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Abstract
The complement system has been increasingly recognized to play a pivotal role in a variety

of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the

classical, lectin and alternative pathways of the complement system are currently in pre-

clinical and clinical development. Our laboratory has identified a peptide that specifically

inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibi-

tor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant dem-

onstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway.

Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the

ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via

binding to the collagen-like tails of these collectin molecules. We further analyzed the effect

of arginine and glutamic acid residue substitution on the complement inhibitory activity

of our lead derivative in a hemolytic assay and found that the original sequence demon-

strated superior inhibitory activity. To improve upon the solubility of the lead derivative, a

pegylated, water soluble variant was developed, structurally characterized and demon-

strated to inhibit complement activation in mouse plasma, as well as rat, non-human primate

and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhib-

ited complement activation in the blood by 90% after 30 seconds, demonstrating extremely

rapid function. Additionally, no adverse toxicological effects were observed in limited test-

ing. Together these results show that PIC1 rapidly inhibits classical complement activation

in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in

animal models of classical complement-mediated diseases.
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Introduction
The human complement system is an essential component of human inflammatory responses
and innate immunity. Complement also plays a central role in adaptive immunity and homeo-
stasis (reviewed in [1]). The complement system consists of three distinct pathways: the classi-
cal, lectin and alternative pathways (reviewed in [2]). C1q and mannose binding lectin (MBL)
are structurally related initiator molecules of the classical and lectin pathways, respectively.
Whereas the ligands for C1q are IgM and clustered IgG, MBL specifically recognizes and is
activated by mannan polysaccharide. Activation of C1q and MBL results in the sequential acti-
vation of C4 and C2 forming the classical and lectin pathway C3 convertase (C4bC2a). In con-
trast to the classical and lectin pathways, the alternative pathway does not require a recognition
molecule, and is the key pathway for complement cascade amplification. Classical, lectin and
alternative pathway activation produces inflammatory mediators (C3a, C5a) and the mem-
brane attack complex (MAC) which results in cellular lysis. Dysregulated control of the com-
plement system is the cause of many autoimmune and inflammatory human diseases [3],
including antibody-initiated, complement-mediated disorders such as cold-agglutinin disease
[4], acute intravascular hemolytic transfusion reaction [5] and acute/hyperacute transplanta-
tion reaction [6], in addition to others.

Our research group has previously demonstrated that the coat protein (CP) of human astro-
virus type 1 binds C1q and MBL inhibiting activation of the classical and lectin pathways of
complement, respectively, and downstream complement effector function [7, 8]. By binding
C1q, CP displaces the serine protease complex (C1s-C1r-C1r-C1s) that is normally bound to
the collagen-like tails (CLR) of C1q and thus prevents C1s cleavage [8]. Analogously, CP was
also found to bind the region of the CLR of MBL which interacts with the MASP-1 and MASP-
2 binding site on this molecule [8]. The C1q/MBL binding region of the astrovirus CP was sub-
sequently narrowed to a 15 amino-acid peptide [9] which underwent extensive modification to
yield the 15 amino-acid derivative Polar Assortant (PA): IALILEPICCQERAA [10]. We refer
to this family of inhibitory peptides as Peptide Inhibitors of Complement C1 (PIC1) (reviewed
in [11]). PA exhibited superior activity as assessed by hemolytic assays with factor B-depleted
human serum and inhibition of human erythrocyte lysis in an ABO incompatibility hemolytic
assay [10]. Additionally, as proof-of-concept of the potential of this peptide to inhibit comple-
ment activation in vivo, PA was demonstrated to cross the species barrier and inhibit comple-
ment activation in Wistar rats [10]. While PA was able to significantly reduce complement
activation in vivo, the relative insolubility of the peptide limited further pharmacodynamic test-
ing in rats.

In the current study, we characterize the biochemical properties of the PA peptide and its
ability to bind C1q, MBL and ficolins. A fully water soluble pegylated PA peptide was demon-
strated to inhibit hemolysis in mouse plasma, as well as rat and non-human primate serum.
Preliminary structural characterization of this lead derivative was undertaken and its ability to
dose-dependently inhibit complement activation in Wistar rats after intravenous injection is
reported.

Material and Methods

Ethics statement
Human blood was obtained from healthy volunteers for the generation of serum used in these
studies, per the Eastern Virginia Medical School IRB protocol 02-06-EX-0216. Study partici-
pants provided written informed consent. Collection of monkey, rat, and mouse blood for the
generation of serum or plasma was performed under approved protocols by the Eastern
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Virginia Medical School Institutional Animal Care and Use Committee and were conducted in
accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory
Animals. All procedures were performed under anesthesia and all efforts were made to mini-
mize suffering. While under sedation, rats were kept on a heating pad and monitored every 15
minutes using a pulse oximeter to check heart rate and percent oxygen saturation. Respiration
and behavior were visually monitored. Adult cynomolgus macaques (Macaca fascicularis) were
used for this study. All monkey protocols and procedures were approved by the Institutional
Animal Care and Use Committee and were conducted in accordance with the NIH Guide for
the Care and Use of Laboratory Animals. Monkeys were maintained at EVMS in a USDA and
AAALAC-accredited facility in a 12h light/12h dark environment and fed a diet of standard
monkey chow supplemented daily with fresh fruits and vegetables. Monkeys were socially-
housed, had access to a variety of manipulatable objects, and received audio/visual stimulation
daily. Monkey blood samples were obtained by femoral venipuncture under ketamine chemical
restraint (10mg/kg body weight, IM). For this study, the collection of human and animal blood
was specifically approved by the EVMS IRB and IACUC, respectively.

Serum, plasma, purified proteins, peptides, and sheep erythrocytes
Normal human serum (NHS) was prepared as described previously [12]. Non-human primate
(NHP) serum was prepared from cynomolgus macaques blood collected as previously
described [13] and allowed to clot at room temperature for 1h and then cooled on ice for 2h.
Samples were centrifuged and serum was collected as the supernatant. Mouse plasma from
four BKS.Cg-Dock7^m+/+Lepr^d8/J control mice (Jackson labs) was generously donated by
Dr. Anca Dobrian, EVMS. Mice were euthanized using CO2 asphyxia and blood was collected
into 1mL heparinized tubes immediately following euthanasia by intracardiac puncture.
Plasma was separated by centrifugation at 250×g, for 30min at 4°C. Rat plasma was separated
from rat blood, collected from intrajugular catheterized male Wistar rats (Harlan) into EDTA-
coated tubes, followed by centrifugation at 4°C; the supernatant was saved as plasma. Commer-
cial Wistar rat serum (complement sufficient) was purchased from Innovative Research, Inc.
Serum and plasma were stored at -80°C. Lyophilized peptides at�90% purity were obtained
from New England Peptide (NEP). Purified complement proteins and human factor-B
depleted serum were purchased from CompTech. Sheep erythrocytes and anti-sheep erythro-
cyte-IgM were purchased fromMP Biomedicals, LLC and Rockland, Inc., respectively. Anti-
body-sensitized sheep erythrocytes (EA) were prepared as described previously (7).

Buffers
GVBS-EDTA (veronal buffered saline with 0.1% gelatin and 0.01M EDTA), GVBS++ (veronal
buffered saline with 0.1% gelatin, 0.15mM CaCl2 and 1mMMgCl2).

C1q binding to immobilized PA
Acetylated PA (AcPA), which behaves identically to PA (7), was adsorbed to wells of Nunc
MaxiSorp plates at 2.5μM in 50μL of carbonate buffer (0.06M Na2CO3, 0.36M NaHCO3, pH
9.6) overnight at 4°C. Wells were washed with PBS containing 0.05% Tween (PBST) then
blocked with 3% BSA/PBST for 2h at room temperature. Purified C1q (1μg) was added to wells
containing 50mMHEPES (pH 7.0) and various concentrations of NaCl and incubated for 1h
at room temperature. C1q binding was assessed using a 1:1000 dilution of goat anti-C1q IgG
(CompTech) for 1h followed by a 1:1000 dilution of donkey anti-goat HRP IgG (Santa Cruz
Biotechnology, Inc.) for 1h, developed with TMB substrate (Thermo Scientific), stopped with
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1N H2SO4, and read at 450nm in a spectrophotometer. Absorbance values from control wells
not containing C1q or additional salt were subtracted as background.

Cross-linking of biotinylated PA to C1q
Purified C1q and biotinylated PA, at a ratio of 1:25, were incubated in conjugation buffer
(0.1M Na2HPO4, 0.15M NaCl, pH 8.0) at room temperature for 2.5h. The crosslinker BS3 (Bis
(sulfosuccinimidlyl) suberate, Pierce) was added to a final concentration of 20μM and the mix-
ture was incubated for 30 min. The reaction was quenched with 1M Tris-HCl (pH 7.5) to a
final concentration of 50μM for 15 min. Reactions were analyzed via SDS-PAGE (NU-PAGE
Bis/Tris 4–12% gradient gel) and western blot using a 1:1500 dilution of streptavidin IR 680
(LiCor) for 1h, 1:2000 dilution of goat anti-C1q IgG (CompTech) for 1h and 1:10,000 dilution
of donkey anti-goat IgG IR 800 (Licor) for 1h. Gels were analyzed on an Odyssey Infrared
Imaging System (Licor) and identical gels were visualized with bio-safe Coomassie stain (Bio-
Rad) to confirm total protein content.

C1q CLR (collagen-like region) generation
Purified C1q in 0.1M NaOAc buffer (pH 4.4), was digested with freshly made porcine pepsin
(Sigma) at a ratio of 1:3 for 20h at 37°C. The digestion was stopped by the addition of 1M Tris
(pH 9.0) to a final concentration of 45mM. CLR was purified using 100k and 50k MWCO cen-
trifugation filters (Amicon). Samples were assessed by Coomassie-stained 15% SDS-PAGE,
under reducing conditions, with purified C1q as a control to confirm CLR presence.

Surface plasmon resonance (SPR)
AcPA binding to C1q CLR was performed at room temperature using a BI-3000 (Biosensing,
USA) with SPR Control 2.4.2. C1q CLR was diluted to 134.4nM in 10mM formic acid (pH 3.0)
and approximately 4,200 RU immobilized on a dextran-coated sensor chip (Biosensing, USA)
using amine-coupling chemistry in PBS (pH 7.2–7.4). AcPA was diluted to 98, 196, 294 and
392 μM in PBS (pH 7.2–7.4) and binding was measured at a flow rate of 30μl/min in PBS (pH
7.2–7.4). The binding signal was obtained by subtracting background signal generated from an
activated then inactivated blank reference channel. Regeneration of the sensor surface was
achieved by injection of 10mMNaOH. Data analysis was conducted using SPR Data Analysis
2.4.2 and Kinetic Analysis 2.0.0.3 software (Biosensing, USA) by global fitting into a 1:1 Lang-
muir binding model. Equilibrium dissociation constant (KD) was calculated from the ratio of
dissociation and association rate constants (koff/kon). Data was derived from two or more
experiments.

MBL binding to PA
AcPA and the control peptide CP2 [9] were immobilized to a microtiter plate, as described
above, at 25nM. Plates were blocked with 3% BSA/PBST for 2h. Recombinant MBL and K55Q
MBL [8,14] were added (5μg/mL in blocking buffer in a total volume of 75μL) and incubated
for 1h at room temperature. MBL binding was assessed using a dilution of 1:1000 goat anti-
MBL serum (a kind gift from Dr. Neeno Rawal, CompTech) for 1h and a 1:2000 dilution of
donkey anti-goat HRP IgG (Santa Cruz Biotechnology, Inc.) for 1h, developed with TMB sub-
strate (Thermo Scientific), stopped with 1N H2SO4, and read at 450nm in a spectrophotometer.
Absorbance values from control wells not incubated with MBL were subtracted as background.
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PA binding to ficolins
Wild-type recombinant ficolins L (ficolin-2), H (ficolin-3), M (ficolin-1) [14, 15] were
adsorbed to a microtiter plate at 10μg/mL. C1q (25nM) and BSA (30μg/mL) were immobilized
as controls. Plates were blocked with 3% BSA/PBST for 2h. Biotinylated PA was added at vari-
ous concentrations in blocking buffer containing 0.4M NaCl (to reduce nonspecific binding)
and incubated for 1h at room temperature. Following washing, wells were probed neutravidin-
HRP (1:4000) in blocking buffer for 1h and developed as described above. Absorbance values
from wells not incubated with biotinylated PA were subtracted as background.

Coat protein (CP) binding to ficolins
The ficolins as described above were adsorbed to a microtiter plate at 2.5μg/mL. C1q and BSA
at the same concentration were immobilized as controls. Plates were blocked with 3% BSA/
PBST for 2h. Purified astrovirus CP [7] was added at various concentrations in 3% BSA/PBST
and incubated for 1h at room temperature. Following washing, wells were probed with a
1:1000 dilution CP antibody [8] in blocking buffer for 1h followed with a 1:4000 dilution of
anti-rabbit HRP (Sigma) and developed as described above. The C1q binding was assessed
using a 1:1000 dilution of goat anti-C1q IgG (CompTech) for 1h followed by a 1:1000 dilution
of donkey anti-goat HRP IgG (Sigma).

Displacement assay using PA and C1
This was performed similarly to the competitive binding assay described by Hair et al., 2010
[8], with the following differences. Plates were coated with monoclonal antibody to C1q (Qui-
del) at 1:1000 overnight. In blocking buffer containing 2mM CaC12, partially purified C1 com-
plex was added to wells at a constant amount (0.05μg) with decreasing amounts of either CP or
PA, starting with concentrations for CP at 0.145μM and 1.45μM for PA. Detection of C1q and
C1s was confirmed as described by Hair et al., 2010 [8].

Hemolysis assay using factor-B depleted serum
Following the assay described by Mauriello et al., 2013 [10] using factor-B depleted serum and
EA, PA derivatives (arginine or glutamic acid substitutions and pegylated versions of PA) were
compared to the parent compound PA or AcPA for hemolysis inhibition. Soluble peptides
were dissolved in water whereas insoluble peptides were reconstituted in DMSO. Results were
standardized to water or DMSO, as appropriate.

Hemolysis assay using sensitized human AB erythrocytes
Human AB erythrocytes were sensitized as described by Bonaparte et al., 2008 [7] using rat
anti-human glycophorin A (Lifespan) IgG. Sensitized cells (5×107), peptide, serum, and GVBS
++ were combined in a total volume of 375μL in borosilicate glass tubes and incubated for 1h at
37°C. The reaction was stopped by the addition of 2mL GVBS-EDTA. Tubes were centrifuged
and the supernatant was measured in a spectrophotometer at 412 nm to quantitate free hemo-
globin. Variations of this assay include no peptide (buffer control or ex vivo testing following
peptide administration) or assessing the effects of various buffers.

Non-human primate (NHP) hemolysis assay
Increasing amounts of PA-dPEG24 in 10mMNa2HPO4 with 0.9% NaCl were incubated with
60μL of pooled NHP serum for 15 min at room temperature. GVBS++ and 5×107 sensitized
human AB erythrocytes were added to a total volume of 375μL. Samples were placed at 37°C
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for 1h then stopped with 2mL GVBS-EDTA. Free hemoglobin was quantitated as described
above.

Rat serum hemolysis assay
In a total volume of 375μL, 1x109 human AB erythrocytes (non-sensitized) were combined
with various concentrations of PA-dPEG24 (dissolved in 0.1M Na2HPO4, 0.9% NaCl, pH 7.4)
and 50μL of Wistar rat serum (Innovative Research, Inc.) for 15min at 37°C. The reaction was
stopped with 2mL GVBS-EDTA and assessed for free hemoglobin, as described above.

Mouse plasma hemolysis assay
In a total volume of 100μL, 50μL of pooled mouse plasma and various concentrations of PA-
dPEG24 dissolved in 0.9% NaCl were combined with 5×106 EA in GVBS++ for 30min at 37°C.
The assay was stopped with 0.2mL of GVBS-EDTA, and the supernatant was assessed for free
hemoglobin, as described above.

Rat serum hemolysis assay testing of PA-dPEG24 dissolved in various
buffers
PA-dPEG24 was dissolved separately in the following buffers: 0.9% NaCl, 0.45% NaCl, 10mM
Na2HPO4 with 0.9% NaCl or deionized H2O. Soluble PA-dPEG24 in individual buffers was
then tested in our standard hemolysis assay using sensitized human AB erythrocytes.

Mass spectrometry
To analyze the oligomeric state of PA-dPEG24, matrix assisted laser desorption ionization
time of flight mass spectrometry (MALDI-TOF-MS) was performed on peptide in 0.1% formic
acid on an Ultraflex II mass spectrometer (Bruker Daltonic, Billerica, MA) with measurements
in both the reflectron and linear mode using α-cyano 4-hydroxycinnamic matrix. The reflec-
tron mode has a higher resolution compared to the linear mode, but only measures effectively
up to 4500Da, whereas the linear mode method has a higher mass range with measurements
up to 20kDa. Thus, as the predicted mass of PA-dPEG24 is 2773 Da, to detect any larger pep-
tide oligomers, both the reflectron and linear mode were utilized.

Circular dichroism (CD)
CD spectrum was recorded on a Jasco J-815 CD spectrometer. The peptide concentration was
0.2mg/ mL (72μM) in phosphate buffered saline (8.1mM Na2HPO4, 137mMNaCl, 1.47mM
KH2PO4, 2.68mM KCl, pH 7.0) in a 1mm path-length cell. The spectrum was recorded at 25°C
after a 5 minute equilibration period with a scanning speed of 1 nm per minute, a spectral
bandwidth of 5nm and processed with a 10nm smoothing function.

Nuclear Magnetic Resonance (NMR)
The NMR sample buffer was identical to that described above for CD spectroscopy, with the
addition of 10% D2O for field lock. The peptide concentration was 1.8mg/mL. A one-dimen-
sional 1H NMR spectrum was acquired using 256 transients with 16384 data points per fid and
a sweep width of 8012.58 Hz on a Bruker Avance 400 MHz spectrometer at a temperature of
294 K. AW5 watergate sequence [16] was used for solvent suppression. Data was processed
and analyzed with ACD/NMR Processor software [17].
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In vivo dosing of PA-dPEG24 in rats
PA-dPEG24 was dissolved in 0.9% NaCl at various concentrations (10, 20, or 30mg/mL). Male
Wistar rats bearing an intrajugular catheter (Harlan) of approximately 250g each received 1mL
of peptide intravenously via the catheter. Control groups received vehicle only or no injection
(sham). Blood was drawn from the catheter prior to peptide administration then at various
time points post-injection. Plasma from these samples was tested for complement activity in
our standard hemolysis assay with sensitized human AB erythrocytes (without peptide) and
using 25μL of plasma. In total, 4 doses plus vehicle and sham controls were tested in 4 separate
experiments (n = 46) for time points up to 1h. An additional experiment assessing up to 24h
post-injection using three doses (10, 20, or 30mg/mL, n = 4 for each group) in 10mM
Na2HPO4, 0.9% NaCl and a vehicle control group (n = 3) was also conducted.

Statistical analysis
ELISA data were analyzed using a two-tailed, paired, Student's t test.

Results

PA peptide binds specifically to the CLR of C1q, MBL and ficolins
Previous work from our laboratory identified the 15 amino-acid Polar Assortant (PA) peptide
(amino-acid sequence IALILEPICCQERAA) which can bind efficiently to the collagen-like
region (CLR) of C1q to inhibit classical pathway complement activation [10]. To evaluate
whether charge plays a role in the interaction of C1q with PA, we performed an ELISA in
which an acetylated version of the PA peptide was bound to the plate and incubated with C1q
in the presence of increasing amounts of sodium chloride. PA and AcPA have identical activity
as previously demonstrated [10] and are used interchangeably in the in vitro experiments
reported here. C1q bound to AcPA in 0mMNaCl and continued to show robust binding
through the range of physiological saline (0.154M). However, above 0.25M NaCl, a dose-
dependent inhibition of C1q binding to AcPA was observed (p< 0.005), suggesting that the
interaction between AcPA and C1q is ionic in nature (Fig 1A). In an attempt to define the
region of C1q that is bound by PA, a C-terminally biotinylated PA peptide was incubated with
C1q either in the absence or presence of the water-soluble crosslinker BS3 (ThermoFisher). BS3

contains an amine-reactive N-hydroxysulfosuccinimide (NHS) ester at each end of an 8-car-
bon spacer arm and reacts with primary amines. In the case of PA, the only primary amine is
located at the N terminus of the peptide. The reactions were analyzed by SDS-PAGE followed
by immunoblot and Odyssey imaging to detect C1q (green signal) and the biotinylated PA pep-
tide (red signal), respectively. In the samples that were not crosslinked, C1q A and B chains
were present in green, indistinguishable as a single band, whereas the C chain is red (Fig 1B,
left panel). It is not entirely clear why the C chain is red, but this suggests that the biotinylated
PA peptide can remain bound to the monomeric C chain even after boiling, reduction and
SDS-PAGE. In the sample that received crosslinker, a prominent yellow band indicated specific
interaction of the PA peptide with the A and/or B chain of C1q (Fig 1B, left panel). Due to its
small size (1643 Da) PA does not cause a detectable size shift. As with the non-crosslinked
sample, the C chain was red. In addition to crosslinking monomeric A/B chains, crosslinks of
two higher molecular weight species between 50 and 75 kDa shown as weakly yellow species
were detected, which most likely correspond to C1q A-B (69 kDa) and C-C (54 kDa) dimers, as
previously reported (Fig 1B, left panel) [18]. This confirms that BS3 efficiently crosslinks C1q
and that biotinylated PA can bind monomeric chains of C1q along with the dimers A-B and
C-C. This data is consistent with previous findings from our laboratory showing that astrovirus
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Fig 1. PA interacts with C1q in a salt-sensitive manner and specifically binds the C1q CLR. (A) The
AcPA peptide was adsorbed to a microtiter plate and incubated with a constant amount of C1q in the
presence of varying amounts of NaCl. Bound C1q was detected with a goat polyclonal anti-C1q sera followed
by HRP-conjugated anti-goat sera. Data represent the means of three independent experiments. Error bars
denote SEM. (B) C1q and biotinylated PA in the absence or presence of the crosslinker BS3 were loaded
onto a 4–12% SDS-PAGE gel, (left panel) transferred to nitrocellulose and probed with antibody to detect
C1q (green) and streptavidin conjugate to detect PA (red). An identical gel was stained with bio-safe
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CP binds to the A/B chain of C1q as assessed by overlay blot analysis [7]. An identical gel
stained with bio-safe Coomassie blue was also performed to visualize total proteins (Fig 1B,
right panel).

Biotinylated PA was previously shown to specifically bind to the CLR of C1q by ELISA [10].
To evaluate the kinetics of AcPA interaction with the CLR, we utilized surface plasmon reso-
nance (SPR) to measure the affinity of immobilized CLR with AcPA. SPR sensorgrams were
generated by injecting different concentrations of AcPA and were fitted to the 1:1 model with
mass transport (Fig 1C). The mean apparent equilibrium dissociation constant (KD) was
316nM demonstrating that AcPA binds the CLR of C1q with high affinity. Previous work from
our laboratory demonstrated that PA bound intact C1q with a KD value of 33.3nM [10]. The
difference in KD value between intact C1q and CLR alone most likely reflects changes in the
quarternary structure of CLR after removal of the globular head domains or the contribution
of interactions of the globular heads of C1q with the PA peptide, or both.

Earlier work from our laboratory has demonstrated that the astrovirus coat protein (CP)
specifically binds to mannose binding lectin (MBL) and inhibit MBL-dependent activation of
the lectin pathway of complement [8]. Interestingly, while CP bound specifically to both puri-
fied and recombinant MBL, it did not bind to the MBL variant K55Q [8]. This lysine residue
resides in the CLR of MBL and is critical for interaction of MASP-1 and MASP-2 with MBL
[14]. To see if AcPA retained the same behavior as CP, AcPA and a negative control peptide
(CP2, [9]) were immobilized to a microtiter plate and incubated with either wild-type recombi-
nant MBL or the derivative K55Q. Wild-type MBL efficiently bound to AcPA; however, as
with the full-length CP molecule, AcPA did not bind K55Q (Fig 2A). As expected, CP2 was not
bound by either form of MBL (Fig 2A). These results demonstrated that analogously to C1q,
PA binding to MBL is dependent on residue K55, strongly suggesting that PA binds the CLR
region of MBL critical for interaction with its cognate serine proteases.

As PA efficiently bound to MBL, we next tested the binding of this peptide to recombinant
human ficolins L, H and M. Ficolins are structurally similar to MBL and C1q being composed
of a CLR with a lectin-like recognition domain comprised of three fibrinogen-like domains
that bind to acetylated compounds in the context of pathogen- and apoptotic cell-associated
molecular patterns [19]. As with MBL, ficolins interact with MASP-1 and MASP-2 via a reac-
tive lysine residue and can thus initiate complement activation via the lectin pathway [20].
Given the structural and functional relatedness to MBL and C1q, we tested whether wild-type
L, H and M ficolins could interact with PA. The ficolins were adsorbed to a microtiter plate
and then incubated with biotinylated PA. All three ficolins bound PA to the same degree as
C1q at various concentrations of biotinylated PA (Fig 2B). Wild-type CP was also demon-
strated to bind to these ficolins in a similar manner to C1q but not BSA (S1 Fig).

Previous work in our laboratory demonstrated that the astrovirus CP physically dissociates
the C1s-C1r-C1r-C1s tetramer from the C1q CLR, thus inhibiting activation of the C1 complex
[8]. To determine if PA was capable of displacing the tetramer in an analogous fashion, we per-
formed a competition ELISA as previously reported [8]. Monoclonal antibody to C1q was
adsorbed to the microtiter plate and partially purified C1 complex with increasing amounts of

Coomassie blue, and visualized by Odyssey imaging (right panel). Molecular size markers (in kDa) are
indicated to the left and chains of C1q (A, B, C, A-B, C-C) are indicated to the right. (C) Interactions between
AcPA and the CLR of C1q as measured by surface plasmon resonance (SPR). The CLR of C1q was
immobilized onto the surface of a dextran sensor chip and AcPA was injected at the indicated concentrations.
Data analysis consisted of globally fitting the SPR sensorgrams for different peptide concentrations with a 1:1
model taking into account mass transport. KD values were calculated from koff/kon for each experiment and
were averaged from at least two separate experiments.

doi:10.1371/journal.pone.0132446.g001
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Fig 2. PA binds to MBL and ficolins and does not displace C1s from C1q. (A) The AcPA and CP2
peptides were adsorbed to a microtiter plate and incubated with a constant amount of MBL or K55Q. Bound
MBL was detected with a polyclonal goat anti-MBL sera followed by HRP-conjugated anti-goat sera. (B) The
various ficolins indicated in the figure were adsorbed to the microtiter plate and incubated with biotinylated PA
followed by a neutravidin conjugate. BSA was used as a negative control for binding. (C) Partially purified C1
was mixed with increasing amounts of CP or PA and added to a microtiter plate coated with monoclonal
antibody to C1q. After washing, C1s signal present in intact C1 complexes was measured by ELISA using
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either wild-type CP or PA were added simultaneously. Adherent C1s retained in the C1 com-
plex was detected with a polyclonal antibody to C1s. C1s signal decreased with increasing
amounts of CP demonstrating that CP dose-dependently displaces C1s, as previously reported
(Fig 2C, red line) [8]. To verify that C1q was firmly attached to the plate in the presence of
increasing amounts of CP, bound C1q was confirmed with a polyclonal antibody to C1q (Fig
2C, green line). In contrast to CP, PA did not demonstrate competitive displacement of C1s
from C1q even at 10-fold molar excess compared to CP (Fig 2C blue line). Thus, while PA
shares many of the functional properties of the parent CP molecule in terms of binding the
CLR and inhibiting C1 activation, PA is not able to grossly displace C1s (see Discussion).

Amino-acid substitution analysis of PA
In order to evaluate which residues of the PA peptide are critical for inhibitory function of the
peptide, we performed an arginine and glutamic acid scan of PA to see if substitution of posi-
tively or negatively charged residues affects the inhibitory activity of PA in a hemolytic assay
using factor B-depleted serum and antibody-sensitized sheep erythrocytes. Substitution of argi-
nine or glutamic acid at any of these positions in PA reduced the ability of PA to inhibit hemo-
lysis, usually with nearly complete loss of function (Table 1). Together with our previous
results from an alanine scan [10], these results suggest that the function of PA cannot be easily
improved by simple amino-acid substitution.

Optimization of a water-soluble PA derivative
In an attempt to improve the solubility of this peptide, PA was synthesized with a PEG linker
consisting of 24 PEG units on either the N terminus (dPEG24-PA), C terminus (PA-dPEG24)
or both the N and C termini of PA (dPEG24-PA-dPEG24). All three peptide derivatives were
soluble in water. The peptides were then tested for inhibition of complement activity in a
hemolytic assay using factor B-depleted serum and antibody-sensitized sheep erythrocytes.
PA-dPEG24 in water inhibited complement activation to the same level as PA in DMSO (Fig
3A). dPEG24-PA also inhibited hemolysis, although not to the same degree as PA, whereas
dPEG24-PA-dPEG24 completely lost inhibitory activity in the hemolytic assay (Fig 3A). To
more carefully evaluate the inhibitory activity of PA-dPEG24 compared to PA, increasing con-
centrations of both peptides were tested in the hemolytic assay. While both peptides inhibited
hemolysis to the same level at high concentrations (0.77mM), PA-dPEG24 demonstrated a
gradual dose-dependent response compared to PA (Fig 3B). The difference in titration between
PA and the PA-dPEG24 derivative is most likely due to the increased solubility of the pegylated
version in an aqueous solution. Additional PA derivatives with decreasing number of C-termi-
nal PEG moieties were synthesized and tested for inhibitory activity in the hemolytic assay. As
few as 2 PEG moieties on the C terminus of PA was found to endow PA with solubility in
water; however, each of these peptides showed some loss of inhibitory activity in the hemolytic
assay (S1 Table).

Structural characterization of PA-dPEG24
The PA peptide contains two cysteine residues at positions 9 and 10. Given that either cysteine
could potentially participate in intermolecular disulphide bonding between two or more

polyclonal antibody to C1s (CP, red line; PA, blue line) or polyclonal antibody to C1q (green line) to confirm
C1q was bound to the plate. Data represent the means of three independent experiments. Error bars denote
SEM.

doi:10.1371/journal.pone.0132446.g002
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peptide molecules, we utilized mass spectrometry to analyze PA-dPEG24 for oligomerization.
Matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) was per-
formed with measurements in both the reflectron and linear mode. Linear mode MALDI-TOF
mass spectrometry demonstrated that the majority of the peptide formed a peak at 2778 Da
which is consistent with a monomer of PA-dPEG24 that has a theoretical mass of 2773 Da (Fig
4). A minor peak at 5553 Da was consistent with a dimerized version of this peptide; however,
no other higher molecular weight forms of the peptide were evident (Fig 4). This data suggests
that while there may be some dimer formation, the majority of PA-dPEG24 exists as a
monomer.

In an attempt to gain more structural information on PA-dPEG24, we performed circular
dichroism (CD) and 1 dimensional 1H nuclear magnetic resonance (NMR) on this peptide.
Based on amino-acid sequence alone, the program PSIPRED [21] predicts a short beta strand
at the N terminus and alpha helix in the C-terminal half of the peptide. The CD spectrum of

Table 1. Hemolytic assay in factor B-depleted serum of arginine and glutamic acid substitution peptides.

Peptide name and controls Peptide sequence Hemolysis (%)

Water - 100.00

GVBS++ - 2.75

DMSO - 96.32

PA IALILEPICCQERAA 39.49

PA-I1R RALILEPICCQERAA 91.93

PA-A2R IRLILEPICCQERAA 87.28

PA-L3R IARILEPICCQERAA 80.45

PA-I4R IALRLEPICCQERAA 43.71

PA-L5R IALIREPICCQERAA 93.40

PA-E6R IALILRPICCQERAA 87.59

PA-P7R IALILERICCQERAA 89.85

PA-I8R IALILEPRCCQERAA 62.32

PA-C9R IALILEPIRCQERAA 89.54

PA-C10R IALILEPICRQERAA 89.80

PA-Q11R IALILEPICCRERAA 90.87

PA-E12R IALILEPICCQRRAA 95.83

PA-A14R IALILEPICCQERRA 88.65

PA-A15R IALILEPICCQERAR 44.24

PA-I1E EALILEPICCQERAA 89.27

PA-A2E IELILEPICCQERAA 92.24

PA-L3E IAEILEPICCQERAA 100.27

PA-I4E IALELEPICCQERAA 92.07

PA-L5E IALIEEPICCQERAA 94.33

PA-P7E IALILEEICCQERAA 96.10

PA-I8E IALILEPECCQERAA 95.74

PA-C9E IALILEPIECQERAA 91.62

PA-C10E IALILEPICEQERAA 95.21

PA-Q11E IALILEPICCEERAA 65.60

PA-R13E IALILEPICCQEEAA 101.99

PA-A14E IALILEPICCQEREA 98.09

PA-A15E IALILEPICCQERAE 93.13

The final concentration of peptide in factor B-depleted serum was 0.77mM. Each peptide was evaluated in triplicate and the mean values are reported.

doi:10.1371/journal.pone.0132446.t001

Peptide Inhibitor of Complement C1 Stops Complement Activation in Rats

PLOS ONE | DOI:10.1371/journal.pone.0132446 July 21, 2015 12 / 21



PA-dPEG24 is shown in Fig 5A. Overall, this spectrum is consistent with a largely disordered
peptide. The deep negative band near 200nm is normally associated with a lack of regular sec-
ondary structure. However, the negative readings in the relatively flat region near 220 to
225nm is suggestive of some alpha helical or beta sheet character. The analysis program
CDSSTR [22] fits the observed CD spectrum by predicting 40% alpha helix and 25% beta sheet,
though in order to fit, nearly half of these secondary structural elements are predicted as

Fig 3. Pegylated versions of PA inhibit complement activity in a hemolytic assay. (A) Hemolytic assays using factor B-depleted serum were performed
with PA dissolved in DMSO and its pegylated derivatives dissolved in water. Factor B-depleted serum was incubated with 0.77mM of each peptide and then
added to sensitized sheep erythrocytes. (B) Titration of increasing amounts of PA and PA-dPEG24 in the hemolytic assay. Water and DMSOwere used as
vehicle controls in the presence of factor B-depleted serum. GVBS++ is a buffer- only control. Values are the means of three independent experiments. Error
bars represent the SEM.

doi:10.1371/journal.pone.0132446.g003
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distorted. Thus, this amount of secondary structure may be an overestimation. In summary,
the CD spectrum is consistent both with some disorder and some regular secondary structure.

The 1D 1H NMR spectrum of the PA-dPEG24 peptide is presented in Fig 5B. The lack of
amide peaks outside of the 8.0 to 8.5ppm range and methyl group peaks below 0.5ppm is nor-
mally associated with disorder. However, for a small peptide with no aromatic residues, the
conclusion is less certain, as the observed chemical shift range for this sort of peptide is
expected to be smaller. The primary conclusion is similar to that for CD: the spectrum is con-
sistent with a largely disordered peptide that may contain some alpha helix, and perhaps even
some sheet-like structure.

PA-dPEG24 is active in rat serum, mouse plasma and non-human
primate serum
While PA-dPEG24 was able to inhibit complement activity in factor B-depleted human serum,
we also wanted to test its activity in serum isolated from rats, mice and non-human primates as
a pre-requisite for in vivo animal model testing. As previously demonstrated for PA [10],
increasing concentrations of PA-dPEG24 were incubated with Wistar rat serum and then
added to human AB erythrocytes. We have shown that human AB erythrocyte hemolysis in
Wistar rat serum is a classical complement pathway event that models ABO incompatibility in
vitro [23]. PA-dPEG24 was able to efficiently inhibit complement-mediated lysis fromWistar
rat serum in a dose-dependent fashion (Fig 6A). Next, we tested the ability of this peptide to
inhibit complement activation in mouse plasma, and showed inhibition of complement-medi-
ated hemolysis in a dose-dependent manner (Fig 6B). To assess if PA-dPEG24 was able to
block complement mediated hemolysis in primate serum, we isolated serum from the blood of

Fig 4. Linear mode MALDI-TOFmass spectrometry analysis of PA-dPEG24 oligomeric state. PA-dPEG24 in acidified water was analyzed by linear
mode mass spectrometry. The spectrum shows two peaks for PA-dPEG24 with a monomer peak at 2778 and a dimer form at 5553.

doi:10.1371/journal.pone.0132446.g004

Peptide Inhibitor of Complement C1 Stops Complement Activation in Rats

PLOS ONE | DOI:10.1371/journal.pone.0132446 July 21, 2015 14 / 21



the cynomolgus monkey (Macaca fascicularis) and developed a hemolytic assay using human
AB erythrocytes. PA-dPEG24 was able to dose-dependently inhibit complement-mediated
lysis by primate serum (Fig 6C). The ability of PA-dPEG24 to specifically inhibit complement
activity from the serum or plasma of three different animal species as well as humans demon-
strates that PIC1 peptides have broad cross-species functionality.

In vivo inhibition of complement activity in rats by PA-dPEG24
Previous work from our laboratory demonstrated that the PA peptide and an earlier 30 residue
PIC1 derivative (E23A) were able to inhibit complement activation in Wistar rats when deliv-
ered IV and IP, respectively [10]. However, a serious limitation to these peptide analogs was

Fig 5. CD and 1D 1H NMR of PA-dPEG24. (A) The PA-dPEG24 peptide at 0.2mg/mL in PBS was analyzed on a Jasco J-815 CD spectrometer. (B) The PA-
dPEG24 peptide at 1.8mg/mL in PBS with 10% D2O was analyzed on a Bruker Avance 400 MHz spectrometer at a temperature of 294 K.

doi:10.1371/journal.pone.0132446.g005
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their lack of solubility in aqueous solution. Given the aqueous solubility of PA-dPEG24, we set
out to determine their efficacy in vivo. As a prerequisite to testing in rats, a hemolytic assay of
PA-dPEG24 dissolved in water or physiological buffers demonstrated that this peptide was
able to inhibit complement activity in Wistar rat serum in vitro (S2 Fig). To evaluate if PA-
dPEG24 delivered intravenously could block complement activation in blood, we performed a
dosing study in which this peptide was delivered IV into jugular catheterized Wistar rats (Har-
lan). Blood was then drawn from the animals at various times post-peptide administration,
plasma isolated and a hemolytic assay performed using human AB erythrocytes. In total, 4
doses of 5, 10, 20 and 30mg/mL were tested in rats along with vehicle and sham controls
(n = 46) in 4 separate experiments. For simplicity, only two representative experiments are
shown. Rats receiving either a 10 or 20mg/mL dose of peptide showed an inhibition of comple-
ment activity in a hemolytic assay from plasma purified from blood collected over a 1-hour
period (Fig 7A). A separate experiment was performed in which 10, 20 or 30mg/mL of PA-
dPEG24 was administered to the rats and complement activity assessed up to 24 hour post-
compound administration. All three doses rapidly inhibited complement activation by 30 sec-
onds after administration, with the 20 and 30mg/mL doses inhibiting activation by 90% (Fig
7B). This suppression was maintained for 1 hour with complement activity levels increasing to
50% by 4 hours and completely recovering by 24 hours in all three doses. For both experiments,
the vehicle animals as well as sham showed some mild decrease in hemolysis after drawing the
preinfusion sample (Fig 7A and 7B). Complete blood counts and blood chemistries were taken
at 48 hours for a subset of animals receiving 10mg/mL of compound. No significant differences
were seen between the vehicle control animals and animals receiving peptide (S2 Table).

Discussion
In this study, we explored the structural and biophysical properties as well as in vitro and in
vivo activity of the PIC1 PA derivatives. PA, a 15 amino-acid peptide, was initially derived
from the 787 amino acid CP of human astrovirus type 1 [7]. We had previously demonstrated
that the CP molecule could specifically bind the A/B chain of C1q to inhibit classical pathway
complement activation [7]. The binding of the C1s-C1r-C1r-C1s tetramer to the CLR of C1q is
essentially mediated by the reactive, non-hydroxylated lysine residues K61 (B chain) and K58
(C chain) that reside in the CLR of C1q [24]. CP inhibited activation of the C1 complex by dis-
placing the C1s-C1r-C1r-C1s tetramer from the CLR of C1q [9]. Like C1q, MBL is a structur-
ally and functionally similar molecule that harbors a reactive lysine residue (K55). This residue
resides in the MBL CLR and is essential for binding the serine proteases MASP-1 and MASP-2
[14], which is equivalent to C1s-C1r-C1r-C1s of the classical pathway [25]. CP was found to
inhibit lectin pathway activation and bound MBL, but not the K55QMBL mutant [8]. Here we
demonstrate that PA retains much of the same properties as the parent CP molecule in that it
can bind the A/B chain of the CLR of C1q to inhibit classical pathway activation (Fig 1B and
1C) and binds wild-type MBL, but not the K55Q mutant (Fig 2A). We also found that PA and
CP bound to the L, H and M ficolins which are structurally and functionally similar to C1q and
MBL (Fig 2B and S1 Fig, respectively).

Fig 6. PA-dPEG24 inhibits complement activation in rat serum, mouse plasma and non-human
primate serum. Hemolytic assays using (A) Wistar rat serum, (B) mouse plasma and (C) cynomolgus
monkey serum were performed with increasing amounts PA-dPEG24 dissolved in 100mMNa2HPO4 with
0.9% NaCl buffer for rat serum, 10mMNa2HPO4 with 0.9% NaCl for cynomolgus monkey serum and 0.9%
NaCl for mouse plasma. Serum or plasma were incubated with peptide and then added to human AB
erythrocytes. Values are the means of three independent experiments. Error bars represent the SEM.

doi:10.1371/journal.pone.0132446.g006
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Whereas PA shared the same properties as CP in the assays discussed above, the C1 compe-
tition ELISA demonstrated that while CP physically displaced C1s (and thus by extension C1s-
C1r-C1r-C1s) from C1q, this was not the case for PA (Fig 2C). We attribute this to the fact that
the CP molecule is 787 residues and in the form of a trimer [7] and thus its physical size could
feasibly displace the serine protease tetramer. PA in contrast is only 15 residues, but binds to
the C1q CLR with a KD value of 316nM and to intact C1q with a KD value of 33nM as assessed
by SPR (Fig 1C and Mauriello et al., 2013 [10], respectively). Given that the affinity of C1s-
C1r-C1r-C1s for C1q by SPR has been assessed by two independent laboratories as 13nM [24]
and 2.72nM [25], it is not unreasonable to suggest that PA, perhaps multiple molecules, can
compete with C1s-C1r-C1r-C1s for some of its 6 binding sites on C1q. While not physically
displacing C1s-C1r-C1r-C1s, it may be that binding of PA to the CLR is sufficient to disrupt
the orientation of the serine protease tetramer preventing autocatalytic cleavage of C1r and

Fig 7. PA-dPEG24 inhibits complement activation in vivo. (A) Rats were IV administered PA-dPEG24 at
10 (n = 2) or 20mg/mL (n = 2) in 0.9% NaCl or received a vehicle control (n = 2) or were sham treated (n = 2).
B, Rats were IV administered PA-dPEG24 at 10mg/mL (n = 4), 20mg/mL (n = 4) or 30mg/mL (n = 4) in 10mM
Na2HPO4, 0.9% NaCl or received a vehicle control (n = 3). At the indicated time points post-administration,
blood was collected and plasma isolated. Plasma was tested in hemolytic assays with human AB
erythrocytes. Error bars represent the SEM.

doi:10.1371/journal.pone.0132446.g007
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activation of the classical pathway. A hypothetical model of the mechanism by which PIC1
derivatives inhibit C1 and MBL activation is presented in Fig 8.

One significant drawback to the parent PA peptide is its lack of solubility in aqueous solutions.
Pegylation of PA at the C terminus resulted in the peptide’s ability to be soluble in water or saline
solution while retaining inhibitory activity on the classical pathway of complement (Fig 3). The
discovery of soluble versions of PA allowed us to further analyze both the structure and function
of this peptide. Using the PA-dPEG24 peptide, we determined that this molecule was predomi-
nantly monomeric, as assessed by mass spectrometry (Fig 4). The small amount of dimer formed
was most likely due to intermolecular disulphide bonding as PA contains cysteines at positions 9
and 10. Structural analysis of PA-dPEG24 by CD and 1D 1H NMR demonstrated little ordered
structure (Fig 5). Experiments to define the precise region of the C1q CLR that is bound by the
peptide along with structural details are currently under investigation in our laboratory.

Given its favorable solubility profile, PA-dPEG24 was tested in hemolytic assays of comple-
ment suppression using rat, mouse and non-human primate serum or plasma in preparation
for in vivo testing. This peptide was able to inhibit complement activation in all three hemolytic
assays demonstrating a broad spectrum of inhibitory activity (Fig 6). Dosing of this peptide in
Wistar rats showed that a 20mg/mL dose could inhibit complement activation in the animal by
>90% in 30 seconds with a functional half-life of 4 hours (Fig 7). Pegylation has been demon-
strated to increase the in vivo residence of peptidic drugs possibly by preventing their rapid
degradation by host proteases [26]. Additionally, no overt toxicity was seen in animals up to 48
hours after compound administration (S2 Table). More detailed pharmacokinetic, pharmaco-
dynamic and toxicity testing of this derivative is presently underway.

There is currently significant interest in the development of complement therapeutics for an
array of disease processes in which dysregulated complement plays a role [27]. The classical
pathway of complement is associated with a number of antibody-initiated, inflammatory dis-
ease processes such as some forms of ischemia-reperfusion injury, hyperacute transplantation
rejection, cold agglutinin disease and acute intravascular hemolytic transfusion reaction,
among others [4–6, 28]. We have recently developed a rat model of acute intravascular hemo-
lytic transfusion reaction [23] and are in the process of evaluating PIC1 derivatives in this
model of antibody-initiated classical pathway disease.

Supporting Information
S1 Table. Solubility and hemolytic assay in factor B depleted serum of PEGylated PA pep-
tides. The final concentration of peptide in factor B-depleted serum was 0.77mM. 1Peptides

Fig 8. Model of PA inhibition of C1/MBL function.Our data favors a model in which PIC1 derivatives
functionally disrupt the C1s-C1r-C1r-C1s/MASP interaction with the CLR of C1q/MBL, respectively. By PIC1
binding to the serine protease interaction site on CLR, the serine proteases are hypothesized to be in a
suboptimal conformation for autoactivation and initiation of the classical and/or lectin pathways of
complement.

doi:10.1371/journal.pone.0132446.g008
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not soluble in water were resuspended in DMSO. 2In the hemolytic assay, soluble peptides are
standardized to water and insoluble peptides standardized to DMSO.
(DOCX)

S2 Table. PA-dPEG24 toxicology evaluation at 48 hr (ranges).
(DOCX)

S1 Fig. Astrovirus CP binds to ficolins H, M and L. The various ficolins indicated in the fig-
ure were adsorbed to the microtiter plate and incubated with CP followed by antibody to CP.
BSA was used as a negative control for binding and C1q as a positive control for binding. Fico-
lin data represent the means of three independent experiments with error bars denote SEM.
BSA and C1q values were from two independent experiments.
(TIF)

S2 Fig. PA-dPEG24 inhibits complement activation in vitro in physiological buffers.Hemo-
lytic assays using Wistar rat serum were performed with PA-dPEG24 dissolved in 0.9% NaCl,
0.45% NaCl, 10 mMNa2HPO4 with 0.9% saline or water. The sera were incubated with peptide
and then added to human AB erythrocytes.
(TIF)
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