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Abstract

In this study, we investigated the effectiveness of a novel Iterative Reconstruction (IR) method 

coupled with Dual-Dictionary Learning (DDL) for image reconstruction in a dedicated breast 

Computed Tomography (CT) system based on a Cadmium-Zinc-Telluride (CZT) photon-counting 

detector and compared it to the Filtered-Back-Projection (FBP) method with the ultimate goal of 

reducing the number of projections necessary for reconstruction without sacrificing image quality. 

Postmortem breast samples were scanned in a fan-beam CT system and were reconstructed from 

100–600 projections with both IR and FBP methods. The Contrast-to-Noise Ratio (CNR) between 

the glandular and adipose tissues of the postmortem breast samples was calculated to compare the 

quality of images reconstructed from IR and FBP. The spatial resolution of the two reconstruction 

techniques was evaluated using Aluminum (Al) wires with diameters of 643, 813, 1020, 1290 and 

1630 µm in a plastic epoxy resin phantom with diameter of 13 cm. Both the spatial resolution and 

the CNR were improved with IR compared to FBP for the images reconstructed from the same 

number of projections. In comparison with FBP reconstruction, the CNR was improved from 3.4 

to 7.5 by using the IR method with 6-fold fewer projections while maintaining the same spatial 

resolution. The study demonstrated that the IR method coupled with DDL could significantly 

reduce the required number of projections for a CT reconstruction compared to FBP method while 

achieving a much better CNR and maintaining the same spatial resolution. From this, the radiation 

dose and scanning time can potentially be reduced by a factor of approximately 6 by using this IR 

method for image reconstruction in a CZT-based breast CT system.
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1. Introduction

The recent interest in the applications of energy discriminating photon-counting detectors, 

such as CZT, in spectral CT systems (Bert et al., 2003; Chmeissani et al., 2004; Bisogni et 

al., 2007; Shikhaliev, 2008; Wang et al., 2010; Taguchi et al., 2009; Barber et al., 2009; 

Shikhaliev and Fritz, 2011; Le et al., 2010) has provided a new means to produce higher 

quality images compared to current breast CT systems based on charge-integrating CsI 

scintillation flat panel detectors. CZT has several advantages over traditional detectors, such 

as high quantum detection efficiency as a result of its large effective atomic number (49.6), 

high mass density (5.8 g/cm3) and excellent energy resolution. It has been investigated and 

implemented as an x-ray detector due to recent advances in the manufacturing of 

Application Specific Integrated Circuits (ASIC). However, CZT detectors suffer from issues 

such as pulse pileup from high-count rate x-ray sources. Limited by the current counting 

capability of a CZT detector, a CT scan usually takes a long time to produce high quality 

images (Schlomka et al., 2008). For current CT reconstruction, FBP method is widely used 

because it is computationally fast, accurate and easily implemented (Herman, 1980; Kak and 

Slaney, 1988). However, a large number of projections, typically 500 or more, are needed 

for the FBP method to reconstruct CT images because projections must be discretized at a 

high sampling rate for the image quality to be satisfactory. To shorten scanning time, and 

also reduce the radiation dose, the number of projections can be reduced. The downside to 

this, however, is degradation in image quality of the reconstruction using the FBP method, 

leading to high noise and streak artifacts (Xu et al., 2011). Therefore, new image 

reconstruction algorithms are desirable to reduce the number of required projections while 

retaining image quality. For this purpose, several algorithms have been developed, such as 

Algebraic Reconstruction Techniques (ART) in 1970 (Gordon et al., 1970) and 

Simultaneous Algebraic Reconstruction Techniques (SART) in 1984 (Anderson and Kak, 

1984), which assume that a set of projections through the object are modeled by a linear 

system of equations based on the discretization of the Radon transform which is then solved 

iteratively. Although these techniques have long been developed, they are computationally 

demanding and have been overlooked due to their performance requirements. With the 

dramatic development of high-performance computing techniques over past decades, these 

prior unfeasible methods have been rediscovered (Elbakri and Fessler, 2002; Bian et al., 

2012; Casteele et al., 2012; Hernandez et al., 2012; Makeeva et al., 2012; Pachon et al., 

2012) and applied to the image reconstruction of low-dose CT. In these techniques, one of 

the mechanisms is the total variation (TV) minimization, which minimizes the TV of the 

estimated images with the assumption that the image gradient is sparse. It can be used for 

low-dose, few-view, limited-angle, and truncated data CT (Donoho, 2006; Sidky et al., 

2006; Yu and Wang, 2009). However, it may lead to undesirable biases and artifacts as well 

as loss of fine features, which may reduce the diagnostic values of reconstructed images. In 

contrast to TV, another algorithm is the use of the redundant dictionaries tailored 

specifically to a particular application and more effective in terms of a sparse representation 

(Xu et al., 2011). Dictionary learning (DL) and Sparse Representation (SR) techniques have 

been successfully applied to image processing and recognition areas, such as image 

denoising, image restoration, face recognition, and texture classification (Elad and Aharon, 

2006; Mairal et al., 2006). Unlike conventional techniques, which process the image in pixel 
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by pixel, the dictionary-based methods process the image patch by patch. Thus, strong 

structural constraints are naturally and adaptively imposed.

DL and SR techniques were further developed on few-view image reconstruction in recent 

studies (Xu et al., 2011; Yu and Wang, 2010, 2012), where a global or adaptive dictionary 

derived from the K-Singular Value Decomposition (K-SVD) algorithm (Elad and Aharon, 

2006) was employed in the whole processing and the DL step was incorporated in the 

iterative reconstruction procedure to update an intermediate image. Motivated by the success 

of a single-dictionary method, two dictionaries are applied to improve the image quality 

further. One dictionary is extracted from a set of low-quality sample images reconstructed 

from few-view projections, while another dictionary is extracted from a set of high-quality 

sample images reconstructed from full-view projections. The dictionaries are connected by a 

transform operator. If the coefficients of a low-quality image patch are found under the 

transitional dictionary and multiplied by the global dictionary to recover the high-quality 

image patch, the image quality is improved when all the low-quality patches in a few-view 

reconstructed image are replaced by the high-quality patches (Lu et al., 2012).

We study the effectiveness of a novel IR method based on the DDL technique for the image 

reconstruction of a spectral breast CT using a CZT photon-counting detector and the 

feasibility of reducing the scanning time and the radiation dose for future Multi-Slit Multi-

Slice (MSMS) breast CT systems by reducing the number of required projections. In section 

II, we introduce the DDL technique and briefly describe the experiment using the dedicated 

breast CT system based on a CZT photon-counting detector in our lab. In section III, we 

report our results by comparing the spatial resolution and the CNR of the images 

reconstructed from FBP method and this novel IR method. In section IV, we discuss 

relevant issues and the possible application of the IR method in future MSMS breast CT 

systems.

2. Methods and experiments

2.1. IR method based on DDL technique

In this study, a novel iterative algorithm consisting of ART and DDL was applied to 

improve the image quality (Xu et al., 2011; Lu et al., 2012). In this algorithm, a whole 

image is disintegrated into many small patches. These patches are partially overlapped. The 

distance between two adjacent patches describes the degree of overlapping. The pixel values 

in a patch, as well as its first and second gradients, are written as a single vector and stored 

in a large matrix as one column called a dictionary. The dictionary can be built from high-

quality or low-quality sample images, called high-quality dictionary Dh or low-quality 

dictionary Dl, respectively. DDL makes full use of the information of both Dh and Dl so that 

the targeted low-quality image could be well approximated by Dl at first and then updated 

by Dh.

With the use of DDL, our problem is mathematically expressed as

(1)
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Where M is the system matrix, Dn is Dl or Dh, Rj is an operator extracting the jth patch from 

image x, and ρ is the maximum number of non-zero elements in vector aj. The first term in 

the cost function aims at minimizing the difference between the forward projections Mx and 

the true projections y. A variety of iterative algorithms such as ART, SART and Expectation 

Maximization Maximum Likelihood (EMML) can be used to solve this problem. The 

second term in the cost function represents DDL. It contains two sub-problems for Dl and 

Dh, respectively:

(2)

(3)

In equation (2), image x is fixed, and we want to find a sparse representation aj with respect 

to the lowquality dictionary Dl. ρ = 1 means finding an atom in Dl, which has the shortest 

Euclidean distance to the patch Rjx. In equation (3), sparse representation aj is fixed and 

each patch Rjx corresponds to its new version Dhaj. Then the whole image is updated as 

.

In order to construct the dual dictionaries, we need two sets of sample images. Sample 

images in the high-quality set are reconstructed from adequate projections. Ideally, they are 

noise-free and artifacts-free. In the other set, i.e. low-quality set, the sample images are 

reconstructed from down-sampled projections. Usually they are noisy and contain a lot of 

artifacts. The degree of down-sampling depends on the targeted image. For example, if the 

targeted image is reconstructed from only 200 projections, the sample images in low-quality 

set should be also reconstructed from around 200 projections. However, this rule is flexible. 

As an empirical experience, low-quality set reconstructed from 300 projections works for 

most cases. Images in these two sets are in one-to-one correspondence. When building the 

dual dictionaries, we do the same operations on a pair of images. That is, patches are 

extracted from the same positions of one high-quality sample image and its corresponding 

low-quality sample image, and then recorded at the same columns of dual dictionaries.

2.2. Breast CT with CZT photon-counting detector

The breast CT system used in this study is shown in figure 1, composed of an x-ray tube, 

fore and aft collimators, rotation and translation stage platforms and CZT detector (Ding and 

Molloi, 2012). A tungsten target x-ray tube (Dynamax 78E) is coupled to a constant 

potential x-ray generator (Phillips Optimus M200) with the pre-filter of 2 mm Al and 0.15 

mm Cu. The fore and aft collimators made of 3 mm thick lead sheets are used to minimize 

x-ray scatter, and the slit widths are 0.3 and 0.8 mm, respectively. A high precision Direct 

Drive Rotary (DDR) motor (Kollmorgen Goldline DDR D062M, Danaher Motion, Wood 

Dale, IL) served as the rotation platform for the sample. It was mounted on a translation 

stage, which provides both vertical and horizontal translations to extend the field of view 
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beyond the size limitation of the detector. The distance between the source and isocenter is 

approximately 0.93 m.

The CZT photon-counting detector (eV2500, eV Microelectronics Inc., Saxonburg, PA) is 

placed 1.35 m from the x-ray tube and consists of a linear row of four CZT crystals with 

12.8 mm length, 3 mm width and 3 mm thick. Each crystal consists of 16 pixels, yielding a 

total of 64 pixels with an effective pitch of 0.8 mm in each pixel. The entrance beam to the 

detector is shaped by a brass collimator and collimated at the height of each pixel to 0.8 mm 

(Ding and Molloi, 2012). The peaking time of the detector is set at 160 ns. A Field 

Programmable Gate Array chip (FPGA) is used to count the trigger pulses generated by five 

comparators from each pixel over a user defined collection period, selectable from 1 ms to 

50 ms, which sends each frame to the workstation over a USB interface for data processing, 

storage and visualization (Szeles et al., 2008; Prokesch et al., 2010). The acquired photons 

are sorted into five user-definable energy bins with the energy resolving capability of the 

detector. The energy resolution is calibrated up to 140 keV by the manufacturer of the 

detector (Endicott Interconnect Detection & Imaging Systems). The maximum count rate of 

the detector is calibrated to be approximately 2.3 × 106 cps/mm2, but the linear count rate 

range derived from a thickness dependent study is less than 1.2 × 106 cps/mm2. The detector 

itself does not have any pulse pileup and charge sharing correction mechanisms (Ding and 

Molloi, 2012). The CZT data was acquired in fluoroscopic mode because of the low tube 

output required by the photon-counting detector.

A bias voltage of 1000 V is placed across the CZT crystal and the detector is operated in 

Ohmic mode. As a photon interacts with the CZT crystal and transfers energy above 4.64 eV 

to the crystal, an electron hole pair is created. Electrons generated from interaction of x-ray 

photons within the crystal are collected at the back electrode, which then form a pulse whose 

height is proportional to the energy of the incoming photon by the ASIC. A count is 

registered if the pulse height was higher than the given threshold value. The lower 

boundaries of the energy bins are defined by five user-definable thresholds, therefore the 

count within an energy bin can be easily obtained by subtracting the count from its two 

adjacent thresholds. The detector can also be used in the spectrum collection mode where 

two thresholds can be simultaneously scanned over the whole energy range. The count 

difference between the two thresholds provides the number of recorded counts as a function 

of energy (Ding and Molloi, 2012).

2.3. Phantom and postmortem breast samples preparation

Figure 2(a) illustrates the construction of the high resolution phantom used in this study, 

which is motivated by a previous study (Shen et al., 2010). A cylinder with 13 cm in 

diameter and 2 cm in length is constructed of resin as the phantom base and an insert with 5 

fine Al wires of various diameters (643, 813, 1020, 1290 and 1630 µm in diameter) is placed 

in this base. The resin is chosen not only for its similar x-ray attenuation to breast tissue 

(0.2076 cm2/g for resin and 0.2186 cm2/g for breast tissue at 50 keV) (Hubbell and Seltzer, 

1995), but also for its low cost and convenience in fabricating the phantom base and 

inserting Al wires. The Al wires in this insert are orientated vertically, and the profiles 

extracted from reconstructed CT images are proposed to study spatial resolution. These 

Zhao et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2015 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wires are arranged with enough space between each of them to minimize interacted artifacts 

in the image reconstruction. Figure 2(b) shows a photo of this high-resolution phantom and 

Al wires inside. Postmortem breast samples were obtained from Willed Body Program in 

School of Medicine at University of California Irvine, sealed in plastic bags. 6 samples were 

selected for this study with the mass varying from 114 to 924 gram and the breast density 

varying from 21% to 72%. These samples were placed in a cylindrical container 

approximately 10 cm in diameter made of high-density polyethylene plastic during the 

image acquisition.

2.4. Image acquisition and reconstruction

During the CT scanning, the object was placed on translation stage platform shown in figure 

1 and was rotated at 1.0 rpm. With the frame rate of 20 fps, a full CT scan that covered 360° 

of rotation yielded a total of 1229 frames. This meant that each frame covered about 0.3° 

and the data was acquired approximately in a mode of step-and-shoot. A 100 kVp beam and 

a tube current of 1.00 mA were used for the CT scan. The total entrance skin air kerma 

(ESAK) without back scattering under the current setting was estimated to be 2.4 mGy. All 

x-ray photons interacting with the CZT detector were sorted into five user-definable energy 

bins. The lowest energy threshold to optimally eliminate electronic noise was set at 22 KeV, 

which is used as lower threshold of the first energy bin. The other thresholds were selected 

so that the recorded counts were evenly distributed among all energy bins. These settings 

were used to acquire all the images. All data acquired with the CZT detector were corrected 

for non-uniformity across pixels, using a previously reported flat field correction technique 

(Le et al., 2010). The flat field correction was made using an open source image processing 

software package (Sheffield, 2007).

In order to reconstruct images, the dictionaries need to be built first. For the images of high 

resolution phantom, the high-quality and low-quality dictionaries were built from the images 

reconstructed by FBP at 1229 and 307 projections, respectively. The subsequent Al wire 

images were reconstructed using these 2 dictionaries. For the images of postmortem breast 

samples, 5 samples were scanned with 1229 projections using the breast CT system based on 

a CZT photon-counting detector, and then the high-quality dictionaries were built from 

images reconstructed by the FBP algorithm with 1229 projections and their counterparts 

reconstructed with 307 projections. Each dictionary contained 60000 atoms and the patch 

size was 6×6. With the built dictionaries, the CT images of an additional postmortem breast 

sample were reconstructed with a voxel size of 0.53 × 0.53 × 0.53 mm3 from FBP and IR 

with DDL for a range of projections (102, 204, 307, 409 and 614) which were down-

sampled from the original dataset of 1229 projections. The reason to reconstruct CT images 

with different number of projections was to compare the image quality using FBP and IR 

reconstructions.

2.5. Quantitative image analysis

To evaluate the performance of this IR method, we compared the spatial resolution and CNR 

of this IR reconstructed images to those produced by FBP with data from the first energy bin 

22.1 – 42 KeV. For the spatial resolution comparison, we compared the line profiles of each 

Al wire from the high-resolution phantom images reconstructed by the FBP method with 
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614 projections with images reconstructed by the IR method with 102 projections. The line 

profiles were then fitted with Gaussian functions to evaluate the Full Width at Half 

Maximum (FWHM) (Wang et al., 2009; Casteele et al., 2012). For the CNR comparison, 

two ROIs were selected from glandular and adipose tissue of the postmortem breast sample 

images to calculate the CNR. The size of the ROI was determined by selecting a region in 

the glandular tissue or adipose tissue. The region was made as large as possible to calculate 

the average mean gray value and the standard deviation, including the pure glandular tissue 

or adipose tissue only. The CNR was calculated by:

(4)

Where Mi and σi are the average mean gray value and the standard deviation of the 

glandular (G) tissue and adipose (A) tissue from the selected ROIs, respectively.

3. Results

The reconstructed images of the high-resolution phantom (with Al wire insert) from IR and 

FBP with various numbers of projections are shown in figure 3. The top row shows the 

images reconstructed from IR while the bottom row shows the images reconstructed from 

FBP at 102, 204, 307, 409, 512 and 614 projections, corresponding to the 6 columns, 

respectively. To evaluate the spatial resolution of the images, two line ROIs are drawn 

across the center of an Al wire (see red lines in bottom right plot in figure 3). The average 

line profile was then calculated. A similar procedure was applied to the other three Al wires 

for the images reconstructed by IR at 102 projections (IR102) and by FBP at 614 projections 

(FBP614), as shown in figure 4. Each line profile was fitted with a Gaussian function to 

estimate the FWHM. It can be seen that the FWHM of IR102 is smaller than that of FBP614 

for all 4 comparisons. This shows that compared to FBP method, the IR method can 

reconstruct the image with 6-fold fewer projections, but without a loss in spatial resolution. 

The diameter of the smallest Al wire is smaller than our detector pixel size and the 

reconstructed image is blurred. This is due to the fact that when the downsampled image is 

updated with the dictionaries, some patches are not correctly matched because DDL is 

executed for each image patch with fixed sliding distance and the final image is the average 

value of the overlapped image patches. This can be improved by a hybrid technique of DDL 

and FBP in the future.

The IR method was then applied to the image reconstruction of a postmortem breast sample. 

Figure 5 shows an image reconstructed from IR (the first column) and from FBP (the second 

column) at 102 projections (top row) and 614 projections (bottom row). A qualitative 

comparison of postmortem breast images using IR with 102 projections and FBP with 614 

projections indicates that they have comparable spatial resolutions. The CNR calculated for 

the postmortem sample images reconstructed from IR and FBP at 102, 204, 307, 409 and 

614 projections is shown in figure 6. From figure 6, it is apparent that the CNR from the IR 

method is significantly better than that from the FBP method. For example, the CNR of the 

image from IR with 102 projections is 7.5, 5 times higher than that from FBP with 102 
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projections (1.5) and it is also 2 times higher than that from FBP with 614 projections (3.5). 

CNR was also measured for the thickest Al wire using IR with 102 projections and FBP 

with 614 projections and the CNR values were 5.56 and 4.71, respectively. This is consistent 

with the results from the postmortem breast images.

4. Discussions

In this study, we evaluated the spatial resolution and CNR for FBP and IR reconstruction 

coupled with DDL. For the spatial resolution comparison, line profiles from different 

diameter Al wires were used. The spatial resolution comparison was made in a phantom 

with uniform background. Further improvement is expected in the case of actual tissue 

background because our IR method can reconstruct better images with dictionaries built 

from more samples.

During the image reconstruction of breast samples from IR coupled with DDL, the high-

quality and low-quality dictionaries were built from full-projection images of 5 postmortem 

breast samples. The accuracy of these dictionaries is dependent on the number of images 

they contain. More images will lead to improved quality of the reconstructed images. 

Furthermore, once the dictionaries are built for a given system, a new full-projection scan is 

no longer required and only 102 projections are acquired for image reconstruction. We 

expect good image quality with even less than 100 projections if the dictionaries are built 

with more images. However, there is a lower limit to the number of projections that can be 

used for reconstruction, as IR requires a minimum number of projections to run. For 

application of this method in future breast CT systems, the number of full-projection breast 

images to build the dictionaries should be investigated due to the complicated structure and 

variance between breasts from different patients, but this is beyond the scope of this study. It 

is also worth noting that for an unknown object, IR coupled with DDL may not yield a high-

quality reconstructed image before good dictionaries are built.

CNR is another quantity used in this study to evaluate the image quality. In figure 6, for the 

images reconstructed from the FBP method, CNR increases as the number of projections 

increases, which is expected because the noise is reduced with more projections. However, 

for the images reconstructed by the IR method, CNR decreases as the number of projections 

increases. This is due to the algorithm of this IR method itself. The algorithm is divided into 

two parts: ART and DDL. The ART part is responsible for the image spatial resolution, 

while the DDL part is involved in noise level control. As the number of projections increase 

ART is enhanced to increase the image consistency for spatial resolution, but since DDL 

requires more effort to control the noise level with more projections, high-frequency noise is 

introduced more prominently. With the IR method, 102 projections provided the best 

balance between the spatial resolution and CNR, both of which were better than those of 

FBP.

The IR algorithm coupled with DDL introduced in this study has shown that the number of 

needed projections can be reduced by a factor of 6 from approximately 600 to 100, while 

image quality is maintained. It should be noted that the image processing time of IR is still 

longer as compared to FBP. With a 2.5 GHz Intel Xeon CPU and 16 G of RAM running 

Zhao et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2015 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CPU based processing in MATLAB, IR requires approximately 2 hours to reconstruct 100 

projection-quality images (including loading image information and building dictionaries) as 

opposed to 5 minutes with FBP. However, with the fast development of computer 

technology and GPU (Graphics Processing Unit) assisted processing techniques; 

computational time can be reduced in the future.

In a MSMS spiral CT system, the scanning time is determined by the detector frame time 

and the number of projections required for reconstruction. The frame time, which is limited 

by the counting capability of the detector, is typically in the range of 1 to 50 ms (Prokesch et 

al., 2010; Barber et al., 2010; Chmeissani et al., 2004). Further reduction of the frame time 

may result in incomplete collection of the charges generated by a single photon, leading to a 

poor energy resolution. However, it is more efficient to reduce the number of projections 

needed to reconstruct a high quality image. As was shown in this study, a reduction by a 

factor of 6 in the number of projections can be expected with the proposed IR algorithm as 

compared to the conventional FBP method. Therefore, the scanning time may be greatly 

reduced with implementation of the proposed IR algorithm for image reconstruction. It is 

thus possible to design a MSMS breast CT system with a scanning time of approximately 

10s (Molloi and Ding, 2011). Compared to the current breast CT based on the flat-panel 

detectors, the proposed scanning time is comparable, but the radiation dose can be reduced 

by a factor of approximately 2 using photon counting detectors.

In this study, the images were reconstructed with 102, 204, 307, 409 and 614 projections by 

IR and FBP and here the numbers of projections were down-sampled from the original 

dataset of 1229 projections. It assumed that the projection was acquired in a mode of step-

and-shoot. For example, every 12th projection was extracted from the whole set of 1229 

projections to reconstruct the 102-projection image. Equivalently, for a full 360° scan, the 

object is rotated by 3.53° in a step, and then the projection is recorded. The same assumption 

was used in the previous study (Lu et al., 2012). The current study mainly focuses on the 

comparison between the proposed IR method with respect to the standard FBP 

reconstruction. The large number of projections used in the CT scan lead to a small rotating 

angle within the time of each frame, which avoids the problem of smearing the object 

located away from the center of rotation. However, in practical applications, where a small 

number of projections, 100 or even less, are used in favor of dose reduction, the CT systems 

have to be specifically designed to avoid smearing the object located away from the center 

of rotation during image acquisition. This can be accomplished using a high-power pulsed x-

ray tube to acquire the projections at particular rotation angles, where the x-ray tube emits a 

high flux beam in a short time compared to continuous x-ray sources, and the detector is 

synchronized with the emission timing of the x-ray source to acquire an image. A similar 

technique has previously been implemented (Do, 2012).

5. Conclusion

This study demonstrated that the IR coupled with DDL method could significantly reduce 

the required number of projections for a CT reconstruction compared to FBP method while 

achieving an improved CNR and maintaining the same spatial resolution. The results 

indicate that the required number of projections can be reduced by a factor of approximately 
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6. The application of the IR method coupled with DDL can potentially reduce the radiation 

dose by a factor of approximately 2 in a MSMS spiral CT system.
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Figure 1. 
Schematic drawing of the spectral CT system based on CZT photon-counting detector.
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Figure 2. 
(a) Layout and (b) picture of high resolution phantom with Al wire insert. The wire 

diameters are 643, 813, 1020, 1290 and 1630 µm.
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Figure 3. 
Images of high-resolution phantom (Al wires insert) reconstructed from IR and FBP at 

various projections. Red lines in bottom right plot indicate the line ROIs to extract the 

profiles.
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Figure 4. 
Line profiles comparison between the images reconstructed from IR at 102 projections 

(IR102) and from FBP at 614 projections (FBP614) for the various-diameter Al wires: 1630 

µm (a), 1290 µm (b), 1020 µm (c) and 813 µm (d).
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Figure 5. 
A slice image of a postmortem breast sample reconstructed from, (a) IR with 102 

projections, (b) FBP with102 projections, (c) IR with 614 projections and (d) FBP with 614 

projections. Two rectangles indicate the ROIs selected from Glandular tissue (ROI1) and 

from Adipose tissue (ROI2) to calculate the CNR.

Zhao et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2015 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
CNR of a slice image of a postmortem breast sample reconstructed from IR and FBP at 

various projections.
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