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Abstract

Platelets are anucleate blood cells, long known to be critically involved in hemostasis and 

thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for 

platelets in inflammation and immunity. However, the notion that platelets represent immune cells 

is not broadly recognized in the field of Physiology. This manuscript reviews the role of platelets 

in inflammation and immune responses, and highlights their interactions with other immune cells, 

including examples of major functional consequences of these interactions.

Introduction

Platelets are small anucleate blood elements, known since the late 19th century to participate 

in blood clot formation (17). They are critical mediators of the physiologic response of 

cessation of bleeding following blood vessel injury (hemostasis) as well as pathologic 

formation of blood clots (thrombosis) (175). Platelets are traditionally viewed in the context 

of hemostasis and thrombosis, while leukocytes are regarded as primary immune cells 

mediating the body’s response to pathogens. In recent years, increasing evidence supports 

the notion that platelets participate in immune responses, and interactions between platelets 

and leukocytes contribute to both thrombosis and inflammation. Despite these data, much 

general teaching of the physiologic roles of platelets and leukocytes is limited to the original 

descriptions. In this manuscript, we will focus on platelets from a perspective of immunity 

and inflammation, including the mechanisms of their interactions with leukocytes and the 

functional consequences of these interactions. We will devote little attention to the role of 

platelets in hemostasis and thrombosis and instead refer readers to available reviews on 

these traditional functions of platelets (25, 125). We will highlight numerous examples that 

support the premise implied in the title of this manuscript, that platelets should be regarded 

as immune cells.
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Overview of Platelets

Human platelets are the smallest blood cells with ~2–5 μm in diameter, 0.5 μm in thickness 

and ~6–10 femtoliters in mean cell volume. They are derived as fragments from 

megakaryocytes and are released into the circulation with an average life span of ~7–10 days 

(reviewed in (221)). A primary and critical function of platelets is to sustain hemostasis. 

This is achieved by forming a stable platelet plug at the site of vascular injury via adhesion 

and aggregation to the exposed sub-endothelial matrix proteins. However, similar processes 

at the site of rupture of an atherosclerotic plaque can lead to occlusive platelet thrombi and 

cause thrombosis. Whereas the normal count for human platelets range from 150,000 to 

400,000/μl, hemostasis can be achieved with platelet counts more than 10,000/μl (187). This 

observation suggests that platelets likely have roles beyond hemostasis and thrombosis, a 

theme that is addressed in this review. Despite their small size and limited life span, platelets 

display an elaborate structure that provides clues to their biological role.

Platelet structure

Resting platelets reveal a unique discoid shape cell, in part, due to the robust cytoskeletal 

structure encompassed by several loops of the microtubular coils (marginal microtubule 

bands) (106). However, platelet activation is associated with major shape change due to 

cytoskeletal changes that enable filopodial and lamellopodial extensions to occur (Fig. 1). 

The phospholipid bilayer of the platelet membrane embeds cell surface receptors that engage 

soluble ligands or fixed ligands on other immune cells and the endothelium. The functional 

consequences of receptor-ligand engagement include activation of platelets and complexes 

of activated platelets with leukocytes, erythrocytes, or endothelial cells and contribute to 

inflammation. Also present on the plasma membrane are numerous openings or pores that 

lead to several invaginations in platelets called the open canalicular system (OCS), which 

provide the small-sized platelets with a much greater surface area (218, 219). Distinct from 

the plasma membrane-associated OCS, platelets also display a channel system called dense 

tubular system (DTS). The DTS is believed to be a remnant of megakaryocyte smooth 

endoplasmic reticulum and stores calcium and enzymes that support the activation of 

platelets (42, 169). Most importantly, electron microscopy images of platelets disclose the 

notable absence of nucleus and a chockfull presence of organelles including mitochondria, 

glycosomes and secretory granules (Fig. 2).

Platelet granules

The anuclear feature of platelets, including the inability to replicate does not impede their 

ability to respond effectively to the external stimuli. Platelets are endowed with 

presynthesized proteins within their granules, which can be secreted to the extracellular 

milieu or expressed on the platelet surface following their activation. Certain proteins like 

platelet factor 4 (PF4) are synthesized by the megakaryocytes and carried over to platelet 

granules, while immunoglobulins (IgG) are endocytosed from the plasma by platelets. One 

recent proteomic study concluded the presence of eight hundred and twenty seven proteins 

in the granules (234). This suggests that secretion events can facilitate the cross talk of 

platelets with a variety of cell types, including the immune and endothelial cells, and thus 
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influence a wide range of physiological functions. Platelets possess three types of granules: 

α granules, dense granules, and lysozymes.

α granules—α granules are the most abundant granules (~50–80/platelet), measuring 200–

500 nm in diameter (18). Their contents include proteins that support platelet adhesion, 

aggregation and coagulation, which are required for hemostasis and thrombosis function. 

Some examples include fibrinogen, von Willebrand factor (VWF), vitronectin, fibronectin, 

thrombospondin, factor V, factor VIII, and cell adhesion molecules like integrins αIIbβ3 

(GPIIb/IIIa) and αvβ3. α granules also contain proteins and peptides that recruit, localize, or 

activate immune cells and thus modulate inflammatory or immune function. One of these 

granular proteins is P-selectin, which is expressed on the platelet surface following 

activation of platelets (93). As discussed in detail below, P-selectin on activated platelets can 

engage its ligand P-selectin glycoprotein ligand-1 (PSGL-1) expressed on neutrophils and 

monocytes and activate these leukocytes (140, 208, 230). Chemokines (PF4 or CXCL4) and 

β-thromboglobulin, [neutrophil activating peptide (NAP), CXCL7] secreted from the 

granules can recruit and activate neutrophils, suppress neutrophil apoptosis (24, 79, 177) and 

participate in the homing of endothelial progenitor cells (EPC) (90). Chemokine CCL3 

[Macrophage inhibitory protein-1 α (MIP-1α)], CCL5 (RANTES) and CXCL1 (GRO α) can 

recruit monocytes (73, 92), while CXCL-5 can modulate chemokine scavenging and 

neutrophil chemotaxis (137, 165). α granules also contain proteins that exhibit anti-

microbial effects and thus influence innate immune function. Examples include 

thrombocidin 1 and 2, which have anti-bacterial and anti-fungal actions (115). α granules 

also contain proteins that possess mitogenic and angiogenic abilities and thus regulate 

wound healing and angiogenesis function. Platelet derived growth factor (PDGF), 

transforming growth factor beta (TGF-β), epidermal growth factor (EGF) and vascular 

endothelial growth factor (VEGF) could influence the effector cells like monocytes 

macrophages, and endothelial cells (10, 61, 129). α granules contain hundreds of distinct 

proteins, including substances with opposing physiological roles (e.g., pro- and anti-

angiogenic, pro- and anti-coagulant (18)). Recent studies demonstrate that platelets possess 

the ability to store α granule contents differentially, which enables differential release of α 

granule content in response to various stimuli (180). Differential storage and release of 

platelet alpha granule proteins has important implications for the role of platelets as immune 

cells; the mechanisms responsible for these complex processes remain to be fully 

characterized.

Dense granules—These granules appear as dense bodies on electron microscopy due to 

the elevated contents of calcium and phosphate. They are ~10 fold less abundant than α 

granules and about ~150 nm in diameter (70, 88). The contents of these granules are also 

released into the extracellular environment upon activation of platelets. These granules store 

nucleotides (ATP and ADP) (169). ATP can modulate inflammatory pathways by activating 

dendritic cells, while ADP provides a feedback mechanism that activates platelets. Serotonin 

can mediate vascular tone and also recruit neutrophils at sites of inflammation (14, 58). 

Other constituents include cations, like calcium and magnesium that can support signal 

transduction processes.
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Lysosomes—These granules are approximately 200–250 nm in diameter and can be 

microscopically identified by staining for lysosomal enzymes, like acid phosphatase or 

arylsulfatases (12). Lysosomes contain the lysosomal-associated membrane proteins, 

LAMP1, LAMP2 and LAMP-3 (CD63) (183). CD63 is translocated to the platelet surface 

following stimulation with strong stimuli. Lysosomes are home to proteases like 

carboxylpeptidases, cathespin D and E that contribute to the inflammatory potential of 

platelets (169, 186, 213) and enzymes that remodel the extracellular matrix (37).

Platelet membrane receptors

Receptors on platelets enable them to sense the external environment and respond to 

biological changes. For the purpose of this review, we broadly classified platelet receptors 

into receptors that support hemostasis and receptors that sustain the interaction with other 

immune cells or participate in immune function. Several receptors are constitutively 

expressed on the platelet surface, although some receptors are stored in the granules and 

surface expressed only after activation.

Receptors involved in hemostasis—Given the prominent role of platelets in 

hemostasis, the major receptors on platelets have a direct role in their activation and/or 

supporting the adhesive interaction of platelets with adhesive proteins at the site of injury.

Some platelet receptors involved in hemostasis primarily mediate platelet activation. These 

include receptors that engage platelet agonists (agents that activate platelets). At the site of 

vascular injury, activation of coagulation pathways generates a serine protease thrombin. 

Platelets express two thrombin receptors, namely protease-activated receptor 1 (PAR1) and 

PAR4 (101). PAR1 responds to lower levels of thrombin ~1 nM while PAR4 is sensitive to 

at least 10 times higher concentration of thrombin. Interestingly, differential expression of 

PAR is noticed among species. Mouse platelets express PAR3, instead of PAR1, along with 

PAR4 (94). Thrombin is a potent activator of platelets, and activated platelets degranulate 

their contents including ADP and metabolize arachidonic acid to generate thromboxane A2. 

Platelets express two ADP receptors, P2Y1 and P2Y12, and a thromboxane receptor, TP (8, 

76, 145). Binding of ADP and thromboxane A2 to their respective receptors enables critical 

autocrine platelet activation processes to occur. Exposed collagen at the site of injury can be 

recognized by integrin α2β1 and an immunoglobulin type receptor glycoprotein VI (GPVI) 

on platelets (4, 141, 192).

Other platelet receptors are involved in hemostasis by mediating stable platelet adhesion. 

These include receptors that engage in platelet-extracellular matrix or platelet-platelet 

interactions. Given that platelets often have to accomplish hemostasis in the context of a 

high shear stress environment, it is imperative that they possess a shear responsive receptor. 

A leucine–rich repeat family member, glycoprotein GP Ib-IX-V complex that includes GPIα 

(~145 kD) as well as GPIbβ (~22 kD), GPIX (~17 kD), and GPV (~82kD), endows platelets 

to adhere von Willebrand factor (VWF) exposed at the site of injury under high shear stress 

(3). The interaction of GPIbα with VWF transduces signals, which activate another class of 

cell adhesion molecules on platelets or integrins, specifically αIIbβ3 (75). Platelets express 

the integrin family of receptors, namely αIIbβ3, αvβ3, α5β1 and α6β1. Integrin αIIbβ3 is the 
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most abundant receptor with 50,000–80,000 copies on the platelet surface with an additional 

pool in the α granules (150, 207). αIIbβ3 is in an inactive state on platelets, and agonist 

stimulation leads to integrin activation via a conformational change in the structure. This 

enables the binding of αIIbβ3 to soluble plasma fibrinogen and the sustain platelet–platelet 

aggregation. Integrin αvβ3 integrin primarily supports adhesiveness to vitronectin (45, 166), 

while α5β1 and α6β1 have supplementary roles in adhesion to fibronectin and laminin at the 

injury site (162, 189). Integrins are often in complex with four membrane-spanning 

receptors called tetraspanins, which include CD9 and CD63, which may support signal 

transduction and stable integrin adhesion (81, 95).

Receptors that enable platelet interaction with immune cells, the endothelial 
cells, or participate in immune function—Emerging evidence indicates that platelets 

also possess receptors that enable stable interaction of platelets with other immune cells or 

complexes in the circulation as well as adhesion to the vascular endothelium. In some cases, 

these receptors are only expressed on the surface of activated platelets, such as P-selectin, 

which can bind PSGL-1 on leukocytes (78, 120). Some receptors are expressed 

constitutively, such as GPIbα, which can bind with β2 integrin Mac 1 (CD11b/CD18; αMβ2 

integrin) on neutrophils (184). Intercellular adhesion molecule-2 (ICAM-2) expressed on 

platelets (52) can support leukocyte tethering via leukocyte function antigen 1 (LFA1) (212). 

In other cases as described above for αIIbβ3, receptors can be expressed in an inactive form 

and upon activation they become active; αIIbβ3 can support adhesion to leukocytes via 

fibrinogen (212). Platelets may also interact with endothelial cells under inflammatory 

conditions; for example, GPIbα expressed on platelets can interact with activated 

endothelial cells that express P-selectin and VWF (170). Activated platelets express a 39 kD 

membrane glycoprotein of the tumor necrosis factor (TNF) family called CD40L (CD154), 

which can interact with CD40 on endothelial cells and trigger an inflammatory response 

(83). Platelets also express a C-type lectin receptor CLEC-2 (197) that interacts with 

podoplanin on lymphatic endothelial cells and participates in blood-lymphatic separation, 

via lymphovenous hemostasis during development (16). Platelet CLEC-2 can engage with 

tumor cells expressing podoplanin, contributing to cancer metastasis (104). Interaction of 

platelet CLEC-2 with podoplanin expressing inflammatory macrophages can activate 

platelets (107). Consistent with an immune role for platelets, CLEC-2 on platelets can also 

capture human immunodeficiency virus type 1 (34). Please see Table 1 and associated text 

for details of adhesive mechanisms mediating platelet adhesive interactions with immune 

cells and endothelium.

Certain receptors on platelets mediate platelet-immunoglobulin (Ig) or platelet-complement 

interaction and thus participate in modulating immune complexes and/or function. These 

include FcγRIIA, the low affinity receptor for the IgG Fc domain (171), FcεRI high affinity 

receptor for IgE (99) and FcαRIA receptor for IgA (167). FcγRIIA engaged on platelets may 

provide immunological defense against bacteria, while activation of platelets via FcεR1 

trigger release of RANTES (regulated on activation, normal T cells expressed and secreted) 

and serotonin, mediators that promote pro-inflammatory response in other immune cells 

(80). Crosslinking of platelet FcαRI led to production of prothrombotic mediators like tissue 

factor and interleukin-1β via pre-mRNA splicing and protein synthesis (167); a topic that 
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will be discussed in the next section. Platelets also possess receptors for complement 

components including a 33kD receptor to complement protein C1q (C1qR) (156) that can 

facilitate the classical complement activation (158). Platelet C1qR can also interact with 

protein A from Staphylococcus aureus enabling direct interaction of platelets with bacteria 

(147). Decay accelerating factor (DAF or CD55) is another glycosyl phosphatidylinositol 

(GPI) anchored receptor on platelets (109), which likely protects platelets from complement 

attack during defense against bacteria. Thus, platelets share some common receptors with 

primary phagocytes like neutrophils and monocytes and participate in immune functions.

Protein synthesis by platelets

In addition to containing proteins pre-stored in their granules or on their membrane, platelets 

have the ability to synthesize proteins, despite lacking a nucleus. This concept was first 

described in the late 1960s (211); however, it was not widely accepted until several decades 

later (217). Further, the notion that anucleate platelets have the capability to synthesize 

proteins is rarely addressed in traditional physiology textbooks. Platelets possess messenger 

RNA (mRNA) and can synthesize proteins upon activation, including proteins involved in 

inflammatory responses (152, 179, 214). For example, activated platelets can synthesize 

interleukin-1β, which can promote inflammatory responses in other cell types including 

leukocytes and endothelial cells (89, 128). For a broader review of protein synthesis by 

platelets, including a historical perspective, please refer to the following recent review (217).

Other mediators in platelets

Platelets also possess mediators that are not specifically located on the membrane or the 

three granules. These mediators can also regulate the interaction of platelets with other 

immune cells and influence inflammatory process. For example, β defensin 1 was reported 

to be located in an extragranular compartment in platelets, and upon release by activated 

platelets, it induces the release of neutrophil extracellular traps (NET) from neutrophils and 

limit bacterial growth (112). High mobility group box 1 (HMGB1) expressed on activated 

platelets causes neutrophil extracellular trap (NET) formation in neutrophils and commit 

them to autophagy (173). These features represent additional characteristics in support of the 

premise that platelets represent immune cells.

Platelets as Immune Cells

As exemplified in this review, there is abundant evidence that platelets have important roles 

in a broad range of immune responses, in addition to their well-established role in 

hemostasis and thrombosis. There is a gradually increasing awareness that platelets can 

function as immune cells (as the most abundant immune cells in blood), although this 

concept is not uniformly considered in traditional physiology teaching (57). Herein, we 

review some mechanisms by which platelets participate in immune responses.

Release of chemokines/cytokines

Chemokines are small (8–10 kD) proteins with four cysteine residues in the conserved 

positions and are known to induce chemotactic response on effector cells by engaging the 

chemokine receptors. Depending on the spacing of the N-terminal cysteine residues, 
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chemokines are grouped into four categories: CC, CXC, CX3C, and XC. CC chemokines 

have two adjacent conserved cysteines, while CXC and CX3C have either one or three 

residues between the two conserved cysteines. The latter, XC, is a variant chemokine with 

only one N-terminal cysteine and a second cysteine downstream (123). Platelets store 

chemokines of the CC and CXC class within the α granules, and these mediators are 

released upon platelet activation (20, 23). CC chemokines such as MIP-1 α, monocyte 

chemotactic protein-3 and RANTES recruit and activate leukocytes (73, 92, 102, 178, 215, 

216). CXC chemokines such as PF4 and β-thromboglobulin can recruit neutrophils and 

suppress neutrophil apoptosis (24, 79, 177). CXCL-5 can modulate neutrophil chemotaxis 

(137). Platelets also release other growth factors with immune modulating activities such as 

PDGF (134) and TGF β (7) and immune mediators such as histamine (134) and serotonin 

(14). Interleukin-1 β from platelets can promote inflammatory responses in leukocytes and 

endothelial cells (89, 128). Platelets can activate peripheral B cells and potentiate IgG 

production probably through sCD40L and RANTES (44). Thus, platelets contribute to the 

immune function by releasing the mediators that recruit, localize, or activate immune cells 

and thus modulate inflammatory or immune function chemokines.

Toll-like receptors

Toll-like receptors (TLRs) are transmembrane pattern recognition receptors responsible for a 

variety of responses against microbial cell wall components and are critically involved in 

innate immune responses (72, 196). Ten TLRs (i.e., TLR-1, through TLR-10) have been 

identified in humans; they are expressed on a broad range of cell types, though their sub-

cellular localization and function has been best characterized on “traditional” immune cells 

(36, 72, 196). Platelets have also been shown to express various TLRs with evidence of a 

functional role; these include TLR-2, TLR-4, TLR-7, and TLR-9 (2, 19, 43, 111). 

Stimulation of platelet TLR-2 and TLR-9 has been reported to induce platelet aggregation 

responses to various agonists (19, 105, 154, 181). Similarly, platelet TLR-4 has been shown 

to participate in a number of responses to bacterial endotoxin, including platelet recruitment 

to inflamed or injured vascular walls (2, 193) and platelet release of IL-1β-containing-

microvesicles (27). Further, platelet TLR-4 was shown to promote release of neutrophil 

extracellular traps (NETs) capable of trapping bacteria during bacterial infection (40). 

Recently, platelets were shown to express TLR-7 and to mediate host responses to viral 

infections without detectable effects on platelet aggregation (111). The evidence of 

functional toll-like-receptors on platelets provides further support to the notion that platelets 

are important immune cells.

Release of microvesicles

Another mechanism by which platelets may participate in immune responses is the release 

of microvesicles, also known as microparticles. They are sub-micrometer particles released 

not only by platelets, but also endothelial cells, leukocytes, and tumor cells (151). A 

functional role for platelet microvesicles in hemostasis was proposed by the observation that 

patients with Scott syndrome, a hemostatic disorder, had defective platelet microvesiculation 

(185). Microvesicles of platelet origin represent a major fraction of circulating microvesicles 

(48, 149). Based on proteomic analyses, microvesicles derived from human platelets contain 

nearly 600 distinct proteins (71), raising the intriguing possibility that microvesicles may 
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recapitulate many of the known functional roles of platelets. Despite technical challenges 

and variability in methods to quantify microvesicles (29), there is considerable clinical 

research interest in quantification of circulating microvesicles. Elevated platelet-derived 

microvesicles have been demonstrated in the circulation of patients with a variety of 

thrombotic and inflammatory disorders (130, 144, 148, 149, 190). Release of microvesicles 

is another mechanism by which platelets contribute to immune responses; as mentioned 

earlier, platelets were shown to release IL-1β-enriched microvesicles following stimulation 

by bacterial (27). Interleukin 1 enriched microvesicles from platelets activated by collagen 

amplify inflammation in a model of rheumatoid arthritis (21).

Expression and transfer of microRNA

Since the 1960s, platelets were known to contain mRNA (22); however, limited information 

was available of the mechanisms for regulation of mRNA and consequently protein 

synthesis in platelets. Recently, human platelets were shown to contain a broad range of 

functional microRNA (miRNA, reference (118)). MiRNA are short non-coding RNAs that 

regulate mRNA translation by a variety of mechanisms reviewed in detail elsewhere (176). 

Human platelets have been described to contain >200 distinct miRNA despite using 

stringent criteria for miRNA identification (38, 146, 195). Platelet miRNA may regulate 

protein translation on platelets (146) and can be secreted or delivered via microvesicles and 

influence gene expression in endothelial cells (74, 146, 153). Whether platelet miRNA 

mediates gene expression in other cell types, including other immune cells, remains to be 

defined.

Direct interactions with microorganisms

Aside from their ability to modulate the immune response, several studies have examined 

how platelets directly interact with microorganisms, specifically bacteria and fungi. Early 

studies on the antimicrobial properties of platelets focused on the presence of microbicidal 

proteins. One of these is β-lysin, a small (6 kDa), cationic, thermostable protein whose main 

function is to kill gram-positive bacteria, namely Staphylococcus aureus and Bacillus spp 

(55). Processes that stimulate release of β-lysin include coagulation, inflammation, antigen-

antibody complex formation, the generalized Shwartzman reaction, and bacteremia. Once 

released, β-lysin induces plasma membrane disruption of Gram-positive bacteria and 

eventual cell lysis. This process is synergistic with lysozyme, complement and antibody, as 

removal of β-lysin decreases the bacteriocidal effect of serum (54, 62, 87).

Platelet microbicidal proteins are another class of bacteriocidal peptides, similar to β-lysin. 

They are small, cationic peptides that are released from platelet α granules by thrombin 

stimulation and have the ability to kill Staphylococcus aureus through the disruption of the 

plasma membrane (225, 227). Studies in infective endocarditis suggest that platelet 

microbicidal proteins are also important in fighting viridans Streptococci infections (47), 

whereas the development of resistance to platelet microbicidal protein by S. aureus may lead 

to persistent bacteremia (64). Not only are platelet microbicidal proteins antibacterial, they 

also possess antifungal properties (226, 228). Included within the class of platelet 

microbicidal proteins are thrombocidin-1 and -2, CXC chemokines stored within platelet α 

granules. These proteins are related to neutrophil-activating peptide-2 (NAP-2) and 
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connective tissue-activating peptide III (CTAP-III), respectively, and are able to kill both 

Gram-positive (Bacillus subtilis, S. aureus) and Gram-negative (Escherichia coli) organisms 

and are effective against some species of Candida (113).

In addition to microbicidal proteins, platelets also have direct cell-cell interactions with 

microbes. It has been well described that bacteria can induce platelet aggregation, leading to 

sequestration of the bacteria. Additionally, studies have shown that platelets are also able to 

engulf bacteria and the human immunodeficiency virus (HIV) (229, 233). However, the 

consequences of these interactions have been debated. Although sequestration of bacteria by 

platelets may assist removal of bacteria by the reticuloendothelial system (202), 

sequestration may also protect bacteria from bacteriocidal agents. This concept has been 

suggested by the retrieval of viable organisms from platelet-bacterial aggregates in vitro 

(41). Additionally, there are data suggesting that platelet-bacterial aggregation propagates 

and protects the development of vegetative lesions in bacterial endocarditis (86, 100, 198). 

The engulfment of bacteria by platelets appears distinct and less effective than the 

phagocytic capability of leukocytes (220); the functional consequences of pathogen 

engulfment by platelets remain to be clearly delineated.

Interactions with complement

Platelets have also been shown to interact with the complement system to enhance innate 

immunity. One method is through platelet activating factor, which enhances phagocytosis of 

complement-bound erythrocytes (RBC) by monocytes through complement receptor 1 (31). 

Another method is through phosphorylation of complement C3 and C3b; activated platelets 

promote activation of the complement system via release of protein kinases and ATP and 

phosphorylation of C3 and C3b (60). In addition to phosphorylation of C3b, platelets are 

also able to bind to C3b via P-selectin; platelet activation induces activation and propagation 

of the complement system via P-selectin (51). Platelets have also been shown to bind C1q 

and activate the classical pathway of complement (158). The interactions between platelets 

and the complement system are complex; platelets can activate complement and vice-versa; 

the interactions between platelets and the complement system remain to be fully 

characterized (157).

Interactions between Platelets and Leukocytes

In addition to platelets’ innate ability to interact with microorganisms, complement, and 

endothelium; platelets also modulate inflammation through their direct interactions with 

leukocytes in circulation and tissue. In this review, we will discuss the molecules involved 

in platelet-leukocyte interactions and the prototypical functional consequences.

Mechanisms of platelet-leukocyte interactions

A variety of mechanisms has been described to participate in platelet-leukocyte interactions 

and can be divided into two broad categories: adhesive and soluble mechanisms. Although 

we will discuss these mechanisms separately, many of them work in unison to activate 

platelets and leukocytes. And while a multitude of mechanistic interactions have been 
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identified between platelets and leukocytes (1, 132, 135, 230), this review will emphasize 

selected interactions that have been most actively studied.

Adhesive mechanisms of platelet-leukocyte interactions—There have been 

several adhesive molecules described to participate in platelet-leukocyte interactions (Figs. 3 

& 4) (85). We will discuss the main adhesive interactions in this section.

One adhesive mechanism involves the interaction between P-selectin on platelets to P-

selectin glycoprotein ligand-1 (PSGL-1) on leukocytes. P-selectin (also known as granule 

membrane protein-140 (GMP-140), PADGEM protein, and CD62) is a membrane 

glycoprotein found in secretory granules of platelets (α-granules) (15, 136) and endothelial 

cells (Weibel-Palade bodies) (82) that is upregulated on the platelet surface after activation. 

The counter-ligand for P-selectin is PSGL-1, a homodimeric mucin composed of two ~120 

kDa subunits (140) and expressed on microvilli on most leukocytes (122, 139). PSGL-1 is 

important for mediating neutrophil rolling on platelets and endothelial cells in the 

microcirculation (30, 139). When bound to P-selectin, PSGL-1 induces a signaling pathway 

to activate leukocytes by inducing a conformational change of the β2 integrin, Mac-1, to an 

active state (133, 209) as well as clustering of Mac-1 on the leukocyte surface (224). In 

addition to their effect on leukocyte capture and rolling, P-selectin-PSGL-1 interactions 

between platelets and neutrophils promote neutrophil transendothelial migration (116) 

independent of effects on neutrophil adhesion to endothelial cells.

Another adhesive mechanism involves the interaction between platelet glycoprotein Ibα 

(GPIbα; CD42b) and Mac-1 (CD11b/CD18; αMβ2 integrin). GPIbα is the α-subunit of the 

heterodimeric transmembrane protein GPIb located on platelets (65). It is part of the GPIb-

IX-V complex and binds to von Willebrand factor for thrombus formation (138). In addition 

to its role in thrombosis, GPIbα has recently been described to bind to the β2 integrin, 

Mac-1, on leukocytes to promote microvascular inflammation and thrombosis (210). Mac-1 

is a heterodimer that consists of an alpha (CD11b; αM) and beta subunit (CD18; β2). It is 

found on moderate levels on the surface of leukocytes with preformed stores expressed on 

the surface after stimulation (98). Mac-1 serves as both a complement receptor to iC3b (11) 

as well as for firm adhesion and transmigration by binding to ICAM-1 on endothelial cells 

(188). In addition to GPIbα, platelets also bind to Mac-1 (as well as LFA-1) via ICAM-2 

(52, 222). ICAM-2 is found on the membrane surface of resting platelets and does not 

change after activation. Binding of platelets to ICAM-2 may assist in leukocyte 

transendothelial migration (96).

Adhesive interactions between platelets and leukocytes may also be mediated by CD40L 

(CD154; gp39) on platelets and CD40 on leukocytes. CD40L was first described on the 

surface of activated T cells (5), but has also been described on platelets (83). CD40L is a 

member of the tumor necrosis factor (TNF) family and is the ligand for the TNR receptor, 

CD40. CD40 is found on a variety of cells, including B cells and endothelial cells, and the 

interaction between CD40 and CD40L is important in the regulation of the adaptive 

immunity (reviewed in (66)). CD40 has also been found on neutrophils, possibly 

contributing to the pro-inflammatory effects of platelets (204). However, recent data have 

demonstrated its importance in the formation of atherosclerosis (28) as well as of acute 
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inflammatory conditions, such as inflammatory bowel disease (206). In addition to its 

surface-bound state, CD40L is also cleaved by metalloproteinases and can be found in 

solution as sCD40L and able to exert its effects (108).

Depending on the molecules involved, the attachment of platelets onto leukocytes may alter 

the behavior of the latter; the functional consequences of these interactions are summarized 

in Figure 5. As described previously, P-selectin-PSGL-1 interactions lead to activation and 

clustering of Mac-1 on leukocytes. Neutrophils may actively scan the vasculature for 

activated platelets in order to promote inflammation via clustering of PSGL-1. Ex vivo 

observations in the late 1990s showed that activated neutrophils demonstrated clustering of 

P-selectin ligand at the uropods, resulting in polarized neutrophils with platelets bound to 

the uropod. (56). Similar findings were recently described in vivo, with evidence that 

neutrophil polarization in activated venules induced organization of a protruding domain 

that bound platelets and resulted in a PSGL-1-mediated signal transduction that drove 

neutrophil migration; neutrophils from platelet-depleted mice were less motile than those 

from untreated mice (191). Similar to observations by others, survival in acute lung injury in 

mice is improved after platelet depletion, suggesting their importance in propagating the 

proinflammatory response after injury (191, 231).

Soluble mechanisms of platelet-leukocyte interactions—In addition to the 

adhesive elements described above, platelets can release soluble factors that activate, 

modulate, or assist with capture of circulating leukocytes. A large number of the hundreds of 

biologically active mediators contained in platelet granules (see Table 1) are capable of 

inducing these effects. In this section, we will highlight a few selected examples:

Platelet factor 4 (PF4; CXCL4) is a protein belonging to the CXC-subfamily of chemokines 

and is released from α-granules after platelet activation. PF4 activates neutrophils by 

binding to the proteoglycan chondroitin sulfate on the surface of neutrophils as tetrameric 

PF4 (159). In isolated neutrophils, the addition of tumor necrosis factor-α (TNF-α) appears 

to be necessary for PF4-induced activation (160), however, TNF-α co-stimulation is not 

required in the presence of endothelial cells (159). This leads to enhanced neutrophil 

adherence to endothelial cells and secondary granule exocytosis (measured by lactoferrin 

release) without an increase in intracellular calcium levels or chemotaxis. A second receptor 

for PF4, CXCR3B, has been described, although it has been primarily described in 

microvascular endothelial cells and important for regulating angiogenesis (121, 203).

Fibrinogen, released from platelets and endothelial cells, is traditionally thought of as a 

hemostatic element. However, neutrophils are also able to adhere to bind fibrinogen via the 

CD11b/CD18 integrin (114), and neutrophils binding to fibrinogen is regulated in a shear 

stress-dependent manner (232). These studies suggest that fibrinogen-CD18 interactions 

may be a way for leukocytes to adhere to both platelets and endothelium at sites of vascular 

injury.

Neutrophil extracellular traps (NETs) have recently been described as important effectors of 

innate immunity. NETs are primarily composed of both nuclear (histones and DNA) and 

granular products (e.g. neutrophil elastase, myeloperoxidase, matrix metalloproteinases) and 
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are released predominantly by neutrophils, although other leukocytes are able to release 

them (26). Neutrophils release NETs through an NADPH oxidase-dependent mechanism, as 

neutrophils from patients with deficiencies in this enzyme (chronic granulomatous disease) 

are unable to form NETs (67). In addition to the oxidative burst, decondensation of 

chromatin by peptidylarginine deiminase-4 (PAD4) is required for proper NET formation 

(124). Once released, NETs play an important role in the capture and clearance of bacteria 

and fungi (155, 161, 201), but may also promote thrombosis and coagulation. Histones, as 

part of NETs, may be particularly thrombogenic as they have been shown to promote 

platelet aggregation and thrombosis (68, 117); the toll-like receptors TLR2 and TLR4 appear 

to mediate these effects of histones on platelets (181, 223). In addition to histones, DNA 

also appears to be prothrombotic (69) whereas degradation of DNA by recombinant DNAse 

I is protective against stroke in mice (50).

Functional consequences of platelet-leukocyte interactions

Interactions between platelets and leukocytes have been shown to contribute to a broad 

range of physiologic and pathologic conditions. In this review, we will highlight some 

prototypical examples of these interactions, resulting in both beneficial and detrimental 

responses.

Acute lung injury—Acute lung injury (ALI) is a potentially fatal condition in which the 

body is unable to oxygenate or ventilate appropriately to support the metabolic demands of 

the body. ALI is a consequence of a variety of different diseases, including infection, 

chemical pneumonitis, and trauma (110, 174). On histology, it is characterized by leukocytic 

infiltrates into the lung parenchyma and airspaces with edema formation. Animal studies 

have demonstrated that platelets contribute to the development of ALI, since depletion of 

platelets resulted in improved organ function and reduced leukocyte infiltration in 

experimental ALI (6, 231); P-selectin (231) and sCD40L (168) have been implicated in 

these responses. Further, platelets and their released products have been associated with the 

development of (blood) transfusion-related ALI (TRALI) via sCD40L (108). These effects 

may be through platelet-induced NET formation, as suggested by an improvement in lung 

injury and NET formation after the use of GPIIb/IIIa inhibitors or aspirin in experimental 

models of TRALI (32).

Infection—As described above, interaction of platelets with bacteria can induce neutrophils 

to release neutrophil extracellular traps (NET). The formation of NETs appears to be another 

mechanism by which the innate immunity combats infections. Recent data demonstrate that 

platelets, via toll-like receptor 4, promote trapping of Escherichia coli by neutrophils in the 

liver sinusoids (40). This suggests a role of platelets as an integral component of the innate 

immunity.

Sterile inflammation—Platelets and leukocytes are often recruited to sites of 

inflammation, particularly in the microcirculation, with close spatial and temporal 

correlation. Recruitment of platelets and leukocytes to sites of inflammation can be inter-

dependent. For example, in a model of corneal abrasion, depletion of platelets reduced 

leukocyte recruitment while depletion of leukocytes reduced platelet recruitment (126). 
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Efficient recruitment of both platelets and leukocytes was necessary for effective wound 

healing (126). These findings exemplify a closely coordinated effort by leukocytes and 

platelets in response to sterile inflammation. Similarly, platelet-dependent leukocyte 

recruitment was shown in experimental autoimmune encephalomyelitis, a model of a 

demyelinating disease; recruitment of platelets and leukocytes mediate inflammation in that 

model (119). Platelet-leukocyte interdependence has been described in a variety of other 

models; these interactions have been reviewed elsewhere (175, 194).

Allergic inflammation—Platelets have been studied in the context of allergic asthma; 

platelets contain a number of mediators that can lead to bronchial smooth muscle 

hyperreactivity and mucus production, such as platelet activating factor (35) and histamine 

(13). Further, there are some reports that platelet factor 4 and β-thromboglobulin are 

increased in patients with asthma, particularly those with most airway hyperreactivity (97, 

143, 200), though these data have been questioned (103, 131). In mouse models of allergic 

lung inflammation, platelet depletion reduced measures of lung inflammation, including 

eosinophil and lymphocyte recruitment (164) as well as epithelial and smooth muscle 

thickening (163). However, platelet depletion did not affect the degree of airway 

hyperresponsiveness (163). These data suggest that platelets may contribute to allergic 

inflammation, though much remains to be clarified about these processes.

Atherosclerosis—Atherosclerosis is a chronic inflammatory disease of the blood vessels 

in which platelet-leukocyte interactions play a central role, in addition to the role of platelets 

in thrombosis associated with atherosclerosis (reviewed in (49, 172)). The interaction 

between activated platelets and both circulating leukocytes as well as the vascular 

endothelium propagates vascular inflammation, leading to plaque formation. Several 

platelet-dependent mechanisms have been suggested to mediate these responses. One of the 

key molecules in this interaction is platelet CD40L (cell-bound and soluble). Platelet CD40L 

binds to endothelial CD40, inducing surface expression of a number of key adhesion 

molecules (E-selectin, VCAM-1, and ICAM-1) as well as cytokine release (IL-8, MCP-1). 

This activation of the endothelium then attracts circulating neutrophils, T-cells, and 

monocytes into adhering to the inflamed endothelium, leading to vascular inflammation and 

plaque formation (83, 127). Platelet P-selectin also plays an important role in the 

pathogenesis of atherosclerosis by binding to monocyte PSGL-1 to help capture monocytes, 

form platelet-monocyte aggregates, and to induce inflammation via a cyclooxygenase-2 

(COX-2) pathway (53, 63). A variety of platelet-derived chemokines have also been 

suggested to participate in atherogenic responses (reviewed in (91)). These represent 

important pathways through which platelets promote the inflammation seen in the 

development of atherosclerosis; a greater understanding of these mechanisms may impact 

prevention and management of this common clinical entity.

Inflammatory bowel disease—The inflammatory bowel diseases (IBD; ulcerative 

colitis and Crohn’s disease) are a set of chronic inflammatory disorders that encompasses 

complex interactions between genetic, microbiotic, and environmental factors; increasing 

evidence supports the notion that platelets play an important role in the inflammatory 

responses associated with IBD. Increased blood platelet counts in humans with IBD was 
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shown in the 1960s (142). Subsequently, a variety of qualitative changes in platelets have 

been described in IBD (205), including elevated levels of platelet CD40L and a higher 

number of CD40L-positive platelets in inflamed intestinal mucosa, as compared to control 

subjects (46). In a mouse model of colonic inflammation, blockade of the CD40-CD40L 

pathway or deficiency of either CD40 or CD40L led to decreased inflammation and damage 

of the colonic mucosa in experimental colitis. Furthermore, absence of CD40 or CD40L 

resulted in less platelet and leukocyte adhesion to inflamed colonic venules (206). A number 

of platelet-derived mediators have been suggested as possible mediators of inflammatory 

responses in IBD (reviewed in (205)); however, the mechanisms involved remain to be 

clearly delineated.

Conclusion

In addition to their role in hemostasis and thrombosis, platelets are key mediators of 

inflammation and warrant to be recognized as immune cells. They can interact with 

pathogens, regulate the function of other immune cells, and mediate a broad range of 

physiologic processes. Interactions between platelets and other immune cells contribute to a 

broad range of important human diseases and may provide targets for future therapies in 

these conditions. Greater awareness of the role of platelets as key components of the 

immune system is warranted.
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Figure 1. 
(A) Platelets localize to the site of injury, binding to fibrin, and forming a hemostatic plug. 

(B) Electron micrograph of activated platelets, which spread out over an injured area and 

extend filopodia. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials 

(59), 2010.
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Figure 2. 
Ultrastructural features of a discoid platelet showing α granules, mitochondrion, the 

marginal microtubule band, and open canicular system. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Reviews Immunology (182), 2011.
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Figure 3. 
Examples of adhesive interactions between platelets (red) and leukocytes (blue). Platelets 

contain a number of integrins and cell adhesion molecules on their surface which bind to 

both leukocytes and endothelial cells (green). Major cell adhesion molecule interactions 

include (platelet-leukocyte) P-selectin-PSGL-1 and GP1bα-Mac-1. Platelets also adhere to 

endothelial cells and help capture flowing leukocytes from the circulation. Reprinted from 

reference (85) with permission from Wiley.
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Figure 4. 
Adhesive interactions between activated platelets and neutrophils. (A) EM image of an 

inflamed mouse cremaster venule, demonstrating platelet-neutrophil-endothelial cell 

interaction. Image courtesy of Dr. Alan Burns, University of Houston College of Optometry. 

(B) Platelet (red)-neutrophil (green/blue) interactions in suspension after platelet activation.
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Figure 5. 
Selected examples of pro-inflammatory effects of platelets resulting in functional 

consequences on leukocytes. Platelets interact with leukocytes through both adhesive 

mechanisms as well as release of cytokines/chemokines. This results in leukocyte activation 

and enhanced leukocyte-endothelial adhesion. Through these mechanisms, platelets 

participate in several normal and pathologic immune functions including microbial killing, 

leukocyte homing, wound healing, allergic inflammation, and atherosclerosis, among others.
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Table 1

Selected examples of soluble element-mediated interactions between platelets and leukocytes

Platelet Element Leukocyte Element Effect (References)

sCD40L CD40 Atherosclerosis (28)
Inflammatory bowel disease (206)

Platelet factor 4
Chondroitin sulfate (neutrophils) Activation of neutrophils (159)

CXCR3B (microvascular endothelial cells) Regulating angiogenesis (121, 203)

Fibrinogen Mac-1 (neutrophils) Neutrophil adhesion to fibrin deposits (114, 232)

TLR4 Histones (neutrophils) Platelet activation and thrombosis (68, 117, 223)

? DNA (neutrophils) Thrombosis (50, 69)

RANTES (CCL5)

CCR5 (monocytes, endothelium) Monocyte arrest on HMVEC (9)
Development of atherosclerosis (77)

CCR5 (endothelium, leukocytes) Cerebral microvascular dysfunction and inflammation in I/R 
(199)

LIGHT (TNFSF14)

Herpes virus entry mediator (HVEM; 
neutrophils, monocytes) Enhances phagocytosis and bactericidal activity (84)

HVEM (endothelial cells)
Lymphotoxin beta receptor (LTβR; endothelial 

cells)

Platelet-endothelial interactions; Levels elevated in STEMI 
(33)

?
Myeloperoxidase (MPO; neutrophils)

Hydrogen peroxide (H2O2)
MPO and H2O2 induce platelet secretion of serotonin and 

adenine (39)

LPS-stimulated platelet ??? (neutrophils) Release of neutrophil extracellular traps (40)

Platelet activating factor CR1 (monocytes) Enhances phagocytosis (31)
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