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Abstract

Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, 

healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and 

regeneration at sites of injury by enabling the local, sustained and potentially regulated expression 

of therapeutic gene products; such products include morphogens, growth factors and anti-

inflammatory proteins. Proteins produced endogenously as a result of gene transfer are nascent 

molecules that have undergone post-translational modification. In addition, gene transfer offers 

particular advantages for the delivery of products with an intracellular site of action, such as 

transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell 

compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in 

vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical 

trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing 

protocols are at an advanced stage of development, including studies with large animals, and 

human trials are envisaged. Other applications in the repair and regeneration of skeletal muscle, 

intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to 

scientific, medical and safety considerations, clinical translation is constrained by social, financial 

and logistical issues.

Introduction

More than 20 million injuries are inflicted on the musculoskeletal system each year in the 

USA; sprains, fractures and contusions are the most common. Collectively, they cost the US 

healthcare system $150 billion per annum1 Musculoskeletal tissues vary considerably in 

their ability to repair spontaneously after injury2 Most fractures of long bones, for example, 

heal by themselves, whereas large segmental defects do not. Articular cartilage has almost 
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no intrinsic reparative activity, irrespective of the size of the lesion, and tendons often heal 

but form a regenerate of inferior quality. Minor muscle injuries, such as strains, heal without 

intervention, but severe injuries result in the formation of a dense scar. In many cases, the 

ability of a tissue to regenerate is affected by inflammation and the degree of damage to 

surrounding tissues.

Much research is devoted to developing technologies that enhance the repair or regeneration 

of damaged musculoskeletal tissues. Many such strategies depend upon the delivery of 

morphogens, often proteinaceous growth factors, for example insulin-like growth factor 1 

(IGF-1), to orchestrate this process. The importance of this function is reflected by the 

volume of research devoted to developing scaffolds with the ability to deliver the 

appropriate factors in a controlled and sustained manner (reviewed elsewhere3–5); this 

endeavour is proving difficult.

Gene transfer is an alternative technology for delivering gene products to sites of tissue 

injury.6,7 It offers the prospect of sustained and, ultimately, regulated local synthesis of one 

or more morphogens in situ. Unlike many recombinant growth factors produced in 

bioreactors and subjected to packaging and storage, the gene products are nascent proteins 

synthesized locally with post-translational modification. Gene transfer is also superior to 

traditional methods for delivering products with an intracellular site of action, such as 

transcription factors, signalling molecules and noncoding species of RNA, as well as 

proteins (such as receptors) that need to be inserted into a specific cellular compartment. 

Extensive preclinical literature supports the concept of using gene therapy to repair and 

regenerate various components of the musculoskeletal system, and the first human clinical 

trials have taken place. Other protocols are being advanced towards clinical translation. This 

Review focuses on the translational aspects of using gene therapy to aid the restoration of 

the musculoskeletal system.

A gene therapy primer

Vectors

Vectors are used to transfer genes (usually cDNAs) of interest into host cells in a manner 

that facilitates translocation to the nucleus with subsequent high levels of transgene 

expression. Viruses are widely used as vectors, because of their inherent ability to 

translocate their own genetic material efficiently. To create a vector for gene therapy, 

sequences of the viral genome that contribute to virulence and disease are normally removed 

and replaced with genes of interest and their regulatory sequences, while retaining 

infectivity. A number of viruses have been engineered in this way and >1,200 human gene-

therapy trials have been performed using viral vectors.8

Different viruses confer different properties on their derivative vectors. The major 

considerations for human medicine are their biology, safety, ease of manufacture and cost-

effectiveness. Biological considerations include the carrying capacity of the vector, the 

length of time its genome will persist in the body to sustain transgene expression, and the 

degree to which it generates a neutralizing immune response. Safety concerns have centred 

on whether or not the vector inserts (integrates) its genetic material into that of the host cell, 
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a process that can lead to insertional mutagenesis and cancer.9 Immune responses to the 

vector can limit the duration of transgene expression and prevent repeated dosing. In one 

example, a robust immune reaction to an adenoviral vector led to the death of a participant 

in a gene therapy trial for ornithine transcarbamylase deficiency.10

Production of recombinant viral vectors is not trivial and influences the ability to perform 

preclinical studies in the laboratory, the ease of testing in large-animal models, the cost of 

clinical trials and, ultimately, the price of a gene therapy products in the medical 

marketplace. The last of these factors is increasingly important and could severely restrict 

the use of an otherwise successful gene therapy. For example, Glybera® (alipogene 

tiparvovec; uniQure, Amsterdam, Netherlands), a gene therapy treatment for lipoprotein 

lipase deficiency, approved by the European Medicines Agency, might cost as much as €1 

million for a one-time treatment. Intellectual property issues are also important for research 

translation. The properties of commonly used viral vectors of relevance to tissue repair and 

regeneration have been reviewed elsewhere.11

Because of the complexities of viral gene transfer, nonviral vectors are of particular interest. 

These vectors can be as simple as DNA plasmids, but are usually associated with liposomes 

or various types of polymer to enhance uptake. Physical stimuli, such as electroporation and 

sonication, can also enhance transfection efficiency. In general, nonviral vectors are less 

expensive and easier to construct than viral vectors, but they are much less efficient. As a 

result, fewer human trials have taken place with nonviral vectors.8 Nonviral gene delivery 

has been reviewed elsewhere.12

Gene delivery to sites of tissue damage

Vectors can be introduced directly into the body (in vivo delivery) or extracorporeally into 

cells that are subsequently implanted into the site of injury (ex vivo delivery). The former 

strategy is simpler and less expensive, but raises greater safety concerns because, after the 

vectors are introduced into the body, direct control over their activities is not possible. 

Successful in vivo delivery also requires the existence of a sufficient population of healthy 

cells, within the damaged tissue, to take up and express the transgene endogenously at 

appropriate levels. As injuries to the musculoskeletal system are often associated with 

considerable cell death, this requirement is not always met.

Ex vivo gene delivery obviates these problems and has the advantage of introducing cells, in 

addition to gene products, to the injury site. Ex vivo gene transfer also meshes well with 

traditional tissue-engineering approaches in which cell populations are removed from the 

body, expanded, modified, seeded on a scaffold, incubated in a bioreactor and reimplanted. 

Although potentially successful, such technologies are likely to be expensive, as using 

autologous cells in this manner requires two surgeries and a GMP (good manufacturing 

practice) facility for growing and extensive testing of the genetically modified cells.13 

Moreover, primary cell populations do not always expand or transduce well. In view of 

these contraints, there is interest in using expedited ex vivo gene transfer in which tissue is 

removed from the patient, genetically modified and reimplanted into the injury site during 

the course of one operation.13 An alternative strategy is to use allografted cells that can be 

universal donors.
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Four different strategies for gene therapy have emerged in the context of treating 

musculoskeletal injuries, two of them ex vivo and two of them in vivo (Figure 1). The 

traditional ex vivo approach recovers cells (often progenitor cells) from the patient, expands 

the population and genetically modifies them prior to reimplantation during a second 

surgical procedure. This process can be streamlined with the use of allogeneic cell lines. 

Alternative, expedited ex vivo approaches use tissue biopsy samples (such as bone marrow, 

fat or muscle) that are subjected to genetic modification intraoperatively, and then 

immediately reimplanted into the defect during the same operation.13 In the most common 

in vivo approach, the vector is introduced by direct injection into the defect site. An 

alternative technology uses a gene-activated matrix (GAM) in which the vector is associated 

with an implanted scaffold.14

Gene therapy progress

Articular cartilage

Damage to the articular cartilage can lead to pain and subsequent osteoarthritis (OA). 

Because articular cartilage has a limited capacity to regenerate spontaneously, a number of 

surgical procedures have been developed for its repair.15 In terms of gene therapy, the most 

pertinent procedures are microfracture and autologous chondrocyte implantation (ACI).

Microfracture is one of several related techniques that enable communication between a full-

thickness chondral lesion and the underlying bone marrow. Progenitor cells from the 

subchondral region enter the lesion and become trapped in the ensuing fibrin clot, where 

some of them differentiate along a chondrogenic lineage to form repair tissue. Microfracture 

is thought to have some efficacy for the treatment of small focal lesions, but not larger 

lesions, for which ACI is usually indicated. The newly formed tissue resulting from 

microfracture is fibrocartilage, which is less durable than articular cartilage, and is 

sometimes compromised by the presence of intralesional osteophytes. Nevertheless, this 

inexpensive and simple technique is reasonably effective and the FDA requires that new 

cartilage repair methods are superior to microfracture, a ruling with serious implications for 

clinical trial design.

Two gene-based approaches attempt to improve the effectiveness of microfracture; both are 

simple intraoperative methods. Using one method, recombinant adeno-associated virus 

(AAV) is applied directly to the exudate that enters the osteochondral lesion.15–17 In a rabbit 

osteochondral defect model, fibroblast growth factor 2 (FGF-2),15 IGF-1,16 and the 

transcription factor SOX9,17 have been delivered by transgene, with promising results.

The alternative approach of Pascher et al.18 accelerates the process by removing bone 

marrow and mixing it with adenovirus vectors during clotting. The clotted bone marrow, 

containing transduced cells and vector, known as a `gene plug', is then press-fit into the 

cartilage lesion (Figure 2). Adenovirus is available to transduce additional cells as they 

migrate into the defect, a process aided by the superior transducing properties of adenovirus 

when bound to a matrix.19 Promising results have been reported with this method in rabbits 

using cDNA that encodes bone morphogenetic protein (BMP)-2, although delayed, 

progressive endochondral ossification was noted.20 In analogous experiments, cDNA 
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encoding Indian hedgehog protein was superior to that encoding BMP-2, repairing cartilage 

without endochondral ossification.20

Ivkovic et al.21 used gene plug technology in a full-thickness chondral defect model in 

sheep, with TGFB1 cDNA as the transgene. This method improved the outcome, but did not 

lead to complete repair of the lesion, possibly because the gene plugs did not contain 

sufficient numbers of chondroprogenitors and were not in communication with the bone 

marrow as a source of additional cells. The number of progenitors in a gene plug can be 

augmented by the addition of cells during clotting of the aspirate.18

Another technology involves transplantation of genetically modified autologous skeletal 

muscle or fat into the defect. These tissues can be harvested, genetically modified, and then 

press-fit into osteochondral lesions during a single surgery. Results from pilot experiments 

with rabbits, using adenovirus vectors carrying BMP2 cDNA, are encouraging. Of interest, 

the implanted tissues formed bone in the subchondral region and cartilage above, indicating 

the importance of local cues in cell fate.23

Large chondral lesions are sometimes treated by ACI, which requires articular cartilage to 

be harvested from a lesser-weight-bearing part of the joint. This cartilage is a source of 

autologous chondrocytes that are expanded in culture and implanted into the defect. Good 

clinical results have been reported, equal or superior to microfracture.14 The nature of this 

process lends itself to ex vivo gene therapy.

The application of ACI has been constrained by the high cost of autologous therapy, in 

which the cell population needs to be expanded before reimplantation, and by the need for 

two surgeries. The cost and complexity would be greatly reduced if allografted cells could 

be used. The basis for cartilage repair using genetically modified allografts was provided by 

Kang et al.,23 who first showed, in rabbits, that genetically modified allografted 

chondrocytes could persist and express transgenes in osteochondral defects.

A large body of data from small-animal models (using rabbits and rats) confirms that 

genetically modified allogeneic or autogenous chondrocytes are effective agents of cartilage 

repair.24,25 Confirmation of efficacy in larger animals has been provided by Nixon and 

colleagues, who used horse models.26–29 Implantation of allograft chondrocytes following 

adenoviral transduction with BMP-7 accelerated the early repair process, but by 8 months 

there was little difference compared with controls.26 Transduction with IGF-1, by contrast, 

provided a sustained improvement in repair.27–28 In their most recent work, this group used 

AAV to transfer IGF-1 to autologous chondrocytes, noting improved repair of full-thickness 

chondral defects.29

Genetically modified allograft chondrocytes have been used in human clinical trials by the 

South Korean company Kolon Industries.30 A line of human chondrocytes was established 

from a newborn with polydactyly, and one cohort of cells was transduced with a retrovirus 

carrying TGFB1 cDNA.31 For cartilage repair, the transduced cells are surgically introduced 

into cartilage lesions using a fibrin scaffold. Because retrovirus vectors integrate into the 

host genome and are, thereby, potentially carcinogenic,9 the transduced cells are irradiated 
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prior to implantation and mixed with nontransduced, nonirradiated cells to amplify the 

effect. This method is undergoing further clinical trials in South Korea.31

Patients with OA often require restoration of articular cartilage, but the process is 

complicated by a concomitant disease process that produces an environment hostile to 

cartilage repair. In particular, NFκB-activating proinflammatory cytokines (such as IL-1) 

inhibit chondrogenesis from mesenchymal stem cells (MSCs) in the joints of patients with 

OA.32 This circumstance provides additional opportunities for gene therapy as a means of 

controlling the activities of inflammatory mediators. A GAM approach used tethered 

lentivirus vectors expressing IL-1 receptor antagonist (IL-1Ra) to address this issue.33 Of 

note, an AAV–IL-1Ra construct is presently undergoing regulatory approval for human 

clinical use to treat OA.11 IL-4 is another cytokine of interest as an anti-inflammatory 

cytokine.35 Co-delivery of cDNAs that encode an anti-inflammatory product, such as 

IL-1Ra or IL-10, and a cartilage growth factor, such as IGF-1, have also been studied.35,36 

Strategies for treating OA usually involve the injection of vectors or genetically modified 

cells into the joint.11 Under these conditions, the primary site of transgene expression is the 

synovium and all intra-articular tissues, including the cartilage, are exposed to the gene 

product via diffusion through the synovial fluid.

In four clinical trials in the USA and Korea, suspensions of allogeneic chondrocytes that 

express TGF-β1 were injected into knee joints of patients with OA.11 These studies have 

completed phase I38 and phase II,39 and phase III trials40 are in preparation. Gene therapy 

for OA has been reviewed elsewhere.11,43,44

Future refinements of this approach include the use of progenitor cells, rather than 

chondrocytes, as agents of ex vivo gene transfer for cartilage repair.26,43,44 Interest in the use 

of GAMs is also high,45,46 and research into improving the efficiency and targeting of 

nonviral vectors continues. Pi et al.,47 for example, identified peptides that traffic 

specifically to chondrocytes and enhance transfection when attached to polyethylenimine. 

Gene delivery for cartilage repair has been reviewed elsewhere.48

Bone

Bone is often misconstrued as the `low-hanging fruit' of tissue regeneration because it is one 

of the few organs in the body that normally heals well without scarring. However, the 

purposeful therapeutic regeneration of bone is difficult. Most research has been performed 

with animal models of cranial defects and large segmental defects in long bones. Spine 

fusion, fracture healing, nonunions, restoration of bone after avascular necrosis, and the 

repair of alveolar, mandibular and periodontal defects have also been studied.2

Research into gene therapy has mostly focused on the delivery of morphogens (particularly 

BMPs,49,50 Wnt proteins,51 angiogenic factors such as vascular endothelial growth factor 

(VEGF),52 osteogenic transcription factors,53 LIM-domain proteins (LMPs)54 and 

cyclooxygenase-2.55 The potential use of microRNAs is also of interest.56 Selection of 

transgenes is complicated by the choice between the endochondral route to bone formation, 

which requires the initial formation of cartilage,57 or the intramembranous route. This 

dichotomy is most apparent in the need for a blood supply; chondrogenesis occurs in an 
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avascular environment, whereas osteogenesis has an absolute requirement for 

vasculogenesis. The latter is convincingly demonstrated by the synergy between cDNAs that 

encode VEGF and BMPs in healing osseous defects.58

Most studies have used traditional ex vivo approaches with adenoviral, retroviral, lentiviral 

or nonviral vectors in combination with muscle-derived stem cells (MDSCs) or MSCs 

derived from bone marrow or fat.59 Considerable success has been reported using rodent and 

rabbit models in which a critical-sized defect is created in a long bone or the cranium 

(reviewed elsewhere60). Relatively few of these studies have progressed to using large-

animal models that are needed in advance of human clinical trials. However, success has 

been reported in goat,61 pig62 and horse63 models using adenovirus to transfer cDNA of 

BMPs into long-bone defects, cranial defects and sites of osteonecrosis of the hip, with 

bone-marrow-derived MSCs or dermal fibroblasts as carriers.

The direct injection of adenovirus carrying BMP-encoding cDNA64 has shown promise in 

the treatment of segmental defects in small animals (rabbits65,66 and rats67), but was 

ineffective in treating sheep,68 possibly owing to an immune reaction to the vector and, in 

that case, to human BMP-2.69 Nevertheless, success was reported in some, but not all, 

studies of adenoviral delivery of BMP-2 or BMP-6 to horses.70,71

Expedited ex vivo procedures that use autologous fat and muscle do not provoke neutralizing 

antibody responses to an adenovirus vector,23 and more reliably heal segmental defects in 

rats than the direct injection of the same vector (Figure 3). This technology is effective in a 

rat xenotransplantation model using genetically modified sheep muscle (C. H. Evans, 

unpublished work), which is encouraging for ongoing studies in sheep.

An alternative approach to expediting ex vivo delivery is a method in which lentivirus 

vectors are used to transduce and reimplant autologous bone marrow cells 

intraoperatively.72 Previous experiments from the same group, using an expanded bone-

marrow-derived MSC population in a rat segmental defect model, showed that BMP-2 was 

expressed for a longer period of time and produced better quality bone when delivered by a 

lentivirus vector than when delivered by adenovirus.73 In the expedited approach, the bone 

marrow is fractionated to isolate the buffy-coat layer prior to transduction with lentivirus. 

Because lentivirus vectors integrate into the host genome, studies are underway to include a 

`suicide gene' to be activated in case of malignant transformation.74

A safe, genetically modified, allograft osteogenic cell line would both expedite and simplify 

the process of ex vivo gene delivery. However, unlike cartilage repair, bone is not repaired 

by genetically modified allogeneic cells unless an immunosuppressive drug is used.75 

Sonnet et al.76 addressed this problem by encapsulating allogeneic cells, transduced with 

adenovirus expressing BMP-2, in resorbable hydrogel particles. Remarkably, efficient bone-

healing was noted in a rat segmental defect model, even though BMP-2 expression was low.

Much excitement was caused by the first publication of GAM technology,14,77 because an 

impressive level of osteogenesis was stimulated in large segmental defects in rats and dogs 

using plasmid DNA. Plasmids encoding the first 34 amino acids of parathyroid hormone 

(the basis of teriparatide; Forteo®, Eli Lilly, USA) and BMP-4 were delivered in association 
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with a collagen sponge. This material is stable and could form the basis of an `off-the-shelf' 

product. Subsequent development was slowed by the weak transfection capability of DNA 

plasmids in this setting, so emphasis has shifted to improving the transfection ability of the 

matrices78 and using viral vectors in association with scaffolds.79 Nonviral gene therapy for 

bone regeneration is reviewed elsewhere.80

Allograft revitalization is an innovative modification of GAM technology. In this 

application, allograft bone is used as the scaffold and is coated with AAV. This method 

reflects the clinical use of allograft bone, the efficacy of which is limited by its inability to 

integrate and undergo turnover. When coated with AAV, infiltrating cells become 

transduced and, with the appropriate transgenes, promote osteogenesis at the same time as 

stimulating osteoclastic resorption of the allograft. Proof-of-principle was first established in 

mice using transgenes encoding VEGF and RANKL (receptor activator of NFκB ligand).81 

Effectiveness was subsequently shown with AAV carrying BMP2 cDNA82 and 

constitutively active activin receptor type 1.83 No clinical trial has used gene transfer to 

promote bone healing.

Skeletal muscle

Muscle injuries account for a large number of injuries sustained by participants in 

professional and recreational sports. In fact, muscle injuries constitute 10–55% of all injuries 

sustained by athletes, depending on the type of sport.84 Whereas relatively minor muscle 

injuries (such as strains) can heal completely without intervention, severe muscle injuries 

typically result in the formation of dense scar tissue that impairs muscle function and can 

lead to muscle contracture and chronic pain. Regenerative medicine strategies for such 

severe muscle injuries have not been optimized. Injured muscle undergoes a sequential cycle 

of healing phases, including muscle degeneration, inflammation, angiogenesis, regeneration 

and fibrosis.84 Although biological approaches developed to improve skeletal muscle 

healing have targeted these different phases of the healing process, the most promising work 

has been in the areas of muscle regeneration and fibrosis. The challenge for muscle repair is 

to stimulate the regeneration of native tissue while preventing fibrosis. IGF-1 has myogenic 

properties and has been delivered as a transgene using adenovirally transduced myoblasts.85 

An alternative approach is transfection-based delivery of IGF-1 to improve muscle 

healing.86

Because healing after enhancement of muscle regeneration is often associated with fibrosis, 

clinical application of this approach needs to be coupled with antifibrotic therapy. One such 

strategy exploits the antifibrotic properties of molecules (such as decorin, IFN-γ, losartan, 

relaxin and suramin) that antagonize the actions of TGF-β, a major promoter of fibrosis. 

These agents can block fibrosis and improve muscle healing after injury.87–95 For example, 

delivery of the gene encoding decorin, DCN, to laceration-injured skeletal muscle via an 

AAV is capable of inhibiting the formation of fibrosis and promoting skeletal muscle 

regeneration.87

Healing of skeletal muscle is also dependent on angiogenesis, and muscle-derived 

progenitor cells that express VEGF stimulate angiogenesis and reduce fibrosis in mice.96 

Similar effects were achieved in rats using transfected myoblasts; synergy was noted 
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between VEGF and stromal-cell-derived factor 1.97 Methods using muscle progenitor cells 

might be improved by transduction with myoblast determination protein 1, which can 

promote their differentiation into myoblasts.98

Tendon and ligament

As reviewed by Docheva et al.,99 several gene therapy strategies have been used to heal 

tendon and ligament. Morphogens, including BMP-12 (also known as growth/differentiation 

factor [GDF]-7), BMP-13 (also known as GDF-6) and BMP-14 (also known as GDF-5), are 

able to induce ligament and tendon formation from progenitors. Promising results have been 

reported in animal models of tendon healing, using transfer of cDNAs encoding 

BMP-12100,101 and BMP-14,102–103 but not BMP-13,104 even though all three induce 

tenogenesis in other systems105 and GDF6 (encoding BMP-13) transfer into MSCs induces 

ligamentogenesis in vitro;106 mechanical factors might account for this discrepancy.107 

Transfer of the transcription factor scleraxis promotes the differentiation of MSCs into 

tenocytes in vitro108 and, when used ex vivo with MSCs, enhances healing of the rotator 

cuff in a rat model.109 Similar results were reported using a combination of cDNAs 

encoding BMP-2 and SMAD8.110 Less-specific strategies use transgenes that encode 

proteins (FGF-2, IGF-1, PDGF, TGF-β or VEGF) that are general stimulators of matrix 

formation, angiogenesis and cell proliferation.111–114

Gene transfer has also been used to promote osteogenesis at the bone insertion site after 

surgical reconstruction, thereby enhancing fixation of tendons into bone,115–117 and to 

promote healing by reducing inflammation.118 The use of small interfering RNAs (siRNAs) 

has also been explored as a method of preventing ectopic ossification within the healing 

tissue.119,120

Intervertebral disc

The approaches described in this Review can be applied to the intervertebral disc.121–122 

Proof-of-principle has been established in rabbit models of disc degeneration using 

adenovirus and AAV vectors to deliver growth factors, cytokine antagonists and tissue 

inhibitors of metalloproteinases.123 Because the intervertebral disc is immunologically 

isolated, long-term transgene expression can be achieved, even when using highly antigenic 

vectors such as adenovirus, although this protection could be diminished in degenerate discs.

Meniscus

Gene transfer to the meniscus has been achieved with several different viral124–126 and 

nonviral127,128 vectors with in vivo and ex vivo strategies. Transgenes encoding IGF-1,128 

FGF-2125 and TGF-β126 have been used. Most research has used cell culture, tissue explants 

and small-animal models, but one encouraging study used goats.128 Mesenchymal stromal 

cells were transfected with an IGF1 construct and transplanted within a calcium alginate gel 

into full-thickness defects in the white zone of the meniscus. 16 weeks after surgery, the 

mensical lesion was repaired with what seemed to be authentic meniscal tissue.128
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Unresolved issues

Despite the abundance of preclinical success with animal models, a number of important 

matters are unresolved. For example, little information exists on how much, and at which 

stage of the healing process, a given growth factor or morphogen is needed. Most 

investigators introduce genes soon after injury using strong constitutive promoters and 

assume that more is better. Given the dynamic biology of tissue repair and regeneration, this 

approach might be inappropriate. For example, delayed administration of BMP-2 in the 

healing of segmental defects of bone produces a superior result.129 Also, although BMP-2 

can promote osteogenesis, high concentrations are inflammatory and promote bone 

resorption. One advantage of gene delivery is the potential to regulate expression 

quantitatively and temporally. However, until we know how much transgene to express, and 

when to express it, this capability is redundant and has not, therefore, been extensively 

explored.

Another matter requiring clarification is the appropriate cell type for ex vivo gene therapy. 

Progenitor cells are frequently used for this purpose, but whether the origin of these cells 

matters is unclear. Detailed studies comparing, for example, stem cells derived from fat, 

bone marrow and muscle in the same model system have not been performed. Progenitor 

cells are used on the basis that they not only deliver transgene products, but also 

differentiate into the cells of the regenerated tissue. However, unequivocal demonstration of 

the presence of large numbers of donor cells in the repair tissue has been difficult. This 

difficulty raises the question of whether it is necessary that the cells used for gene delivery 

are capable of differentiation in this manner. Genetically modified skin cells, for example, 

have been used successfully to heal osseous lesions in horses.63

Depending upon the application, inflammatory and immune responses to viral vectors can be 

problematic. Adenovirus is particularly antigenic, activating both the innate and adaptive 

components of the immune system. In an extreme case, unrelated to regenerative medicine, 

this antigenicity led to the death of a participant in a gene therapy trial.10 For the 

applications discussed in this Review, the major concern is that the immune system will 

interfere with the efficiency of gene transfer, and excessive inflammation will inhibit 

regeneration. Most humans, unlike experimental animals, have pre-existing immunity to 

adenovirus serotype 5, which will inhibit transduction after in vivo delivery. This limitation 

can be obviated, initially, by the use of alternative serotypes, but these will generate immune 

responses of their own that prohibit repeat dosing. AAV is generally considered the least 

antigenic of the common viral vectors, generating humoral, but not cell-mediated, immune 

responses in experimental animals. However, a human clinical trial using AAV to deliver 

factor IX in patients with haemophilia revealed a strong, unforeseen, cell-mediated response 

that limited transgene expression.130 More-extensive studies report different 

immunogenicities of different AAV serotypes in different species.131 One advantage of 

nonviral vectors is that many have low immunogenicity.
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Barriers to translation

Although the scientific literature describes numerous examples of the successful use of gene 

therapy to restore injured musculoskeletal tissues in small laboratory animals, we are aware 

of only two protocols that are in clinical trials. These protocols are used in the OA and 

cartilage repair trials32,38–40 using genetically modified allogeneic chondrocytes. Several 

factors contribute to the lack of translation.132,133

Any attempt to bring gene therapy into the clinic for a nonlethal nongenetic indication will 

undergo intense scrutiny by regulatory bodies, whose main concern is safety and the risk-to-

benefit ratio. The latter is skewed by the fact that most musculoskeletal injuries are not life-

threatening. The pharmacology, toxicology and biodistribution studies that will undoubtedly 

be necessary require GLP (good laboratory practice) facilities and are expensive and time-

consuming. Moreover, demonstration of efficacy in a large-animal model is also likely to be 

required. Such activities are difficult to accomplish in academia and the large 

pharmaceutical companies are reluctant to participate in this type of gene therapy enterprise, 

especially in the early phases, which they view as medically and commercially risky 

(discussed in detail elsewhere42,132).

Conclusions

Despite few clinical trials, there are grounds for cautious optimism. Gene therapy as a whole 

is undergoing a resurgence, and several protocols are entering phase III trials. The first gene 

therapy has been approved for clinical use by the European Medicines Agency, joining the 

only other approved gene therapy drug, gendicine, which is used in China to treat cancer of 

the head and neck.

Although the attention of the gene therapy world is focused on Mendelian diseases and 

cancer, applications of the type described in this Review should benefit collaterally as the 

field of gene therapy develops and expands. As noted, one protocol for the restoration of 

articular cartilage has entered phase III trials in Korea32 and four related OA trials in the 

USA and Korea32,38–40 have been completed. At some point, gene therapy should attract 

serious attention from the pharmaceutical industry, especially as there is a huge unmet 

market requirement for ways to restore the injured musculoskeletal system.
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Key points

Gene transfer offers a solution to the problem of being unable to deliver morphogens 

and other regenerative products sustainably to sites of injury

Nascent proteins synthesized locally after gene transfer are likely to have undergone 

authentic post-translational modification and have higher activity than recombinant 

counterparts

Gene transfer can regulate transgene expression and deliver products with an 

intracellular action (for example, transcription factors and noncoding RNAs) or 

proteins that need to be inserted into a membrane (for example, receptors)

Several strategies exist for transferring genes to sites of injury using different viral or 

nonviral vectors in vivo or by ex vivo delivery in conjunction with progenitor or 

differentiated cells

Preclinical progress has been made in cartilage repair, bone healing and the 

regeneration of muscle, intervertebral disc, meniscus, tendon and ligament

A small number of osteoarthritis and cartilage repair clinical trials have taken place
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Figure 1. 
Strategies for gene transfer to defects into sites of musculoskelet al injury. For in vivo gene 

delivery (right), the vector is introduced directly into the site of the lesion, either as a free 

suspension (top right) or incorporated into a GAM (bottom right). For ex vivo delivery (left), 

vectors are not introduced directly into the defect. Instead, they are used for the genetic 

modification of cells, which are subsequently implanted. Traditional ex vivo methods (top 

left) usually involve the establishment of autologous cell cultures, which are genetically 

modified in vitro. Alternatively, an established allograft cell line can be used. Modified cells 

are then introduced into the lesion, often after seeding onto an appropriate scaffold. 

Expedited ex vivo methods (bottom left) avoid the need for cell culture and scaffolds by 

genetically modifying tissues (such as bone marrow, muscle and fat) intraoperatively and 

inserting them into the defect during a single operation. Abbreviation: GAM, gene-activated 

matrix.
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Figure 2. 
Gene transfer to osteochondral defects using genetically modified, clotted, autologous bone 

marrow (gene plugs). Freshly aspirated marrow is mixed with a vector that carries 

appropriate reparative cDNAs, and is allowed to clot in a suitably shaped container. The 

clot , which now contains genetically modified bone marrow cells and bound vector, is 

press-fit into the defect. Expression of the transgenes promotes differentiation of progenit or 

cells within the lesion along the appropriate lineages to regenerate cartilage and subchondral 

bone. Modified from Pascher, A. et al.,18 with permission.
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Figure 3. 
Healing of critical-size femoral defect in the rat using genetically modified muscle graft. 

Skelet al muscle was transduced with adenovirus expressing a marker gene (right) or BMP2 

(left). X-rays were taken after 4 weeks and show bridging in the defect receiving the BMP2 

cDNA, whereas expression of a marker gene did not form new bone. Modified from Evans, 

C.H. et al.,22 with permission.
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