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Abstract Gray mouse lemurs (Microcebus murinus) from Madagascar present an excellent model

for studies of torpor regulation in a primate species. In the present study, we analyzed the response

of the insulin signaling pathway as well as controls on carbohydrate sparing in six different tissues

of torpid versus aroused gray mouse lemurs. We found that the relative level of phospho-insulin

receptor substrate (IRS-1) was significantly increased in muscle, whereas the level of

phospho-insulin receptor (IR) was decreased in white adipose tissue (WAT) of torpid animals, both

suggesting an inhibition of insulin/insulin-like growth factor-1 (IGF-1) signaling during torpor in

these tissues. By contrast, the level of phospho-IR was increased in the liver. Interestingly, muscle,
nces and
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WAT, and liver occupy central roles in whole body homeostasis and each displays regulatory con-

trols operating at the plasma membrane. Changes in other tissues included an increase in phospho-

glycogen synthase kinase 3a (GSK3a) and decrease in phospho-ribosomal protein S6 (RPS6) in the

heart, and a decrease in phospho-mammalian target of rapamycin (mTOR) in the kidney. Pyruvate

dehydrogenase (PDH) that gates carbohydrate entry into mitochondria is inhibited via phosphory-

lation by pyruvate dehydrogenase kinase (e.g., PDK4). In the skeletal muscle, the protein expres-

sion of PDK4 and phosphorylated PDH at Ser 300 was increased, suggesting inhibition during

torpor. In contrast, there were no changes in levels of PDH expression and phosphorylation in

other tissues comparing torpid and aroused animals. Information gained from these studies high-

light the molecular controls that help to regulate metabolic rate depression and balance energetics

during primate torpor.
Introduction

Seasonal hibernation and daily torpor are fascinating phenom-
ena, whereby animals enter a state of hypometabolism during
which most body functions are strongly suppressed [1]. Daily

torpor occurs in many species of mammals and seasonal hiber-
nation is found in mammalian groups including monotremes,
marsupials, rodents, bats, shrews, insectivores, and bears [1].
Among them, rodents, such as ground squirrels and hamsters,

have been the main model species for most lab-based studies
[2]. Recent studies of the small lemur species of Madagascar
have discovered that these lemurs also use torpor and can even

enter multi-day hibernation in response to chronic food short-
ages during the dry season [3]. These small cheirogaleids,
which include dwarf lemurs (Cheirogaleus) and mouse lemurs

(Microcebus), represent the only family among the primates
with members capable of entering torpor/hibernation bouts
[4]. The lemur model is extremely attractive for biomedical

studies of hypometabolism, since these primates are the most
closely-related species to man that exhibit natural hypometa-
bolism and they often do so at relatively high body tempera-
tures, indicating that primate torpor does not necessarily

require prolonged cold body temperatures. Indeed, data col-
lected from free-ranging gray mouse lemurs have shown that
daily torpor bouts are several hours in duration with minimum

Tb of �27 �C, whereas hibernation bouts can last up to
4 weeks with minimum Tb of 11.5 �C [4]. Similar to other
forms of hibernation, prolonged hibernation bouts in gray

mouse lemurs are characterized by intermittent arousals back
to normothermic Tb [4]. The molecular mechanisms displayed
by lemurs for torpor entry/arousal could reveal important

information about how to induce and regulate a torpor state
in humans, a goal of interest for a variety of purposes, such
as organ preservation and long-term space flight.

One common theme in the field of hibernation is the

involvement of signal transduction pathways, which restruc-
ture cellular metabolism to promote energy conservation and
survival. The Akt pathway regulates events including apopto-

sis, protein synthesis, cell proliferation, and energy metabo-
lism, and thereby lies at a junction between metabolism and
cellular survival [5–7]. Akt (also known as Protein Kinase B)

is the core kinase in the insulin/Akt signaling network and
plays a noted role in aerobic dormancy [7]. The activation of
Akt is dependent on multi-site phosphorylation, which is dri-
ven by a series of kinase-based signal transduction events.

Binding of insulin/insulin-like growth factor-1 (IGF-1) to
receptor tyrosine kinases, insulin receptor (IR) or IGF-1
receptor (IGF-1R), gates the signal to insulin receptor sub-
strate 1 (IRS1), phosphatidylinositol (3,4,5)-trisphosphate

kinase (PI3K), and eventually Akt (Figure 1). The direct
upstream kinase responsible for stimulating Akt kinase activity
is phosphoinositide-dependent kinase-1 (PDK1). To promote

the phosphorylation of Akt by PDK1, both proteins are
anchored to the plasma membrane by phosphatidylinositol
trisphosphate (PIP3) [8,9]. PIP3 is generated by PI3K-
dependent phosphorylation of PIP2 and the reverse reaction

is regulated by the phosphatase PTEN (phosphatase and ten-
sin homolog) [10,11]. The activated form of Akt influences
protein synthesis via mammalian target of rapamycin (mTOR)

as well as glucose metabolism via glycogen synthase kinase 3
(GSK3). Akt signaling activates the mTOR pathway via phos-
phorylation of tuberous sclerosis protein 2 (TSC2), thereby

repressing its inhibitory activity on mTOR complex 1
(mTORC1) assembly [12]. Active mTORC1 in turn phospho-
rylates p70S6K, which then phosphorylates eukaryotic initia-

tion factor 4B (eIF4B) and ribosomal protein S6 (RPS6),
which are directly involved in the formation of the mRNA
translation pre-initiation complex (Figure 1) [13,14].

In anticipation of the winter season, seasonal mammalian

hibernators enter a phase of hyperphagia resulting in weight
gains of up to 40% as they fatten [2,15]. This is matched with
a sharp shift in the hibernator’s metabolic profile, which moves

from oxidation of carbohydrates toward a dependence on the
combustion of stored fatty acids [16]. While lipids are the pri-
mary fuel source during hibernation, rates of mitochondrial

substrate oxidation and oxidative phosphorylation are
nonetheless strongly reduced as part of overall metabolic rate
suppression [17]. Key factors in achieving the suppression of
mitochondrial activity are mechanisms which gate carbohy-

drate entry into the tricarboxylic acid cycle and impose an
overall suppression of oxidative phosphorylation [17]. Pyru-
vate dehydrogenase (PDH), which converts pyruvate to

acetyl-CoA, is strongly inhibited via phosphorylation at multi-
ple sites by pyruvate dehydrogenase kinase isoforms, including
PDK4 [18]. Key regulatory phosphorylation sites on PDH

include Ser 232, 293, and 300. In the meadow jumping mice
(Zapus hudosnius), the percentage of PDH in the active form
dropped from 15% in the heart and 29% in the kidney of

euthermic animals to just 1% in animals that had been hiber-
nating for 5–8 days [17]. In thirteen-lined ground squirrels,
compared to the summer active state, gene expression of
PDK4 increased in skeletal muscle and white adipose tissue

(WAT), together with increased amounts of PDK4 protein in
the heart, skeletal muscle, and WAT of hibernating animals



Figure 1 Schematic representation of insulin and IGF-1 signaling in gray mouse lemurs

IR and IGF-IR share a similar signaling pathway which invokes downstream changes in two main branches – the mitogenic pathway

(Ras/Raf/MEK/ERK) and the metabolic pathway (PI3K/Akt). These act in a coordinated manner to regulate glucose, lipid, and protein

metabolism. The targets that exhibited relative changes between control and torpid conditions in each tissue are boxed and the targets

examined are highlighted in associated colors (targets depicted in gray were not examined in the present study). Arrowheads denote

positive regulatory effects while blunt-ended lines denote negative regulatory effects. Shaded boxes designate the tissue-specific response

observed in gray mouse lemur, Microcebus murinus, during torpor. Akt is also known as Protein Kinase B (PKB). IR, insulin receptor;

IGF-1R, insulin-like growth factor-1; IRS1, insulin receptor substrate 1; PI3K, phosphoinositide 3-kinase; PIP3, phosphatidylinositol

triphosphate; PTEN, phosphatase and tensin homolog; PDK1, phosphoinositide-dependent protein kinase-1; GSK3, glycogen synthase

kinase 3; TSC, tuberous sclerosis protein; mTOR, mammalian target of rapamycin; GbL, G-protein b-subunit-like protein; p70S6K,

p70S6 kinase; RPS6, ribosomal protein S6; MEK, mitogen-activated protein kinase kinase, ERK1/2, extracellular-signal-regulated kinases

1/2; WAT, white adipose tissue.
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[19]. In line with the increased PDK expression, other studies
have also shown that the amount of activated, dephosphory-
lated PDH in the heart and kidney of torpid animals fell to just
3%�4% of euthermic squirrels [20]. These data suggest that

both PDH and PDK4 play important roles in fuel utilization
and metabolic depression during torpor.

Although the behavioral and physiological adaptations

supporting torpor in gray mouse lemurs have been well stud-
ied, the molecular mechanisms supporting daily torpor have
yet to be fully elucidated. Since the insulin/IGF-1 pathway

and PDH/PDK4 are central regulators of metabolism and sur-
vival, we investigated the phosphorylation status of key factors
involved in these processes. Our results demonstrate that insu-

lin/Akt signaling networks and PDH control are integral com-
ponents of the hypometabolic state in lemur tissues.
Results

Response of Akt/mTOR signaling during daily torpor

The insulin/Akt signaling pathway is regulated by posttransla-
tional modifications such as protein phosphorylation at multi-
ple distinct sites, which are indicative of the activity state of the

target protein. As a result, antibodies that recognize these
phosphorylation sites were used to monitor changes in the
activity state of components of the insulin/Akt signaling path-

way comparing control (aroused) and torpid conditions in
gray mouse lemurs. To evaluate the response of Akt/mTOR
pathway to daily torpor, the relative changes in levels of phos-
phorylated proteins were assessed in different tissues, including
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the skeletal muscle, heart, liver, kidney, brown adipose tissue
(BAT), and white adipose tissue (WAT), using commercially-
available multiplex panels. The phosphoproteins examined

included IGF-1R (Tyr1135/Tyr1136), IR (Tyr1162/Tyr1163),
IRS1 (Ser312), PTEN (Ser380), Akt (Ser473), GSK3a
(Ser21), GSK3b (Ser9), TSC2 (Ser939), mTOR (Ser2448),

p70S6K (Thr412), and RPS6 (Ser235/Ser236).
In the skeletal muscle, relative protein level of IRS1

(Ser312) was significantly higher during torpor, which is

4.89 ± 0.82-fold higher than in control aroused animals
(P < 0.01), whereas phosphorylation levels of all the other tar-
gets remained unchanged (Figure 2). Among the 11 proteins
examined, we noticed significant alterations in two of them

in the heart. Levels of GSK3a (Ser21) in torpid animals was
1.63 ± 0.23-fold of that in controls, whereas levels of RPS6
(Ser235/236) in the torpid lemurs was reduced, which was only

61 ± 5% of that in aroused animals (P < 0.05) (Figure 3). In
the liver, the relative phosphorylation level of IR
(Tyr1162/1163) during torpor was 1.92 ± 0.37-fold of that in

control animals (P < 0.05), whereas relative phosphorylation
levels were comparable for the other proteins (Figure 4). In
the kidney, the relative phosphorylation of most proteins

except GSK3 alpha appeared to be lower during torpor. How-
ever, significant alteration during torpor was only detected in
the level of mTOR (Ser2448), which was reduced to
77 ± 3% of controls (P < 0.05) (Figure 5).

Interestingly, torpor seems to have no significant effect on
any of the targets in BAT (Figure 6). However, the relative
phosphorylation of IR (Tyr1162/1163) in WAT was signifi-

cantly reduced during torpor (40 ± 6% of controls;
P < 0.05) (Figure 7), which is opposite to the response seen
in the liver. No significant changes in the relative levels of
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Figure 2 Responses of Akt/mTOR signaling to daily torpor in skeleta

The relative phosphorylation of multiple target proteins in the skeletal m

Tyr1163), IRS1 (Ser312), PTEN (Ser380), Akt (Ser473), GSK3a (Se

(Thr412), and RPS6 (Ser235/Ser236) comparing control (aroused) and

calculated by normalizing all samples to controls. Data are present

different animals). * Denotes significant difference from the correspond

MFI, median fluorescent intensity.
phosphorylation were detected for other proteins examined
in WAT during torpor.

Response of PDK4 and PDH during daily torpor

Phosphorylation on PDH is indicative of its activity state,
which is inversely correlated with activity. Similarly, we exam-

ined the relative changes in total PDH protein, as well as PDH
phosphorylation state at Ser 232, 293, and 300, in various tis-
sues using commercially available multiplex panels. In addi-

tion, protein levels of PDK4, one of the kinases that
phosphorylate PDH, were also assessed using ELISA technol-
ogy. Compared to aroused animals, the relative levels of PDK4

and phospho-PDH during torpor were significantly (P < 0.05)
changed only in the skeletal muscle, but comparable in the
other five tissues examined (Figure 8). In skeletal muscle of tor-
pid lemurs, relative levels of PDK4 and phospho-PDH Ser 300

were 2.08 ± 0.20-fold and 1.77 ± 0.16-fold of those in con-
trols, respectively.

Discussion

For many small mammals, short-term daily torpor and long-

term hibernation can conserve huge amounts of energy that
would otherwise be needed to maintain active euthermic life
under conditions where food availability is greatly reduced
and/or abiotic conditions are severe [1]. Regulatory controls

on metabolism and cellular survival mediated by signal trans-
duction pathways are at the core of the hibernating phenotype.
As a result, it is no surprise that insulin/Akt signaling and

PDK4/PDH regulatory mechanisms play a documented role
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Figure 3 Responses of Akt/mTOR signaling to daily torpor in heart of gray mouse lemurs

The relative phosphorylation of multiple target proteins in heart was assessed for IGF-1R (Tyr1135/Tyr1136); IR (Tyr1162/Tyr1163),

IRS1 (Ser312), PTEN (Ser380), Akt (Ser473), GSK3a (Ser21), GSK3b (Ser9), TSC2 (Ser939), mTOR (Ser2448), p70S6K (Thr412), and

RPS6 (Ser235/Ser236) comparing control (aroused) and torpor states. Data were obtained and analyzed similarly as indicated in Figure 2.

* Denotes significant difference from the corresponding control according to the two-tailed Student’s t-test (P < 0.05).
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Figure 4 Responses of Akt/mTOR signaling to daily torpor in liver of gray mouse lemurs

The relative phosphorylation of multiple proteins in liver was assessed for IGF-1R (Tyr1135/Tyr1136); IR (Tyr1162/Tyr1163), IRS1

(Ser312), PTEN (Ser380), Akt (Ser473), GSK3a (Ser21), GSK3b (Ser9), TSC2 (Ser939), mTOR (Ser2448), p70S6K (Thr412), and RPS6

(Ser235/Ser236) comparing control (aroused) and torpor states. Data were obtained and analyzed similarly as indicated in Figure 2.

* Denotes significant difference from the corresponding control according to the two-tailed Student’s t-test (P < 0.05).
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in metabolic rate depression [7,17,21]. Indeed, reduced
insulin/IGF-1 signaling correlates with dauer in Caenorhabditis
elegans [22], diapause in insects [23], and hibernation in ground
squirrels [24–27] and bats [28]. Similarly, carbohydrate sparing
via regulatory controls on PDH has been demonstrated in mice
[17] and ground squirrels [19,20]. Ultimately, minimizing ATP
expenditures is of central importance and, as a result, stress-
responsive regulation is dependent on energetically-efficient
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Figure 5 Responses of Akt/mTOR signaling to daily torpor in kidney of gray mouse lemurs

The relative phosphorylation of multiple proteins in kidney was assessed for IGF-1R (Tyr1135/Tyr1136); IR (Tyr1162/Tyr1163), IRS1

(Ser312), PTEN (Ser380), Akt (Ser473), GSK3a (Ser21), GSK3b (Ser9), TSC2 (Ser939), mTOR (Ser2448), p70S6K (Thr412), and RPS6

(Ser235/Ser236) comparing control (aroused) and torpor states. Data were obtained and analyzed similarly as indicated in Figure 2.

* Denotes significant difference from the corresponding control according to the two-tailed Student’s t-test (P < 0.05).
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Figure 6 Responses of Akt/mTOR signaling to daily torpor in BAT of gray mouse lemurs

The relative phosphorylation of multiple proteins in BAT was assessed for IGF-1R (Tyr1135/Tyr1136); IR (Tyr1162/Tyr1163), IRS1

(Ser312), PTEN (Ser380), Akt (Ser473), GSK3a (Ser21), GSK3b (Ser9), TSC2 (Ser939), mTOR (Ser2448), p70S6K (Thr412), and RPS6

(Ser235/Ser236) comparing control (aroused) and torpor states. Data were obtained and analyzed similarly as indicated in Figure 2. BAT,

brown adipose tissue.
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mechanisms such as reversible protein phosphorylation (RPP).

Indeed, RPP-dependent regulation has been reported in a vari-
ety of stress-tolerant species ranging from invertebrates to
mammals [29,30]. The present study is the first to demonstrate

the involvement of insulin/Akt signaling and PDK4/PDH dur-
ing torpor in a nonhuman primate, the gray mouse lemur.
Akt signaling is responsive to a range of extracellular stim-

uli including insulin and IGF-1 through their corresponding
receptors, IR and IGF-1R, respectively [31,32]. Binding of
insulin/IGF-1 triggers a cascade of intracellular events begin-

ning with receptor tyrosine phosphorylation; key residues
include phosphorylation at tyrosine 1158/1162/1163 in IR or
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Figure 7 Responses of Akt/mTOR signaling to daily torpor in WAT of gray mouse lemurs

The relative phosphorylation of multiple proteins in WAT was assessed for IGF-1R (Tyr1135/Tyr1136); IR (Tyr1162/Tyr1163), IRS1

(Ser312), PTEN (Ser380), Akt (Ser473), GSK3a (Ser21), GSK3b (Ser9), TSC2 (Ser939), mTOR (Ser2448), p70S6K (Thr412), and RPS6

(Ser235/Ser236) comparing control (aroused) and torpor states.Datawere obtained and analyzed similarly as indicated inFigure 2. *Denotes

significant difference from the corresponding control according to the two-tailed Student’s t-test (P < 0.05). WAT, white adipose tissue.
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tyrosine 1131/1135/1136 in IGF-1R, which is indicative of
enhanced activity [33,34]. The activated receptor phosphory-

lates substrates such as IRS1, which dock downstream effector
molecules spanning a range of signaling pathways [35].
Through its SH2 (Src Homology 2) domain, IRS1 makes a

physical interaction with phosphotyrosine-containing regions
of RTK and this interaction is abolished by phosphorylation
of IRS1 at Ser312 [36,37]. Our results showed strong elevated

(�5-fold) phosphorylation of IRS1 at Ser312 in skeletal muscle
during torpor (Figure 2), suggesting inhibition of insulin- and
IGF-1-dependent signal transduction in torpid animals, as
compared to aroused lemurs. Inhibition of insulin signaling

was also observed in WAT, where the tyrosine phosphoryla-
tion level (Tyr1162/Tyr1163) of IR dropped significantly to
below 50% of the control values (Figure 7).

While the inhibitory signals in muscle and WAT agree with
the general metabolic pattern of reduced insulin signaling dur-
ing hypometabolism, an opposing response was observed in

liver. Relative level of phospho-IR (Tyr1162/Tyr1163) was
almost doubled in the liver during torpor (Figure 4), suggest-
ing activation of insulin-dependent signaling in this organ.
Liver plays an essential role in providing oxidizable substrates,

not only for its own needs, but also to supply those of other
tissues. In hepatocytes, an increase in insulin-specific signaling
is correlated with stimulation of glycogen synthesis and/or

inhibition of gluconeogenesis [38]. However, gluconeogenesis
is typically required for survival during prolonged fasting
[39] and plays a noted role in mammalian models of hiberna-

tion [40]. Since the metabolic effects of insulin signaling are
typically exerted via IRS1, further studies are needed to delin-
eate the direct downstream effect of IR-dependent activation

in the liver.
In muscle, the inactivation of IRS1 in torpid gray mouse

lemurs should lead to decreased glucose uptake, glycogen
synthesis, and/or rates of glycolysis. Evidence for reduced gly-
colytic flux and glycogen synthesis exists in mammalian hiber-

nators [20] and this response may contribute to overall energy
savings during torpor. A possible mechanism for increased
phosphorylation of IRS1 may occur via c-Jun NH2-terminal

kinase (JNK), which has been shown to be involved in phos-
phorylation of IRS1 on Ser312 [41]. Indeed, our studies have
shown that the active form of JNK is enhanced in lemur skele-

tal muscle during torpor, representing a possible molecular
mechanism for IRS1 inactivation [42].

Insulin signaling was also inhibited in WAT of gray mouse
lemurs as indicated by a reduction in the phosphorylation state

of the insulin receptor. Hibernators accumulate large reserves
of triglycerides in WAT to fuel winter survival and also
increase the proportion of polyunsaturated fatty acids to keep

lipids fluid at low Tb [43,44]. Gray mouse lemurs also rely on
fatty acid fuels for energy for daily torpor during food restric-
tion [45]. Since inactivation of insulin signaling in WAT is cor-

related with decreased lipid synthesis and increased lipolysis
[46,47], the data showing inhibition of insulin signaling in
lemur WAT suggest that these same events occur during pri-
mate torpor. Evidence of a shift in fuel utilization was also

indicated for muscle from the relative changes in PDK4 and
phospho-PDH Ser 300 (Figure 8). Relative increases in these
two targets during torpor, as compared to aroused animals,

suggest that carbohydrate catabolism by mitochondria is sup-
pressed. By contrast, changes in PDK4 and PDH were not
observed in other lemur tissues studied. This suggests that

other mechanisms which control fuel utilization or other phos-
phorylation sites/posttranslational modifications not presently
analyzed may play a more prominent role in regulating carbo-

hydrate versus lipid fuel use during torpor.
Interestingly, regulatory controls when present at the recep-

tor level occur on IR rather than IGF-1R. While an array of
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Figure 8 Response of PDK4 and PDH to daily torpor in different tissues of gray mouse lemurs

The relative protein expression of PDH and phosphorylation of PDH at Ser232, Ser293, and Ser300) were assessed using bead-based

assays and represented as relative MFI by comparing control (aroused) and torpor states. In addition, the expression of PDK4 was

examined with ELISA using optical density as readout. The tissues examined include skeletal muscle (A), heart (B) liver (C), kidney (D),

BAT (E), and WAT (F). Data were analyzed similarly as indicated in Figure 2. * Denotes significant difference from the corresponding

control according to the two-tailed Student’s t-test (P < 0.05). MFI, median fluorescent intensity; BAT, brown adipose tissue; WAT,

white adipose tissue; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase.
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genetic and environmental factors are thought to play roles in

lifespan extension, crucial genes that are involved in modulat-
ing lifespan have been identified, including insulin receptors.
Both C. elegans and Drosophila melanogaster have single

IGF-1/insulin-like receptors (DAF-2 in C. elegans and INR
in D. melanogaster), and several homologs (IGF-1R, IR-A,
and IR-B) are present in mammals [48,49]. daf-2 mutant
showed extended lifespan, indicating that insulin/IGF-1 antag-

onizes longevity [50]. Gray mouse lemurs are exceptionally
long-lived, whose lifespans are 2–3 times longer than other
mammals of comparable body mass [51]. However, the molec-

ular basis for this response remains largely unexplored. In the
present study, inhibitory signals such as phosphorylation of
insulin receptors in selected tissues of gray mouse lemurs
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may be a point of interest for further studies. Indeed, the use of
lemur models in the field of life extension is already well
documented [52].

Despite upstream changes, the relative phosphorylation
levels of the downstream targets measured remained unaltered
in muscle, WAT, and liver during torpor. This suggests that

IR/IRS1 signaling during torpor may not be mediated by
Akt-dependent signal propagation. While insulin/IR and
IGF-/IGF-1R are strong activators of PI3K-mTOR, these sig-

nals also regulate Ras-ERK mitogen-activated protein kinase
(MAPK) signal transduction (Figure 1), albeit to a lesser degree
[53]. IR and IGF-1R are connected to Ras-ERK signaling via a
direct interaction with the Shc:Grb2:SOS complex as well as

with IRS1 [35]. We have demonstrated a significant decrease
in the phosphorylation of ERK1/2 in muscle of torpid lemurs
[42]. Therefore, it is possible that the regulation of IRS1

observed in the present study links to Ras-ERK signaling rather
than to Akt-mTOR signaling. In the same study, however, the
relative phosphorylation level of ERK1/2 increased in WAT

and remained unaltered in the liver [42]. Since the degree of
pathway activation depends on a combination of factors, fur-
ther studies are required to elucidate the full downstream

impact of IR/IRS1 signaling on muscle, WAT, and liver.
One well-known role of Akt is the phosphorylation-

dependent regulation of GSK3 [54,55]. Our results showed that
the phosphorylation level of GSK3a at Ser21 was elevated sig-

nificantly in the heart of torpid animals as compared to con-
trols (Figure 3) with probable inhibitory effects on multiple
targets of GSK3 during torpor. For example, GSK3 inhibits

glycogen synthesis by phosphorylation of glycogen synthase
[55]. GSK3 is also involved in regulating other major biologi-
cal events. It was reported that GSK3 negatively regulates

cyclin E by promoting its degradation and this subsequently
leads to inhibition of cell cycle progression [56]. GSK3a plays
an essential role in b-adrenergic signaling as well, which is

directly related to cardiac function in mammals, and partici-
pates in maintaining mitochondrial structure in the heart [57].

The mTOR pathway has a major role in regulating cap-
dependent translation [58–60] and mTOR-dependent protein

synthesis regulation is dependent on the assembly and function
of the kinase complex mTORC1. The mTORC1-dependent
regulation on translation initiation is in part controlled

through p70S6K. Active mTORC1 phosphorylates p70S6K
and, in turn, activated p70S6K phosphorylates RPS6 [13,14].
Torpid lemurs showed a significant reduction in the phospho-

rylation level of RPS6 (Ser235/Ser236) in the heart compared
with aroused animals (Figure 3), suggesting inhibition of pro-
tein synthesis during torpor. Interestingly, the phosphorylation
level of mTOR at Ser2448 dropped significantly in the kidney

of torpid lemurs when compared to control animals (Figure 5).
Hence, both the heart and the kidney showed signs of inhibi-
tion of the mTOR pathway during torpor, indicating protein

synthesis repression. These results agree with the general
energy conservation strategy of hypometabolic states.

In summary, while tissue-specific responses were observed,

insulin/IGF1-dependent signal transduction was inhibited in
muscle and WAT through regulatory events occurring on
IRS1 and IR, respectively. As discussed above, inhibition of

insulin signaling in muscle and WAT may act to balance the
energy production-consumption equilibrium during the hypo-
metabolic state. In contrast, activation of insulin-dependent
signal transduction was indicated in the liver. However, the
outcome may be Akt-independent in liver, since specific nodes
of the Akt pathway failed to exhibit signs of regulation. In
both the heart and the kidney, daily torpor led to inhibition

of the mTOR pathway, suggesting repression of protein syn-
thesis. In addition, elevation of GSK3a phosphorylation in
the heart may contribute to the coordinated suppression of

mitochondrial respiration during primate torpor. Finally, the
protein expression of PDK4 increased significantly and this
was matched with a significant increase in the phosphorylation

of PDH at Ser300, suggesting the conversion of pyruvate to
acetyl-CoA is significantly reduced in muscle during torpor.
In conclusion, the present study provides insights into the reg-
ulation of PI3K/Akt signaling and fuel utilization in six tissues

of the gray mouse lemur during torpor. Further studies may
include carrying out deeper transcriptomic and proteomic
analysis.

Materials and methods

Animals

Standard procedures for holding, experimentation and sam-
pling of gray mouse lemurs were used and all animal experi-
ments were conducted by Dr. Martine Perret and the
MECADEV team (Mecanismes Adaptatifs et Evolution,

Department of Ecology and Management of Biodiversity) as
described by Giroud et al. [3] and presented in detail by Biggar
and his colleagues [42]. Briefly, adult female lemurs were

housed in individual cages in a climate chamber, where they
were maintained under short-day conditions and held at a
thermoneutral ambient temperature (24–25 �C). Animals in

the torpor group had been exposed to a calorie-restricted diet
for 5 days (60% of the control diet; 86 · 10�3 J/day versus
144 · 10�3 J/day) to enhance the depth of their torpor bouts.
Control animals were capable of entering torpor and were fed

ad libitum. Tb and locomotion were monitored and used to
determine the state of torpor, which was assessed as a continu-
ous reduction in Tb (with no evidence of animal activity).

Control animals were euthanized after arousal from a daily tor-
por bout (after spontaneous rewarming to 35–36 �C), whereas
torpid lemurs were euthanized during a torpor bout (when Tb

was at its minimum, 30–33 �C). Samples of frozen tissues were
packed in dry ice and air freighted to Carleton University where
they were stored continuously at �80 �C until use.

Protein lysates

Protein extracts of tissue samples were prepared as per manu-
facturer’s instructions (EMD Millipore, Billerica, MA; catalog

No. 48-611). Briefly, �50 mg aliquots of frozen tissue were
weighed and homogenized 1:4 (w/v) with ice-cold lysis buffer
(Millipore; catalog No. 43-040) in a Dounce homogenizer with

the further addition of phosphatase (1 mM Na3VO4 and
10 mM ß-glycerophosphate) and protease (BioShop; catalog
No. PIC001) inhibitors. Samples were then incubated on ice

for 30 min with occasional vortexing. Homogenates were cen-
trifuged at 12,000 · g for 20 min at 4 �C and the supernatants
were collected as total soluble protein lysates. Protein concen-

tration of the lysates was determined using the Bradford assay
(Bio-Rad; catalog No. 500-0005) and then tissue extracts were
standardized to 5 lg/ll and stored at �80 �C until further use.
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Multiplex analysis

Luminex� assays were used to investigate the relative phos-
phorylation state of key components involved in insulin/Akt
signal transduction (EMD Millipore; catalog No. 48-611)

and PDH (EMD Millipore; catalog No. PDHMAG-13K) in
the muscle, heart, liver, kidney, BAT, and WAT comparing
control (aroused) and torpid mouse lemurs. The assay for
the insulin/Akt Luminex� panel was performed following

manufacturer’s instructions and all multiplex panels are sub-
ject to rigorous quality control and validation studies. Aliquots
of protein homogenates (5 lg/ll) were combined with Milli-

plex MAP Assay Buffer 2 (catalog No. 43-041), with 17.5 lg
total protein added per well. HeLa cell lysates treated with
the dual specificity lambda phosphatase (catalog No.47-229)

were used as a negative control, while positive controls
included insulin-stimulated HepG2 cells (catalog No. 47-227)
and MCF7 cells stimulated with IGF-1 (catalog No. 47-216).

The same protocol was followed for the PDH panel except
for the use of Assay Buffer 1 (catalog No. 43-010) with
10.5 lg protein added per well. For the PDH kit, HepG2 cell
lysates catalog No. 47-234) were used as a positive control,

whereas HepG2 cell lysates treated with dichloroacetate
(DCA) (catalog No. 47-232), a PDK inhibitor, served as a neg-
ative control. Positive and negative controls were prepared as

per manufacturer’s instructions.
For the Akt panel, premixed phosphoprotein beads (cata-

log No. 42-611K) for all the protein targets were provided as

a 20 · stock, which were sonicated for 15 s, vortexed for
30 s, diluted to 1 ·, and vortexed once more for 15 s. After cal-
ibration with Assay Buffer, the bead mixture was gently mixed
with a pipette and sonicated for 10 s and then 25 ll 1 · phos-

phoprotein beads was added to each well. Following the addi-
tion of the phosphoprotein beads, equal amounts of diluted
cell lysate was added to each sample well, whereas HeLa,

HepG2, and MCF7 cell lysates were added to control wells.
The sample and control wells were incubated overnight at
4 �C on a plate shaker (600–800 rpm) protected from light.

After removal of the lysate by vacuum filtration, all wells were
washed twice with Assay Buffer 2 (catalog No. 43-041). After-
ward, 25 ll 1 · biotin-labeled detection antibodies was added

to each well and the filter plate was incubated on a plate shaker
for 1 h at room temperature. Following removal of the anti-
body solution by vacuum filtration, the filter plate was washed
twice (as above). Streptavidin–phycoerythrin (25 ·, SAPE, cat-

alog No. 45-001D) was then diluted in Assay Buffer and ali-
quoted into wells (25 ll). Following incubation on a plate
shaker for 15 min, 25 ll of Amplification Buffer (catalog No.

43-024A) was added to each well and incubated for 15 min.
The SAPE/Amplification Buffer was then removed by vacuum
filtration. The beads were resuspended in 150 ll Assay Buffer 2

and data acquisition was performed on a Luminex 100 instru-
ment (Luminex, Austin, TX) with Milliplex Analyst software
(Millipore, Billerica, MA). Equipment settings were as follows:
50 events per bead, sample size of 100 ll, and gate settings of

8000–15,000.
The PDH kit used magnetic beads (EMDMillipore; catalog

No. PDHMAG-PMX4), which were provided as a 1 · stock.

Beads were sonicated for 30 s and vortexed, and 25 ll was
added to each well following the addition of 25 ll each of Assay
Buffer 1, lysate controls, or samples. The plate was incubated on
a plate shaker (600–800 rpm) protected from light for 2 h at
room temperature. The well contents were removed and the
plate was washed 3 times using a magnetic plate washer. After-

ward, 50 ll of detection antibody was added and incubated on a
plate shaker at room temperature for 1 h before the washing
step. Next, 50 ll SAPE was added to each well, incubated on

a plate shaker at room temperature for 30 min. Finally, the
beads were resuspended in 100 ll Sheath Fluid after wash and
data acquisition was performed as described above.

Enzyme-linked immunosorbent assay

The relative protein expression of PDK4 was determined using

a BlueGene Elisa kit (catalog No. E01P0080) purchased from
Life Sciences Advanced Technologies (Saint Petersburg, FL)
following the manufacturer’s instructions. Aliquots of 50 ll
of sample were added to wells of a microtiter plate that were

pre-coated with antibodies, whereas negative control wells
received 50 ll of phosphate-buffered saline (pH 7.2). Next,
5 ll of the supplied balance solution was added to each sample,

followed by 100 ll of supplied antibody conjugate. Samples
were covered and incubated for 1 h at 37 �C before the wells
were washed with the supplied 1 · wash buffer (5 times). Next,

50 ll each of substrate A and substrate B were added to each
well, covered, and incubated for 15 min at room temperature
in the dark. Finally, 50 ll of stop solution was added to each
well and the optical density at 450 nm was determined using

a Thermoscan microplate reader.

Statistical analysis

Bead- and ELISA-based assays used the median fluorescence
intensity (MFI) and mean absorbance, respectively, to deter-
mine the relative protein levels. All numerical data are

expressed as mean ± SEM (n= 4) normalized to control
(aroused) values. Statistical analysis was performed using Sig-
maPlot statistical package (v.12) software. The two-tailed Stu-

dent’s t-test was employed to assess differences between
samples from aroused and torpid animals and difference was
considered significant with P < 0.05 or P < 0.01.
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