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Abstract

The recent development of high-throughput sequencing technologies calls for powerful statistical 

tests to detect rare genetic variants associated with complex human traits. Sampling related 

individuals in sequencing studies offers advantages over sampling unrelateds only, including 

improved protection against sequencing error, the ability to use imputation to make more efficient 

use of sequence data, and the possibility of power boost due to more observed copies of extremely 

rare alleles among relatives. With related individuals, familial correlation needs to be accounted 

for to ensure correct control over type I error and to improve power. Recognizing the limitations 

of existing rare-variant association tests for family data, we propose MONSTER, a robust rare-

variant association test, which generalizes the SKAT-O method for independent samples. 

MONSTER uses a mixed effects model that accounts for covariates and additive polygenic 

effects. To obtain a powerful test, MONSTER adaptively adjusts to the unknown configuration of 

effects of rare-variant sites. MONSTER also offers an analytical way of assessing p-values, which 

is desirable because permutation is not straightforward to conduct in related samples. In 

simulation studies, we demonstrate that MONSTER effectively accounts for family structure, is 

computationally efficient and compares very favorably, in terms of power, to previously-proposed 

tests that allow related individuals. We apply MONSTER to an analysis of high-density 

lipoprotein cholesterol in the Framingham Heart Study, where we are able to replicate association 

with three genes.
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Introduction

Rapid advances in whole-genome sequencing technologies have opened up new 

opportunities for detecting rare-variant association with complex human traits. Previous 
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studies [Manolio et al., 2009; Eichler et al., 2010] suggest that rare genetic variants could 

account for some of the missing heritability unexplained by genome-wide association 

studies (GWAS). The single-variant tests commonly used in GWAS are underpowered for 

rare variant analysis owing to the low minor allele frequencies (MAF) and extreme 

abundance of rare-variant sites across the genome. To boost power, a standard approach is to 

perform region-based analysis, which involves aggregating information across putative 

causal variants in a predefined genetic region.

In sequencing studies, family samples have several advantages over samples of unrelated 

individuals. Including related individuals allows for more reliable methods to correct for 

sequencing error [Roach et al., 2010; Zhou and Whittemore, 2012]. Pedigree-based samples 

also offer the possibility of accurate imputation to the whole sample using only a small 

number of sequenced individuals [Uricchio et al., 2012]. In addition, the inclusion of 

relatives can potentially improve the power of association detection by allowing the 

observation of multiple copies of extremely rare causal variants, whose effects can be very 

difficult to detect using unrelateds [Kazma and Bailey, 2011].

Most existing methods for rare variant association analysis are appropriate only for 

unrelated individuals. One broad class of such methods [Morgenthaler and Thilly, 2007; Li 

and Leal, 2008; Madsen and Browning 2009; Price et al., 2010], typically referred to as 

“burden tests,” involves collapsing multiple rare-variant sites in a region into a single 

variable, representing a genetic burden score, possibly with weights imposed on individual 

SNPs. Then association is tested between the trait and the burden score. Recent extensions 

of the burden test approach to allow related individuals include famBT [Chen et al., 2013] 

and a similar method of Schaid et al. [2013]. The power of burden tests relies on the effects 

of the pooled variants being mostly in the same direction and of similar magnitude, and 

these methods can suffer great power loss when those assumptions are violated [Li et al., 

2012; Wang et al., 2012]. Another broad class of methods, which could be called “variance 

component tests” includes methods such as C-alpha [Neale et al., 2011] and SKAT [Wu et 

al., 2011] for unrelated individuals, as well as methods that allow related individuals, such 

as famSKAT [Chen et al., 2013] and other similar methods [Schifano et al., 2012; Ionita-

Laza et al., 2013; Schaid et al., 2013]. In contrast to burden tests, variance component tests 

aggregate individual variant statistics measuring strength of association with each site. 

Variance component tests have been shown to be more powerful than burden tests when the 

set of tested variants includes both negatively and positively associated variants as well as 

neutral variants, both in unrelated-only samples [Wu et al., 2011] and in samples with 

related individuals [Chen et al., 2013; Schaid et al., 2013]. However, at least in samples of 

unrelated individuals, burden tests tend to outperform variance component tests like SKAT 

when the proportion of causal variants is relatively high among the tested variants, with the 

variant effects having similar directions and magnitudes [Lee et al., 2012; Wang et al., 

2012].

Because burden tests and variance component tests tend to be powerful in different 

scenarios, and because there is typically a lack of detailed prior knowledge about the genetic 

architecture of the phenotype, it is useful to develop methods that join the strengths of the 

two approaches. SKAT-O is such a method [Lee et al., 2012] for unrelated individuals. 
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SKAT-O can be viewed as trading off between a burden test and a variance component test 

by incorporating a nuisance parameter, whose value is adaptively determined to optimize 

power. As a result, SKAT-O can simultaneously detect the common effect across rare 

variants (as in burden tests) and the individual deviations from the average effect (as in 

variance component tests), with the mixture of the two classes of tests optimally balanced by 

the data itself.

We focus on the problem of rare variant association testing for quantitative traits in samples 

that include related individuals, where the kinship is assumed known. We show by 

simulation that famSKAT and famBT tend to perform well in different scenarios depending 

on the underlying genetic architecture. To achieve robust performance in a wide range of 

circumstances, we propose a new test based on a hierarchical mixed effects model that 

allows covariates, imposes an exchangeable correlation structure on the variant effects, and 

makes use of the kinship matrix to account for familial correlation through an additive 

polygenic component of variance. We call the proposed method MONSTER (Minimum p-

value Optimized Nuisance parameter Score Test Extended to Relatives). MONSTER can be 

viewed as a generalization of SKAT-O to allow relatedness among sampled individuals. The 

MONSTER test statistic is a convex combination of famBT and famSKAT, with the linear 

coefficient adaptively chosen by the data to best fit the unknown genetic architecture. Our 

simulation results show that MONSTER is a powerful and robust method. It automatically 

aligns itself to the more powerful of famBT and famSKAT when the other one fails, and it 

outperforms both tests in many intermediate scenarios. We further illustrate the use of our 

approach by evaluating association between candidate gene regions and high-density 

lipoprotein cholesterol in data from the Framingham Heart Study, where we are able to 

replicate association with three candidate genes.

Methods

A Hierarchical Mixed Effects Model

We consider a quantitative trait measured on n sampled individuals, where the sample is 

permitted to include relatives, assuming that the kinship is known. We consider the problem 

of testing for association of the quantitative trait with a genetic region, e.g. a single gene, an 

exon or a multi-gene region. This genetic region will be referred to as “the genetic region of 

interest.” Within the genetic region of interest, it is assumed that m typed variants have been 

selected to be included in the test, where these variants are permitted to be rare. These m 

typed variants will be referred to as “the set of variant sites to be tested.” The analysis we 

propose is based on a prospective model, in which we condition on the observed genotypes 

at the set of variant sites to be tested as well as on relevant covariates, and we model the 

phenotypic values as random.

The phenotypic values are modeled using a hierarchical Gaussian model with the following 

components. Firstly, the variant sites to be tested are assumed to affect the trait through 

additive random effects, given which the phenotypic values have a multivariate normal 

distribution. Secondly, relevant covariates such as sex, age, and major genes, as well as their 

interactions, may exert additive fixed effects on the trait. Thirdly, closely related individuals 

tend to have correlated phenotypic values because of similar genetic backgrounds. This third 
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component is modeled as an additive polygenic effect with a variance component 

proportional to the kinship matrix, Φ, whose (i, j)th element is 2ϕij, where ϕij is the kinship 

coefficient between individuals i and j for i ≠ j, and where 2ϕii = 1+hi, where hi is the 

inbreeding coefficient of individual i. Finally, an independent error variance component is 

also included to account for measurement error and individual-specific variability.

To present the model formally, we first introduce some notation. Let y = (y1, y2, ···, yn)T be 

the phenotype vector, where yi is the phenotype value of individual i. Let k ≥ 1 denote the 

total number of covariates in the analysis, where this includes an intercept in addition to k – 

1 non-constant covariates. Let X denote the n × k covariate matrix having (i, j)th element 

equal to the value of the jth covariate for individual i, where X includes a column of 1’s for 

the intercept. The n × m genotype matrix G encodes the genotypes at the m tested variant 

sites, where Gij is the number of copies (0, 1, or 2) of the minor allele that individual i has at 

the jth variant site. The phenotypic effects of the m tested variants are given by w1β1, . . . , 

wmβm, where w1, ···, wm are fixed, known, positive weights, and β = (β1, ···, βm)T is a vector 

of (possibly correlated) random effects with zero means and equal variances. The variant 

random effects vector, β, is assumed independent of the polygenic effects and independent 

error. The specification of the fixed weights, w1, . . . , wm, allows the variant effects to 

depend on particular features of the variants. For example, various weighting schemes have 

been proposed [Wu et al., 2012; Madsen and Browning, 2009] in which the weight of a 

variant is some function of its MAF. Another approach is to allow the weight to be 

determined by prior information on function or by annotation information. Uniform 

weighting can be used in the absence of strong prior information.

Putting these elements together, we obtain the following conditional phenotypic model:

(1)

i.e., conditional on β, X and G, y has the multivariate normal distribution with mean vector 

Xγ + GWβ and covariance matrix Σ, where γ is the vector of unknown covariate effects, W is 

a fixed m × m diagonal matrix with ith diagonal element wi, and  are unknown variance 

component parameters corresponding to additive polygenic and environmental effects, 

respectively, and I is an n-dimensional identity matrix. We denote the likelihood for the 

conditional phenotypic model in Equation (1) by

(2)

where the “β” in Lβ denotes that the likelihood is conditional on the value, β, for the variant 

random effects vector.

Additional assumptions on the distribution of the random effects vector β will complete the 

model. We assume that the random effects have mean zero, equal variances  and 

nonnegative pairwise correlation coefficient ρ, or put formally,
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(3)

where Rρ = (1 − ρ)I + ρ11T, ρ and  are unknown parameters, I is an m-dimensional identity 

matrix, and 1 is a column vector of ones of length m. These assumptions are intended as a 

parsimonious way of capturing the heterogeneity among rare-variant effects as well as 

correlation among effects due to, for example, functional similarity. We further assume that 

β = σg ξ, where ξ is a random vector that has zero mean and covariance matrix Rρ and whose 

distribution is free of . This is a regularity condition to ensure that σg is a scale parameter 

for the distribution of β. The likelihood based on the model for y given (X,G) can be written

(4)

where (β) represents the unspecified distribution of the random effects, which is assumed 

to satisfy the conditions of the previous paragraph. The parameters γ, ρ, , and  are 

unknown. Under this model, while the distribution of y given X and G is not necessarily 

multivariate normal, its first two moments can be fully specified as

(5)

MONSTER: A Robust Test Accounting for Family Structure

To detect association between a trait and a genetic region of interest, we test 

against  in the model for y conditional on (X,G) given in Equations (4) and (5). 

(Note that rejection of H0 implies rejection of the closely-related null hypothesis,  in 

the model for y conditional on (X,G, β) given in Equations (1) and (2), because both H0 and 

 lead to the same model for y, namely the multivariate normal model of Equations (1) and 

(2) with β = 0.) We first derive a score test for H0 in the case of fixed ρ, which we call the 

“MONSTER fixed-ρ test.” Then, we describe the MONSTER test, a score test for H0 in 

which an estimated value of ρ is adaptively determined to optimize power.

To derive the MONSTER fixed-ρ score test we take the derivative of the log likelihood 

function  with respect to  and evaluate the derivative at the null 

hypothesis, . Applying Lemma 3 of Goeman et al. [2006] to the L given in 

Equation (4), we obtain

Jiang and McPeek Page 5

Genet Epidemiol. Author manuscript; available in PMC 2015 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(6)

where c(G,W, ρ, Σ) ≡ –trace(RρWGTΣ−1GW)/2 is a term that does not depend on y. To 

obtain our score statistic, we drop the second term, c(G,W, ρ,Σ), because it does not depend 

on y, and we ignore the factor of 1/2 in the first term. The remaining term, (y – 

Xγ)TΣ−1GWRρWGTΣ−1(y – Xγ), is a function of the data, y, as well as of the unknown 

nuisance parameters γ, ρ, , and . The standard approach to dealing with unknown 

nuisance parameters is to plug in their maximum likelihood estimators (MLEs) under the 

null hypothesis. This approach works for γ,  and , because they can be estimated 

consistently under the null hypothesis. However, ρ is not even present in the model under 

the null hypothesis, so we must take a different approach. In the MONSTER fixed-ρ score 

test, we fix ρ to some pre-specified value. To obtain the null MLEs of γ,  and  (and 

hence of Σ, which is a function of  and ), we maximize the multivariate normal 

likelihood function given by Equation (2) with β = 0. Replacing γ and Σ by their null MLEs, 

γ̂
0 and Σ̂

0, we finally obtain the MONSTER fixed-ρ test statistic, given by

(7)

To evaluate the p-value pρ of Tρ, we define

(8)

It follows from consistency of the MLEs that, under the null hypothesis, Tρ is asymptotically 

(as n → ∞) distributed as , where r = rank(ZRρZT ), the λj ’s are the r non-zero 

eigenvalues of the n × n matrix ZRρZT, and the ’s are independent  variables. The p-

value pρ can then be obtained by a moment-matching method proposed by Liu et al. [2009].

For any fixed ρ, one could use Tρ as a valid test statistic to detect association even if ρ were 

incorrectly specified, though one would expect to get higher power with a correct choice of 

ρ. In practice, the true genetic architecture of the trait is generally unknown, so it is not clear 

which ρ would be best to use for the test. It is not possible to plug in a null MLE of ρ (as one 

ordinarily would for nuisance parameters when deriving a score test) because ρ is not 

identifiable under the null hypothesis. To modify the test for known ρ into a test based on an 

optimal ρ chosen adaptively using the data, we take a similar approach to that of Lee et al. 

[2012]. We define the MONSTER test statistic to be the minimum of the p-values, pρ, for 

the fixed-ρ tests:

(9)
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Instead of searching over the whole [0, 1] interval, we can do a grid search across a finite 

number of ρ’s:

(10)

In practice, we use a grid of 11 equally-spaced points: ρ1 = 0, ρ2 = 0.1, · · ·, ρ10 = 0.9, ρ11 = 

1. We assess the p-value of T analytically by adapting the strategy outlined in Section 2.3.1 

of Lee et al. [2012]. The main change we make to their derivation is to use a different 

definition of Z, given in Equation (8), to account for familial correlation.

Note that our derivation of MONSTER does not assume normality of the random effects β. 

Our only assumptions on β are those of Equation (3) and that the distribution of β/σg be free 

of σg. For example, we allow the marginal distribution of a given βi to put positive mass on 

zero even when . We favor this more general framework because it allows a positive 

probability for the highly-likely event that some of the tested variants are noncausal even 

when .

Connections with Existing Methods

We first note that if the n sampled individuals are assumed to be outbred and unrelated, then 

the kinship matrix Φ = I, so Σ ∝ I, and MONSTER reduces to SKAT-O. Thus, MONSTER 

can be considered an extension of SKAT-O to accommodate familial correlation.

Among variance component methods developed for related individuals, famSKAT [Chen et 

al., 2013] and a similar method [Schifano et al., 2012] assume that the random variant 

effects, β1, . . . , βm are mutually independent. As a result, the famSKAT test is equivalent to 

the MONSTER fixed-ρ test of Equation (7) where ρ is set equal to zero. (Note that the W 

matrix defined in Chen et al. [2013] is equal to the square of the W matrix defined in our 

paper.) The famBT method [Chen et al., 2013], which is an extension of the burden test to 

samples with related individuals, is equivalent to the MONSTER fixed-ρ test for ρ = 1. This 

makes sense intuitively because famBT can be thought of as arising from a model in which 

the effects of the m tested variants are modeled as wiβi, 1 ≤ i ≤ m, where β1 = . . . = βm is 

modeled as a single unknown scalar fixed effect, whereas ρ = 1 in the MONSTER model 

would correspond to the case in which the variant random effects also satisfy β1 = . . . = βm. 

The exact formula for the famBT test statistic was not stated in Chen et al. [2013]. For the 

sake of this discussion, we define it here to be

(11)

where 1 is a vector of length m with every element equal to 1. Then the MONSTER fixed-ρ 

test statistic can be written as

(12)
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a convex combination of the famSKAT and famBT statistics with respective coefficients 1 – 

ρ and ρ. Including the extra parameter ρ allows MONSTER to adaptively balance between 

famSKAT and famBT in order to achieve robustness for a wide range of possible genetic 

architecture of the trait.

Role of the Parameter ρ

Any power gain for MONSTER over famSKAT and famBT would presumably be due to the 

optimization over the nuisance parameter ρ. Intuitively, if the optimal ρ chosen by 

MONSTER were 0 in a particular scenario, then one would expect to have approximately 

the same power for MONSTER as for famSKAT, but slightly less for MONSTER because it 

effectively pays a small price in power for having estimated ρ (analogous to using an extra 

degree of freedom). Similarly, if the optimal ρ chosen by MONSTER were 1 in a particular 

scenario, then one would expect MONSTER to have approximately the same power as 

famBT, but slightly less. In this way, MONSTER could have a power gain over both 

methods, when considered across scenarios, simply by doing almost as well as the better of 

the two methods in every scenario. However, there may also be many scenarios in which 

MONSTER has more power than both famSKAT and famBT, and we might expect this to 

occur in situations in which the optimal ρ chosen by MONSTER is strictly between 0 and 1. 

These properties are demonstrated in the simulations (see Results).

Results

Simulation Studies

We perform simulation studies to assess the type I error rate of MONSTER and to compare 

its power to that of famSKAT and famBT. We consider 100 outbred, three-generation 

pedigrees each with 16 individuals, related as in Figure 1. Tested rare-variant sites (m = 10 

or 50) are simulated with MAFs sampled independently from a uniform distribution on the 

interval from 0.005 to 0.05. Conditional on the MAFs, the founder alleles are sampled 

independently across alleles and across variants, and haplotypes are then dropped down the 

pedigree assuming no recombination. Simulated datasets in which not all m sites are 

polymorphic are rejected. In some simulation scenarios, we include in the trait model two 

major causal genes that are unlinked with each other and with the rare-variant sites, where 

both of the major causal genes have MAF 0.3. These genes are intended to model other 

unknown genetic associations and are considered to be unobserved in the analysis. With the 

presence of major causal genes, the true model deviates from what is assumed by the 

derivation of MONSTER.

Given the genotypes, we simulate the trait values using the model

(13)

where M1 and M2 are genotype vectors for the two unobserved major genes coded as 0, 1 or 

2, η1 and η2 are their effects on the trait, G is the genotype matrix at the m tested rare-variant 

sites, and β is a vector of fixed effects. Note that, in every model considered, some of the 

tested rare variants are non-causal. The ith tested variant being non-causal corresponds to βi 

Jiang and McPeek Page 8

Genet Epidemiol. Author manuscript; available in PMC 2015 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 0 in the simulation model. The various choices of β, η1 and η2 used in the simulations are 

detailed in the following 2 subsections. We set . In each pedigree, age is a 

continuous covariate uniformly sampled within 1.5 years around the following mean values 

for individuals 1 through 16, respectively: 75, 73, 46, 46, 43, 43, 40, 40, 18, 21, 15, 17, 13, 

15, 12 and 9. In the analysis of the simulated data, for all 3 tests (MONSTER, famSKAT 

and famBT), we calculate the test statistics using both uniform weights (i.e.  for i = 1, · 

· ·,m) and Wu weights [Wu et al., 2011].

Assessment of Type I Error

In our type I error assessments, the phenotype is simulated under two different trait models, 

Models I and II. Model I, which has covariates, additive polygenic effects and independent 

noise, is given by Equation (13) with β = 0 and η1 = η2 = 0. Model II is similar to Model I 

with the addition of two major causal genes with effects η1 = η2 = 0.27. In each case, either 

10 or 50 non-causal rare variant sites are simulated and are tested jointly. When Model II is 

used, the two major genes are assumed to be unobserved, so they are not included as 

covariates in the MONSTER analysis. For each scenario, 100,000 replicates are performed.

Table 1 gives the empirical type I error rates of MONSTER with nominal levels .05 and .

001 for all four scenarios, where uniform weights are used. The type I error is not 

significantly different from the nominal using the z-test at level .01 (or using the z-test at 

level .05 with Bonferroni correction). Similar results were obtained using Wu weights (not 

shown). These results verify that MONSTER is correctly calibrated and suggest that the type 

I error rate is robust against deviation from the assumed null model caused by additional 

unobserved causal genes.

Power Simulations

To compare the power of MONSTER, famSKAT and famBT, we fix the proportion of 

phenotypic variance attributable to the tested region and consider 6 configurations for the 

effects of the 50 tested rare-variant sites. These six configurations are listed as Models III-

VIII in Table 2. Phenotypes are simulated according to Equation (13) with η1 = η2 = 0.27, 

corresponding to two unobserved major causal genes unlinked to the tested rare variants. 

Empirical power results for MONSTER, famSKAT and famBT at significance levels 10−4 

and 10−3, based on 10,000 replicates, with uniform weights, are given in Figure 2. The 

power comparison was also performed with Wu weights instead of uniform weights, with 

qualitatively similar results (not shown). In each of Models III to V, some fraction of the 

variants are causal, and among the causal variants, all effects are in the same direction and 

are of equal magnitude. When the percentage of causal variants is low (Model III), 

MONSTER and famSKAT are approximately equally powerful, and are both more powerful 

than famBT. As the genetic effect attributable to the region (held fixed) is equally 

partitioned among a larger proportion of the tested variants (Models IV and V), famSKAT 

loses power, and the power of famBT gradually improves. In contrast, MONSTER is 

consistently the most powerful or has power approximately equal to the most powerful of all 

the tests in all three scenarios. In model VI, the causal variants have effects in opposite 

directions, rendering famBT powerless. In this scenario, famSKAT performs best but 

MONSTER also does well. In Models VII and VIII, 40% of the tested sites are causal with 
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positive effects that can vary in size. In Model VII, the positive effects can take on two 

different values, while in Model VIII, every positive effect has a different value, where these 

are drawn from a uniform distribution. In both Models VII and VIII, MONSTER performs 

better than both famSKAT and famBT. Overall, MONSTER not only achieves robustness 

under a range of trait models, when one of famSKAT and famBT might fail, but, in addition, 

MONSTER actually outperforms the more powerful of famSKAT and famBT in many 

cases.

From the simulation results, we can obtain some insight about the role of the parameter ρ in 

MONSTER. Figure 3 panels A-F show histograms of ρ̂, the value of ρ selected as optimal by 

MONSTER, for the simulations from Models III–VIII, respectively. Figure 3 panels A and 

D show that for Models III and VI, the ρ̂ chosen by MONSTER was usually 0. This is 

consistent with the power results in Figure 2 panels A and D, in which famSKAT (which is 

equivalent to the fixed-ρ MONSTER test with ρ = 0) has much higher power than famBT (ρ 

= 1), with the power of MONSTER approximately the same or slightly less than the power 

of famSKAT, because of the small price paid for estimating ρ. In contrast, Figure 3 panels 

B, C, E, and F show that for Models IV, V, VII and VIII, the ρ̂ chosen by MONSTER was 

usually some value strictly between 0 and 1. For scenarios in which ρ̂ is strictly between 0 

and 1, it seems intuitively plausible that MONSTER could have the highest power of the 3 

statistics, and, indeed, it does for Models IV, VII and VIII, while for Model V MONSTER 

seems to have equivalent power to that of famBT.

It is interesting to note that ρ̂ = 1 was not chosen very often by MONSTER in any of the 

settings, even in Model V when famBT has equivalent power to that of MONSTER. Upon 

further experimentation, we found that if we increased the proportion of causal variants to 

96% with effects in the same direction and of the same magnitude, then ρ̂ = 1 was the most 

frequently chosen value. In that case, as would be expected, famBT is more powerful than 

famSKAT, and the power of MONSTER is slightly lower than that of famBT. (We chose 

not to include this setting in Figure 2 because a proportion of causal variants of 96% seems 

hopelessly unrealistic.)

We also tried repeating the power studies with ρ optimized over a grid of 50 equally-spaced 

points on [0,1] instead of the grid of 11 equally-spaced points used for the results in Figures 

2 and 3. The results change very little: the relative power change for MONSTER is 

uniformly within 5% across Models III to VIII. Furthermore, the empirical power based on 

the higher grid density is neither consistently higher nor consistently lower than that based 

on the lower grid density. This suggests that, at least in the context of our simulation, a 

denser search of ρ is not expected to improve the performance of the method.

Figure 4 shows the histogram of ρ̂ under the null hypothesis. In fact, under the null 

hypothesis, ρ is not identifiable, and in such a situation of low or no information in the data 

on a parameter, it is not surprising that MONSTER ends up choosing ρ̂ on the boundary of 

the parameter space, i.e. at 0 or 1, because there would tend to be very little difference 

among the different choices of ρ, so the algorithm would usually just drift to one end or the 

other of the parameter space. In order for MONSTER to prefer a ρ̂ strictly between 0 and 1, 

there may need to be sufficient “signal” in the data to provide information on ρ. Considered 
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together, the results support the intuition that MONSTER can maintain high power across 

scenarios by either mimicking the power results of the better-performing of famSKAT and 

famBT in any given scenario (as in Models III and VI) or by outperforming both of them in 

some cases when ρ̂ is strictly between 0 and 1 (as in Models IV, VII and VIII).

Analysis of HDL-C Data from the Framingham Heart Study

We illustrate our approach using genotype data from the Framingham Heart Study (FHS) 

[Splansky et al., 2007] to investigate association with high-density lipoprotein cholesterol 

(HDL-C). FHS is a multi-cohort study of risk factors for cardiovascular disease, and the 

sample consists of unrelated individuals as well as individuals from multi-generation 

pedigrees. We focus on HDL-C levels in Exam 1 of Cohort 3 (third-generation cohort) of 

FHS. We adjust the log-transformed phenotype by age, age2, sex, and log(FPG), where FPG 

is fasting plasma glucose. We analyze Affymetrix 500K genotype data on the third-

generation cohort. We exclude from the analysis individuals who have empirical self-

kinship > .525 (i.e. empirical inbreeding coefficient > .05) or whose completeness 

(proportion of sites for which genotype is called) ≤ 96%. In addition, we exclude a few more 

individuals whose empirical kinship values appear to be inconsistent with the pedigree 

information. Among the remaining individuals, we analyze the 3879 individuals who are 

both genotyped and phenotyped with no missing covariates.

We assess association with genetic variants in 14 candidate gene regions that have 

previously been associated or functionally linked to HDL-C (as reported in OMIM): 

APOA2, HADHA, HADHB, VNN1, EDN1, LPL, ABCA1, TTC39B, APOA1, SCARB1, LIPC, 

CETP, LIPG and PLTP. For each candidate gene region, we first extract all polymorphic 

sites that are on the Affymetrix 500K chip and are within 100 kb of the gene. We exclude 

sites that do not meet both of the following criteria: (1) call rate > 90% and (2) value of the 

Hardy-Weinberg χ2 statistic < 100 (where this calculation assumes independent samples). 

We then drop from the analysis any individuals with missing genotypes at more than 10% of 

the remaining variants in the region. For the remaining individuals, we impute any missing 

genotypes using the best linear unbiased predictor [McPeek 2012].

Table 3 reports the 5 candidate gene regions out of 14 for which at least one of the three 

tests (MONSTER, famSKAT and famBT) gives a p-value < 10−2, where uniform weights 

are used for all 3 tests. The 3 candidate genes with the smallest p-values, CETP, LPL, and 

LIPG, have been previously reported and replicated [Willer et al., 2008; Kathiresan et al., 

2008; Aulchenko et al., 2009; Kathiresan et al., 2009]. We observe that, for 4 of the 5 

candidate genes included in Table 3, famSKAT yields a smaller p-value than famBT, and 

MONSTER selects an optimal ρ that is zero. In that case, MONSTER would be expected to 

have a p-value similar to that of famSKAT but slightly larger, which is indeed the case. In 

addition to analyzing the data with uniform weights, we also tried using Wu weights to 

upweight the rarer variants, which resulted in substantially larger p-values for all tested 

regions by all methods (results not shown). These two observations, that the optimal ρ is 

usually 0 in these data and that upweighting the rarer variants results in larger p-values, 

might simply reflect the genetic architecture of these particular regions, but it might also be 

explained in part by the fact that these are Affymetrix 500K data, as opposed to sequence 
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data. In the Affymetrix 500K data, the typed variants in each gene region are not rare, and 

so, a priori, are less likely to be causal, according to standard evolutionary theory [Kryukov 

et al., 2007]. Second, because of the limited number of typed markers within any given 

gene, we also consider all typed markers within 100 kb of each gene. Thus, our set of 

variants to be tested includes SNPs in exons as well as many possibly less relevant SNPs in 

untranslated segments and intergenic regions. Sequence data, on the other hand, would be 

more enriched for rare variants, which are more likely to be causal. Furthermore, taking 

advantage of the larger number of variants available in sequence data, one might be able to 

increase power by restricting consideration to nonsynonymous variants or functional sites 

predicted by bioinformatic tools, yielding an increased fraction of causal sites. Based on the 

simulation results, we would expect a higher proportion of causal variants in the data to lead 

to optimal ρ > 0 occurring more frequently. Upweighting of rarer variants might also be 

more effective when the data are more enriched for causal variants.

It is of interest to compare the results of the multi-site tests (MONSTER, famSKAT and 

famBT) to single-SNP results for the same regions. To do this, we apply MASTOR 

[Jakobsdottir and McPeek, 2013], a recently-proposed method to test for single-SNP 

association with quantitative traits in samples with related individuals. The MASTOR 

analysis includes additive and environmental components of variance and the same 

covariates, same SNPs, and same set of individuals as the multi-site analyses. MASTOR can 

handle incomplete data, so we input only the observed genotyped data, not the imputed 

values. MASTOR uses the observed genotype data to provide information on the 

ungenotyped relatives (see Jakobsdottir and McPeek [2013] for details). For each region, 

Table 4 gives the minimum p-value obtained by MASTOR as well as the Bonferroni-

corrected p-value. For all 5 candidate genes except CETP, the p-values of MONSTER and 

famSKAT are smaller than the Bonferroni-corrected p-value of MASTOR. For LIPG, even 

the minimum p-value from MASTOR is greater than the multi-site p-values of MONSTER 

and famSKAT. To better understand these results, we examine in more detail the association 

signals of individuals SNPs for these genes. For LIPG, of 49 tested SNPs, the 9 SNPs that 

have p-value < .001 are spread across multiple linkage disequilibrium blocks and have 

comparable p-values. In that case, it is reasonable to expect that a multi-site test would gain 

an advantage over a single-site test by aggregating information across sites to boost power. 

In contrast, the association signal at CETP is dominated by a single SNP, rs9989419 (p = 1.6 

× 10−8), with two much more weakly-associated SNPs (p = 5.5 × 10−4 and p = 6.9 × 10−3), 

and with all other SNPs having p-value > 0.01. When most of the association signal is 

attributable to a single SNP, it is reasonable to expect a single-SNP test to outperform multi-

site tests.

Computation Time

The main computational burden of MONSTER comes from the eigenvalue decomposition of 

the kinship matrix, which is needed for calculation of the p-value. When the sample consists 

of multiple independent families, the block-diagonal structure of the kinship matrix allows 

the decomposition to be performed separately for each family, which can substantially 

reduce the computation time. The eigenvalue decomposition generally needs to be 

performed only once for each tested region. Furthermore, if the tests corresponding to 
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different regions are all based on the same set of typed individuals (i.e., the set of individuals 

with missing data does not vary across regions), then the decomposition need only be 

performed once overall, with the same decomposition results used for every region.

We implement MONSTER in a freely-downloadable software package that uses the above-

described speed-ups when appropriate. We give some example run times of MONSTER for 

analysis of the FHS HDL-C data discussed in the previous subsection. This data set contains 

3879 individuals from 768 families that range in size from 1 to 174 individuals. Using a 

single processor on a shared machine with 4 core Intel Xeon 3.16GHz CPUs and 32GB 

RAM, MONSTER took 2.1 seconds to analyze a genetic region of 50 variants. Doubling the 

number of tested variants in the region to 100 only increased the run time to 2.6 seconds. 

Extrapolating to an analysis of 20,000 different gene regions with 100 variants included in 

each test, and assuming that different regions had different sets of individuals in their tests 

(so that the eigen-decomposition would have to be calculated separately for every region), 

MONSTER would require approximately 14.4 hours for the entire analysis. This time would 

be substantially reduced if the same set of individuals were included in all tests. These 

results demonstrate that MONSTER is computationally feasible for large-scale studies.

Discussion

The presence of related individuals in high-throughput sequencing studies is common and 

can yield advantages such as (i) enhanced ability to detect sequencing error, (ii) more 

efficient use of available data through accurate imputation of relatives’ sequence data, and 

(iii) the opportunity to observe multiple copies of very rare variants, which can improve 

power to detect association. We have developed MONSTER, a method for detecting 

association between a set of rare variants and a quantitative trait in samples that contain 

related individuals. MONSTER is based on a mixed-effects model that includes additive and 

environmental components of variance and adjustment for covariates. It can handle 

essentially arbitrary combinations of related and unrelated individuals, including small 

outbred pedigrees and unrelated individuals, as well as large, complex inbred pedigrees. In 

simulation studies, we demonstrate that MONSTER is a powerful and robust approach that 

performs well in a wide range of scenarios. We illustrate the use of MONSTER with an 

application to candidate gene association analysis of HDL-C in the FHS, in which we 

replicate association with 3 genes.

MONSTER can be viewed as an extension of the SKAT-O method to samples with related 

individuals. The MONSTER test statistic is also shown to be a convex combination of the 

famSKAT and famBT test statistics, with an adaptively-determined parameter, ρ, that 

controls the relative weights of the two statistics. The famSKAT and famBT tests tend to be 

powerful in different scenarios. FamBT tends to have higher power than famSKAT when a 

large fraction of tested variants are causal with effects in the same direction, while the 

reverse tends to be true when (i) the fraction of tested variants that are causal is low, (ii) 

there is a mixture of protective and deleterious variants or (iii) effect sizes vary substantially 

across tested variants. In a given simulation scenario, MONSTER tends to either mimic the 

performance of the better-performing of famSKAT and famBT (with optimal ρ chosen as 

either 0 or 1) or to outperform both statistics, which can happen when the optimal ρ is 
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chosen strictly between 0 and 1. This robustness of power to the underlying modeling 

assumptions can be very desirable in practice, as the true biological mechanism and genetic 

architecture is usually unknown a priori and can be expected to vary across genes and traits.

In the simulations and data analysis, we apply MONSTER with the nuisance parameter ρ 

optimized over a grid of 11 values in [0,1]. In the simulations, we found that searching over 

a denser grid of 50 values did not improve the performance. The effect of grid density is 

presumably related to the amount of information the data contain about the nuisance 

parameter ρ, which is in turn related to sample size. Larger samples tend to offer more 

information on ρ, resulting in a more concentrated distribution of the chosen ρ̂ value. When 

using MONSTER on small samples, one might consider optimizing ρ over a coarser grid on 

[0, 1] to reduce the price paid by estimating ρ. This is advantageous compared to simply 

using either famSKAT or famBT, because it is usually unclear a priori which of them would 

be more powerful, and because an intermediate ρ value could potentially improve power. 

For larger samples, one could in principle search over a denser grid of ρ, though in the 

context of our simulations, increasing the density of the grid does not seem to yield a power 

gain.

MONSTER assumes known pedigree information, or at least, known kinship. It would be 

possible to extend the method to allow for (i) additional population structure or kinship 

beyond that explained by the known pedigree information or (ii) completely unknown 

kinship. To extend MONSTER to allow (ii), we could replace the pedigree-based kinship 

matrix Φ with an empirical kinship matrix, Φ calculated based on genome-wide data, as is 

done in, for example, ROADTRIPS [Thornton and McPeek, 2010] or EMMAX [Kang et al., 

2010]. A simple approach to allow (i) would be to use the modeling assumption

(14)

with the additional unknown variance component, , included to account for population 

structure or kinship beyond that explained by the known pedigree information (R. Cheng, C. 

C. Parker, M. Abney, A. A. Palmer, personal communication). Another method to control 

for population stratification would be to include, as covariates, ancestry proportions for the 

individuals, which can be estimated using existing software packages [Tang et al., 2005; 

Alexander et al., 2009].

In addition to an additive polygenic variance component, it may sometimes be useful to 

include a dominance variance component, . This could be done by changing the model for 

the conditional variance of the trait to

(15)

where Δ7 is a matrix whose (i, j)th component, , is the 7th condensed identity coefficient 

between individuals i and j [Abney et al., 2000]. When i and j are outbred,  is the 

probability that i and j share two alleles identical by descent. For inclusion of a dominance 
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variance component to provide additional power, it would presumably be necessary that (i) 

the trait have a strong dominance component and that (ii) the composition of the sample be 

such that many pairs of the sampled individuals would have a nonnegligible probability of 

sharing two alleles identical by descent (e.g., MZ twins, sib pairs, and double first cousins).

MONSTER imposes a common correlation coefficient ρ for the random effects of all pairs 

of tested variants. This is a reasonable choice when there is little prior functionality 

information on the variants. If additional relevant prior information were available, 

MONSTER could be extended to allow for a different correlation structure among the 

variant effects. For example, a pair of variants that code the same protein domain could be 

given a larger correlation coefficient than a pair that do not. Additional nuisance parameters 

could also be included in the correlation matrix to reflect a more structured relationship 

among the tested sites.
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Figure 1. 
Pedigree structure for the simulation studies
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Figure 2. 
Empirical power of MONSTER, famSKAT and famBT. Empirical power is based on 10,000 

replicates for each of the six configurations of rare variant effects listed in Table 2. Standard 

deviations are given in parentheses.
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Figure 3. 
Histograms of the optimal ρ selected by MONSTER for various simulation models. Panels 

A–F show the empirical distribution of the optimal ρ selected by MONSTER for Models 

III–VIII, respectively, where these models are given in Table 2. Each histogram is based on 

10,000 replicates, and the optimal ρ is selected from {0, 0.1, …, 0.9, 1}.
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Figure 4. 
Histogram of optimal ρ selected by MONSTER when there is no association, based on 

100,000 replicates. Simulations are based Model II with 50 tested rare variants. The optimal 

ρ is selected from {0, 0.1, …, 0.9, 1}.
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Table 1

Empirical Type I Error of MONSTER

# Rare Variants in Test Trait Model

Empirical Type I Error (SE) with Nominal Type I Error of

.05 .001

50 I .048 (.0007) .00097 (.00010)

10 I .049 (.0007) .00097 (.00010)

50 II .049 (.0007) .00095 (.00010)

10 II .049 (.0007) .0011 (.00010)

Note. — Empirical type I error rates are calculated based on 100,000 replicates. None of the empirical type I error rates is significantly different 
from the nominal level by a z-test at level .01. Trait models I and II are described in subsection Assessment of Type I Error in Results.
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Table 2

Rare-variant Effect Configurations in Power Simulations

Model
%age of Rare Variantsa with Positive/

Negative/Neutral Effects Effect Magnitudes of Causal Variantsb

III 20%/0/80% All positive with |β| = 0.2828

IV 40%/0/60% All positive with |β| = 0.2

V 60%/0/40% All positive |β| = 0.1633

VI 20%/20%/60% Half positive and half negative with |β| = 0.2

VII 40%/0/60% All positive, half with |β| = 0.24 and half with |β| = 0.15

VIII 40%/0/60% Effect sizes drawn i.i.d. from a uniform distribution on the interval from 0.15 to 0.2461

Note.

a
The total number of rare variants is 50 in all models.

b
Effect sizes are determined so that approximately 1.86% of the phenotypic variance is explained by the rare variants being tested.
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Table 4

Single-Site Association Results for HDL-C with SNPS in 5 Candidate Gene Regions in the Framingham Heart 

Study Data

Gene Minimum P-value P-value after Bonferroni Correction Most Significant SNP

LPL 1.4 × 10−6 6.8 × 10−5 rs17489282

APOA1 9.0 × 10−4 2.9 × 10−2 rs17440396

LIPC 2.5 × 10−3 2.6 × 10−1 rs4775041

CETP 1.6 × 10−8 6.6 × 10−7 rs9989419

LIPG 1.4 × 10−5 7.0 × 10−4 rs7240405

Note. — P-values are based on the single-variant association test, MASTOR [Jakobsdottir and McPeek, 2013]. P-values in bold are those that are < 

10−3.
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