially variable Pennes BHTE is 

encouraging for its use in evaluating Pennes and other BHTE models. Of note, another 

technique was recently proposed for using the Pennes BHTE to simultaneously reconstruct 

the distribution of tissue thermal properties, blood flow, and metabolic heat generation from 

simulated heating data caused by transmit RF coils (54). That technique was also shown to 

be least accurate at interfaces between tissues and at flow discontinuities.

Currently, this approach is only clinically applicable in retrospective studies, because the 

tissue heating required to obtain Qḃl for biothermal model evaluation is not reasonable in the 

pretreatment setting. To fully configure these techniques for clinical use, an independent and 

quantitative measure of blood flow is essential, e.g. arterial spin labeling or dynamic 

contrast enhanced imaging (55–56). For pretreatment planning, such quantitative blood flow 

measurements will need to be converted through the biothermal model parameters to the 

blood flow-related energy losses. Our approach is one possible method for calibrating that 

conversion. Once this goal is accomplished, biothermal models for treatment planning will 

have the ability to accurately predict temperature distributions, dose profiles, and treatment 

outcomes before the thermal therapy begins.

Conclusion

The novel 3D MRTI-based approach presented in this study for quantifying blood flow-

related energy losses and evaluating the Pennes BHTE is a step forward from past validation 

efforts, because the extensive 3D MRTI data allow evaluation with greater spatial and 

temporal sensitivity. The finite-difference model implemented in the approach blends sharp 

transitions in blood flow and mitigates noise effects. Estimates of spatially varying Pennes 

perfusion parameter w values yielded significantly more accurate temperature predictions 
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than the traditionally implemented spatially uniform w. This approach has promise in both 

quantifying the role of blood flow in treatments and in the comprehensive evaluation of 

biothermal models used in MRgFUS thermal therapies.
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Abbreviations

BHTE bioheat transfer equation

MRTI magnetic resonance temperature imaging

MRgFUS magnetic resonance-guided focused ultrasound

Q̇bl blood flow-related energy losses [W/m3]

Q̇FUS focused ultrasound power deposition [W/m3]

ROI region of interest

RMSE root-mean-squared error

SD standard deviation

SNR signal-to-noise ratio

Δtacq MRTI acquisition time interval [s]

w Pennes perfusion parameter [kg/m3/s]
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Figure 1. 
(Top) Schematic of the two-tissue model used for simulations. The dashed red outline 

identifies the transverse plane for which the simulated Q̇FUS pattern (Bottom left) is shown. 

The horizontal line identifies the tissue interface and the dashed vertical line indicates the 

position of line plots presented in Figure 2. Representative temperature change data (Bottom 

middle, tcool = 0 s; Bottom right, tcool = 40 s) are also shown, for which the Pennes perfusion 

parameter values were 1 and 5 kg/m3/s in tissue 1 and tissue 2, respectively.
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Figure 2. 
Effects of varying Δtacq (left column; w = 1, 5 kg/m3/s) and Pennes perfusion levels (right 

column; Δtacq = 4 s) upon outcomes of the simulation study. Errors in Q̇cond (top row, tcool 

= 40 s) evaluate the assumption of conduction and blood flow separability (Equation 5). The 

true Q̇bl values (from Equation 2) and estimates (from Equation 7) at tcool ~ 40 s are seen in 

the second row. For each position, all Q̇bl estimates for the 40 s of cooling data are used to 

calculate constant w estimates (third row), which are then used in the Pennes BHTE to 

predict cooling temperatures (bottom row, tcool = 40 s) as a check for self-consistency.
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Figure 3. 
Effects of Gaussian noise in the simulated temperature data (SD = 0.2 °C) upon estimates of 

the Pennes perfusion parameter w for different Δtacq. The white outline on the true w image 

(left) identifies locations that had a temperature rise of at least 5 °C at the beginning of 

cooling.
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Figure 4. 
Experimental setup for MRgFUS heating of ex vivo perfused porcine kidney. In the axial 

image at left, the temperature imaging volume lies between the yellow solid lines. The 

dashed yellow line identifies the position of the coronal T1-weighted magnitude image at 

right. The blue circle indicates the focused ultrasound heating region for location 1 and the 

yellow box indicates the inset region of interest (top right) where bright spots identify 

locations of high flow. This inset corresponds to the ROI for data presented in Figures 5–

7,10. For heating at location 2, the blue circle and yellow box are shifted and centered upon 

the black asterisk.
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Figure 5. 
Experimental MR temperature changes at the end of heating (left column), 38.5 s (center 

column) and 68.0 s (right column) into the cooling period for flow rates of 0 ml/min (top 

row), 20 ml/min (middle row), and 40 (bottom row) ml/min.
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Figure 6. 
Spatially varying, dynamic values of perfusion-related energy losses (Q̇bl) at different times 

in the cooling period for three different flow rates.
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Figure 7. 
Spatially varying Pennes perfusion parameter w optimized in each voxel for a single 

constant value over ~60 s of cooling for three different flow rates.
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Figure 8. 
Three-dimensional projections of spatially varying Pennes perfusion parameter w values 

greater than 125 kg/m3/s in an 8 (2×2×2) cm3 region centered on the heated volume. The 

projections were obtained from data sets with a flow rate of 40 ml/min at different locations 

of the kidney. The ultrasound transducer is positioned below the projected images.
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Figure 9. 
Average values of the spatially uniform Pennes perfusion parameter w based on MRTI data 

(n=4 for each flow rate) are represented by red × markers. Vertical lines indicate the full 

range of those estimates. Blue circle markers denote calculations of uniform perfusion based 

upon the flow rate and kidney volume.
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Figure 10. 
Experimental temperatures after 68.0 s of cooling (left column) are compared with 

temperature predictions from simulations of Pennes BHTE with either spatially varying w 

values (center column) or spatially uniform w values (right column).
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Table 1

Tissue properties used in simulations to verify the new technique for quantifying blood flow-related energy 

losses.

Units Tissue 1 Tissue 2

Acoustic Properties

  Attenuation coefficient Np/m 3.3 8.5

  Density kg/m3 911 1090

  Speed of sound m/s 1450 1580

Thermal Properties

  Thermal conductivity W/m/°C 0.21 0.49

  Specific heat J/kg/°C 2348 3421

  Thermal diffusivity mm2/s 0.098 0.131

Blood Flow

  Pennes Perfusion kg/m3/s 1 5, 10, or 50
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Table 2

Mean ± SD of Pennes perfusion parameter w estimates from noisy simulations as a function of Δtacq for all 

locations experiencing > 5 °C temperature rise (white outline in leftmost image of Figure 3). The noise SD 

was 0.2 °C and the actual, uniform w values were 1 kg/m3/s for tissue 1 and 5 kg/m3/s for tissue 2.

Δtacq
s

w: tissue 1
kg/m3/s

w: tissue 2
kg/m3/s

1 1.0 ± 3.3 4.5 ± 5.3

2 1.2 ± 2.5 4.6 ± 3.9

4 1.2 ± 1.9 4.8 ± 2.8

8 1.2 ± 1.3 4.6 ± 2.0
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Table 3

Maximum errors and RMSE for temperature predictions from Pennes BHTE.

Pennes BHTE predictions

Flow
rate

(ml/min)

Spatially varying w Spatially uniform w

Max error
(°C) RMSE (°C) Max error

(°C) RMSE (°C)

0* 1.4 0.6 1.7 0.7

0 1.0 0.3 1.1 0.4

0 2.6 0.8 4.0 0.8

0 1.7 0.6 3.2 0.5

20* 1.5 0.5 7.0 1.8

20 4.0 0.6 8.3 2.0

20 2.5 0.8 9.7 2.0

20 1.7 0.5 9.4 2.0

40* 3.1 0.6 8.9 2.7

40 3.4 0.7 9.3 3.0

40 1.9 0.4 9.3 2.6

40 1.9 0.7 11.6 3.2

*
indicates data sets corresponding to Figure 10 results.
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