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Abstract

Purpose—Anodal transcranial direct current stimulation (tDCS) can transiently increase 

corticomotor excitability of intrinsic hand muscles and improve upper limb function in patients 

with chronic stroke. As a preliminary study, we tested whether increased corticomotor excitability 

would be similarly observed in muscles acting about the wrist, and remain present during robotic 

training involving active wrist movements, in six chronic stroke patients with residual motor 

deficit.

Methods—Transcranial magnetic stimulation (TMS) generated motor evoked potentials (MEP) 

in the flexor carpi radialis (FCR) and provided a measure of corticomotor excitability and short-

interval cortical inhibition (SICI) before and immediately after a period of tDCS (1 mA, 20 min, 

anode and TMS applied to the lesioned hemisphere), and robotic wrist training (1hr).

Results—Following tDCS, the same TMS current strength evoked an increased MEP amplitude 

(mean 168 ± 22%SEM; p < 0.05), that remained increased after robot training (166 ± 23%; p < 

0.05). Conditioned MEPs were of significantly lower amplitude relative to unconditioned MEPs 

prior to tDCS (62 ± 6%, p < 0.05), but not after tDCS (89 ± 14%, p = 0.40), or robot training (91 ± 

8%, p = 0.28), suggesting that the increased corticomotor excitability is associated with reduced 

intracortical inhibition.
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Conclusion—The persistence of these effects after robotic motor training, indicates that a motor 

learning and retraining program can co-exist with tDCS-induced changes in cortical motor 

excitability, and supports the concept of combining brain stimulation with physical therapy to 

promote recovery after brain injury.

1. Introduction

Despite the best rehabilitation efforts, stroke survivors are often left with significant and 

permanent residual motor impairments (Cramer 2004; Cramer 2008), secondary health 

implications from the sedentary lifestyle (Hankey et al., 2002; Ivey et al., 2006), as well as 

wider economic burden (American-Heart-Association, 2007). Yet recovery of motor 

function following stroke is known to be enhanced with motor training aimed at reducing 

impairments and relearning motor skills (Butefisch 2006; Fasoli et al., 2003; Krebs & Hogan 

2006; Platz et al, 2005; Richards et al.,; Richards et al, 2007; Van Peppen et al, 2004; Volpe 

et al., 2005). Emerging technologies such as robot controlled and guided motor training 

represent an exciting and important advance on existing therapies, which are labour 

intensive (Colombo et al., 2008; Kwakkel et al., 2007; Lum et al., 2002; Prangeet al., 2006; 

Volpe et al., 2000), and may serve as a useful complementary therapy (Masiero et al., 2007; 

Riener 2007). It remains to be determined if non-invasive brain stimulation could be used to 

further enhance the effects of behavioural training such as robotic therapy. Anodal 

transcranial direct current stimulation (tDCS), applied at rest over primary motor cortex can 

raise corticomotor excitability and transiently improve motor function in healthy participants 

(Boggio et al., 2006), and chronic stroke patients (Hummel et al., 2005; Hummel et al., 

2006). Few studies of tDCS have investigated the application of tDCS in temporal proximity 

to motor training. One study in a small group of sub-acute stroke patients, showed that tDCS 

and robotic arm therapy can be safely applied and was well tolerated, however the functional 

results were unclear (Hesse et al., 2007). For motor training to be augmented after tDCS, the 

tDCS-effects need to be sustained through the training period, yet there are few studies of 

the interaction of tDCS and motor training. The aim of this preliminary study was to test if 

raised corticomotor excitability of the forearm area might be observed after 20 minutes 

anodal stimulation in chronic stroke patients, and whether the after-effects of tDCS on 

corticospinal excitability and short-interval cortical inhibition (SICI) are modulated or reset 

by robotic wrist training.

2. Methods

2.1. Participants and study design

Six right-handed participants, two with right hemi-paresis and four with left hemiparesis, 

volunteered for the study (3/3 Male/Female, mean 4.7 yrs since stroke; 67. 7± 12.7 years of 

age; upper distal extremity mean Fugl-Meyer wrist/hand = 16.8 (out of 30), range 8 to 25; 

mean MRC (wrist) Motor Power= 19.5(out of 30), range 12 to 25; further details Fig. 1). 

These subjects were not naïve to robotic training, and had completed between 6 and 12 

weeks of robotic training aimed at measuring the effects of training on distal and proximal 

limb segment recovery. Volunteers were included in these studies if they met the following 

criteria: a) a first single focal unilateral lesion with diagnosis verified by brain imaging 

(MRI or CT scans) that occurred at least 6 months prior; b) cognitive function sufficient to 
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understand the experiments and follow instructions (Mini-Mental Status Score of 22 or 

higher or interview for aphasic subjects); and c) Motor Power score ≥1/5 and < 4/5 (neither 

hemiplegic nor fully recovered motor function in the muscles of the shoulder and elbow and 

wrist).

Informed consent was obtained prior to the study, which had approval of the Ethics 

Committee of Burke Rehabilitation Hospital, White Plains, NY, MIT-COUHES (Committee 

on the Use of Humans as Experimental Subjects), and Beth Israel Deaconess Medical 

Center, Boston, MA. Subjects received tDCS at rest, and then performed the robot training. 

Transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability and 

intracortical inhibition before tDCS, immediately after tDCS and again immediately after 

1hr robotic training.

2.2. Transcranial direct current stimulation

A 1mA current was delivered using surface rubber-carbon electrodes (35cm2) with 

surrounding saline soaked sponges (0.9% NaCl) (Dundas et al., 2007) by a specially 

developed battery driven, constant current stimulator (maximum output 10 mA). Participants 

received stimulation for 20 minutes while seated at rest, with the anode over the optimal site 

for flexor carpi radialis (FCR) as identified using TMS, and the cathode on the contralateral 

supraorbital area (Nitsche & Paulus 2001).

2.3. Robot training

The wrist robot affords active-assistance in all three-degrees of freedom of the wrist: 

flexion/extension, abduction/adduction, and pronation/supination.

The patient was seated with the robot on the right side and secured at the hand, wrist, and 

above the elbow. The workstation is designed to fit the patient comfortably with around 20° 

of shoulder abduction and 30° of shoulder flexion. The forearm rests comfortably on a 

curved rest so that the ulnar styloid sits barely beyond the distal edge. The hand is secured to 

the handle in a comfortable composite flexion grip with the least restrictive support 

provided. Humeral and forearm supports are supplied to maintain snug support. A four-point 

seatbelt is tightened to minimize movement of the torso. The wrist protocol consists of 3 

batches of 320 “assisted-as-needed” point-to-point movements. Each assisted batch is 

preceded and followed by an unassisted game and the assistance is tuned based on patient's 

performance (Krebs et al., 2003). The first two assisted batches exercise wrist flexion/

extension, abduction/adduction, and combination of these movements with 8 outbound 

targets distributed around an ellipse with major axis of 60 degrees (30 degrees for flexion-

extension each) and minor axis of 30 degrees (15 degrees for adduction/abduction each). 

The last assisted batch exercises exclusively pronation and supination (30 degrees for 

pronation/supination each).

2.4. Transcranial magnetic stimulation

2.4.1. Positioning and set-up—The shoulder-and-elbow MIT-MANUS has been 

described in detail in several publications (Krebs et al., 1998b; Krebs et al., 2007a), and was 

used in the present study for subject positioning and force measurements. Each participant 
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was comfortably seated with the right arm abducted, elbow supported, and hand lightly 

grasping the shoulder-and-elbow robot handle approximately 30 cm in front of the sternum. 

A custom-made hand-holder maintained the subject's wrist in a neutral position. Participants 

were given standard instructions prior to the commencement of the study to look directly 

forward at the computer screen and to focus on maintaining constant force and direction of 

tension according to real-time visual biofeedback.

2.4.2. Motor cortex stimulation—A lycra cap was positioned over the head and the 

vertex marked by measuring the mid-point intersection of the nasioninion and interaural 

lines. Stimulus sites were then marked on the cap using the vertex as a reference point, in 1-

cm steps in the coronal and sagittal planes, over the region of the primary motor cortex in 

the affected hemisphere. TMS was delivered using a MAGSTIM 200 stimulator with a 5 cm 

diameter figure-of-eight coil, held tangential to the skull and aligned in the para-sagittal 

plane with the handle rotated 45° lateral.

2.4.3. Motor evoked potential recordings—Surface electromyographic (EMG) 

recordings were made from electrodes positioned over the muscle belly of the right flexor 

carpi radialis (FCR) muscle. EMG signals were amplified (×1000) and band-pass filtered 

between 3 and 1000 Hz, before being digitised at 2000 Hz for 100 ms following each 

stimulation, using a Powerlab 8/30 acquisition and analysis system (ADIn-stuments). The 

optimal site of stimulation for FCR was determined from initial exploration using the 

reference cap (1 × 1 cm grid), and was defined as the site corresponding to the largest 

amplitude MEPs (mean of four MEPs at each site) at a consistent suprathreshold stimulus 

intensity. The selected site was used throughout the experiment. Active motor threshold 

(AMT) was determined during a sustained 10% maximal voluntary isometric contraction 

(MVIC) of wrist flexion, using four stimuli starting at 30% of stimulator output and 

increasing at 5% increments until three of the four stimuli produced a MEP. A short rest 

period was included between each increment. During the study, stimuli were delivered at an 

intensity 120% AMT whilst holding a 10%MVIC. MVIC was taken as the highest value of 

three five-second attempts each separated by two minutes, and assessed pre-tDCS, post-

tDCS and post-robot training. 10%MVIC was re-calculated for each individual if MVIC 

varied across conditions.

2.4.4. Short-interval cortical inhibition—Short-interval cortical inhibition (SICI) was 

evaluated using paired-pulse TMS with a subthreshold conditioning stimulus (95% of AMT) 

followed by a suprathreshold test stimulus (120% AMT), at an inter-stimulus interval (ISI) 

of 3 ms (Kujirai et al., 1993). 10 serial MEPs at > 5 second intervals were recorded for 

single pulse and paired conditions, with the condition presentation order randomised 

between subjects.

2.5. Data analysis

To determine changes in MEP amplitude following tDCS and robot conditions, the mean 

peak-to-peak amplitude was established for each time point (pre-tDCS, post-tDCS, post-

robot) and averaged across participants. Significant differences were tested using the 

Friedman repeated measures analysis of variance with Dunn's post hoc multiple 
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comparisons. At each time point, conditioned MEP amplitude was expressed as a percentage 

of unconditioned MEP amplitude, to provide an index of SICI, and the group mean tested 

against a value of 100% by a Z-test. MVIC peak force expressed in Newtons, was averaged 

across the group, then post-tDCS and post-robot time points were tested separately against 

pre-tDCS using a two-tailed paired t-test. Significant results were those achieving an alpha 

level of 0.05.

3. Results

Following tDCS, MEP amplitude was significantly increased to 168 ± 22%SEM of baseline 

(mean pre-tDCS =0.77± 0.18 mV, post-tDCS=1.36±0.42mV, p < 0.05, Fig. 3), and 

remained significantly increased at 166 ± 23% after robot training (post-robot = 1.36 ± 0.44 

mV, p < 0.05). Figure 4 shows sample MEP waveforms from one subject, illustrating the 

rise in MEP amplitude after tDCS, and the comparable amplitude following the robotic wrist 

therapy. In four subjects, the effect of robot treatment alone was examined on a separate 

occasion, and no significant change in mean MEP amplitude was observed (pre-robot 1.23 ± 

0.2 mV, post-robot 1.47 ± 0.5 mV, post-robot normalised to pre-robot = 117 ± 29%, p = 

0.44). Prior to tDCS, conditioned MEPs were significantly reduced, to 62 ± 6% (Z = 5.96, p 

< 0.05, Fig. 5) of unconditioned MEP amplitude, in five patients (mean pre-tDCS; test = 

1.35 ± 0.5 mV, conditioned= 0.78± 0.2 mV). Conditioned MEPs were not significantly 

reduced from unconditioned following tDCS (89± 14%, Z = 0.83,p = 0.40; unconditioned; = 

1.63 ± 0.6 mV, conditioned = 1.46 ± 0.5 mV) or robot training (91 ± 8%, Z = 1.08, p = 0.28; 

test = 1.87 ± 0.8 mV, conditioned = 1.66 ± 0.6mV). MVIC force did not significantly vary 

from baseline following tDCS or robotic training (pre-tDCS 121.25 ± 12N; post-tDCS 

114.33 ± 8N, p = 0.33; post-robot 111.75 ± 12N, p = 0.47). All patients tolerated the tDCS 

and robotic therapy well, with no adverse effects.

4. Discussion

The present study shows that raised corticospinal excitability accompanied by reduced 

cortical inhibition following anodal tDCS, can occur in forearm muscles of chronic stroke 

patients, and persists during task specific robotic wrist training.

Primary motor cortex can reorganize during recovery from lesion and motor skill acquisition 

(Classen et al., 1998; Kleim et al., 2007; Matsuzaka et al., 2007; Nudo et al., 1996a; Nudo et 

al., 1996b; Pascual-Leone et al., 1995; Sanes & Donoghue 2000), through unmasking of 

latent synapses (Sanes & Donoghue 2000) and modification of synaptic strength, including 

long-term potentiation (Hess & Donoghue 1996). These mechanisms are strongly promoted 

by reduced GABAergic activity (Hess & Donoghue 1994; Jacobs & Donoghue 1991), and 

functional plasticity in human motor cortex preferentially occurs in areas of reduced 

inhibition (Liepert et al., 2006). Ziemann and colleagues demonstrated that practice-

dependent plasticity in human motor cortex, could be enhanced during cortical disinhibition, 

following ischemic nerve block (Ziemann et al., 2001), and suggest that interventions 

designed to promote practice-dependent plasticity should aim to reduce intracortical 

inhibition. In the present study, a reduction of cortical inhibition, potentially involving 

decreased GABAergic activity (Ilic et al., 2002), was observed following anodal tDCS. This 
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is consistent with earlier studies (Hummel et al., 2005; Nitsche et al., 2005), and supports 

the concept that tDCS may be useful to promote robotic practice-dependent plasticity in 

stroke patients.

The significance of the present findings is that the cortical excitability shifts observed 

following tDCS, were not modified by robotic motor training. While our robotic protocol 

did not lead to sustained excitability shifts after a single session, when performed over 

multiple sessions, this training is known to induce lasting improvements in motor function in 

chronic stroke patients (Krebs et al., 2007b). Repetitive motor skill practice (but not passive 

training), transiently increases motor cortex excitability (Perez et al., 2004a) and reduces 

cortical inhibition (Liepert et al., 1998; Perez et al., 2004b). These transient changes in 

excitability can lead to sustained, cumulative changes, and are associated with motor 

learning (Pascual-Leone et al., 1995). Interventions such as tDCS that enhance motor cortex 

excitability and reduce cortical inhibition are therefore appealing for augmenting motor 

learning in behavioural therapies. However, sustained cortical excitability increases 

following tDCS may not necessarily be additive, to transient excitability shifts during motor 

training. Homeostatic mechanisms acting to maintain stability in cortical networks prevent 

excessive increases in excitability (Abraham & Bear 1996). For example, experimental 

protocols that induced LTP-like increases in synaptic efficacy and raise cortical excitability, 

can lead to LTD-like decreases in synaptic efficacy and reduce cortical excitability if 

delivered during anodal tDCS when cortical excitability is already elevated (Nitsche et al., 

2007). Furthermore, despite reduced corticospinal excitability in the affected hemisphere of 

stroke patients (Pennisi et al., 1999; Traversa et al., 1997; Tsai et al., 1992), intracortical 

inhibition can be already reduced (Swayne et al., 2008), thus potentially decreasing the 

range of tolerance for homeostatic influence. Thus, motor training in stroke patients could 

interfere with tDCS after-effects. Yet we have demonstrated that anodal tDCS excitability 

shifts, as well as muscle force production, can be maintained across a period of motor 

training. TDCS after-effects can therefore remain unaffected by cortical excitability changes 

during task-specific muscle activation.

Our findings support the plausibility of combined tDCS and motor training to enhance 

practice-induced plasticity in stroke. While it was not expected that a single session of 

combined therapy would lead to significant functional improvement, the rationale for this 

novel combined therapy, is that the effect across multiple practice sessions may translate 

into enhanced and sustained behavioural changes. Such experiments are now underway in 

our laboratory. Further work is also warranted to investigate the optimal parameters of 

stimulation. For example, Hesse and colleagues showed functional improvement in only 3 of 

10 sub-acute stroke patients, with anodal, ipsilesional tDCS during robotic motor training, 

applied over repeated sessions (Hesse et al., 2007). It remains unclear whether a greater 

duration of training (Krebs et al., 1998a) or tDCS (Nitsche & Paulus 2000; Nitsche & Paulus 

2001) would be beneficial. Furthermore, a critical parameter may be the time at which tDCS 

is applied in relation to the training. Stimulation during training can diminish learning 

(Rosenkranz et al., 2000), although the polarity of stimulation may be important, as cathodal 

tDCS, acting to reduce background cortical activity, can promote simultaneously induced 

LTP-like plasticity (Nitsche et al., 2007). Our findings that cortical activation during robotic 
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motor training does not interfere with post-tDCS excitability shifts, suggests that potential 

simultaneous modification of cortical GABAergic inhibitory networks resulting from the 

current protocol, are complementary rather than antagonistic. This is in keeping with studies 

showing that facilitatory associative plasticity can be complementary to preceding but not 

simultaneous anodal tDCS (Nitsche et al., 2007). These preliminary findings suggest that 

anodal tDCS may be effective if preceding motor learning paradigms, yet the nature of the 

training or learning paradigm may be a critical factor (Kuo et al., 2008). The timing of tDCS 

application relative to motor training, as well as the polarity of stimulation, in relation to 

motor task specifics requires further investigation.

Technical considerations maybe important for future studies. Firstly, muscle facilitation is 

useful in chronic stroke for obtaining a suitable amplitude test MEP, however SICI can be 

reduced as a consequence (Ridding et al., 1995), and may therefore influence sensitivity for 

detecting a change in SICI; and second, SICI can be influenced by a post-tDCS increase in 

test MEP amplitude, however it is not thought to be influenced within the range of 

amplitude changes observed in the present study (Benwell et al., 2006). Our findings were 

reported in chronic stroke patients with moderate motor dysfunction, and it remains unclear 

how these findings might apply in different stages of recovery or be influenced by stroke 

severity. Further work is required to understand the relationship of cortical excitability 

changes to function during stroke recovery, and the influence of lesion location and size, and 

time since stroke (Koski et al., 2004; Misra & Kalita 1995; Swayne et al., 2008). 

Intracortical facilitation (ICF) was not measured in the present study and may be implicated 

in excitability changes resulting from robotic training and tDCS. Future studies may also test 

if tDCS improves motor learning by enhancing performance during practice tasks, through 

factors such as improved muscle strength and reaction time (Hummel et al., 2006), and 

decreased muscle fatigue (Cogiamanian et al., 2007).

5. Conclusion

We have demonstrated in chronic stroke patients with a residual motor deficit, that post-

tDCS excitability shifts can persist during robotic motor practice. This supports the idea of 

using tDCS to prime the motor system prior to training.
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Fig. 1. 
Supplementary clinical information for the study participants.
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Fig. 2. 
Wrist Robot. The top row shows the device during therapy at Burke Rehabilitation Hospital. 

The bottom row shows a solid view of the design. (Colours are visible in the online version 

of the article www.iospress.nl.)
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Fig. 3. 
Mean (± SEM) MEP amplitude from across subjects. MEPs were recorded from the FCR 

muscle during a low-level isometric wrist flexion, before and immediately following 20min 

anodal brain stimulation (tDCS), then again after 1hr of robotic wrist therapy. Following 

tDCS, MEP amplitude was significantly elevated, and remained significantly elevated after 

robotic therapy.
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Fig. 4. 
Sample overlaid MEPs from one subject, showing the marked increase in MEP amplitude 

following 20min anodal brain stimulation, which remains present following the 1hr robotic 

therapy.
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Fig. 5. 
Percentage reduction in the conditioned compared to the unconditioned MEP amplitude 

before and after tDCS, then again after robot therapy, showing the significant reduction in 

conditioned MEP amplitude before intervention, is not observed after tDCS or robot 

therapy. This demonstrates reduced short-interval cortical inhibition resulting from tDCS, 

that is sustained during robotic therapy and may be implicated in the corresponding increase 

in corticomotor excitability.
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