
Genomics Proteomics Bioinformatics 13 (2015) 103–110
HO ST E D  BY

Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
ORIGINAL RESEARCH
Regulation of Torpor in the Gray Mouse Lemur:

Transcriptional and Translational Controls

and Role of AMPK Signaling
* Corresponding author.
E-mail: kenneth_storey@carleton.ca (Storey KB).

# Equal contribution.
a ORCID: 0000-0002-6076-7321.
b ORCID: 0000-0003-2373-232x.
c ORCID: 0000-0002-1204-3329.
d ORCID: 0000-0001-6370-429x.
e ORCID: 0000-0001-9316-1935.
f ORCID: 0000-0002-3801-0453.
g ORCID: 0000-0002-7363-1853.

Peer review under responsibility of Beijing Institute of Genomics,

Chinese Academy of Sciences and Genetics Society of China.

http://dx.doi.org/10.1016/j.gpb.2015.03.003
1672-0229 ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Beijing Institute of Genomics, Chinese Academy of Scie
Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Jing Zhang
1,2,#,a

, Shannon N. Tessier
1,3,#,b

, Kyle K. Biggar
1,4,c

,

Cheng-Wei Wu 1,5,d, Fabien Pifferi 6,e, Martine Perret 6,f, Kenneth B. Storey 1,*,g
1 Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
2 Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
3 Department of Surgery & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical

School, Charlestown, MA 02129, USA
4 Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
5 Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
6 UMR 7179 Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Brunoy 91800, France
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Abstract The gray mouse lemur (Microcebus murinus) is one of few primate species that is able to

enter daily torpor or prolonged hibernation in response to environmental stresses. With an emerg-

ing significance to human health research, lemurs present an optimal model for exploring molecular

adaptations that regulate primate hypometabolism. A fundamental challenge is how to effectively

regulate energy expensive cellular processes (e.g., transcription and translation) during transitions
nces and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2015.03.003&domain=pdf
mailto:kenneth_storey@carleton.ca
http://dx.doi.org/10.1016/j.gpb.2015.03.003
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.gpb.2015.03.003
http://creativecommons.org/licenses/by/4.0/


104 Genomics Proteomics Bioinformatics 13 (2015) 103–110
Metabolic rate depression;

AMP-activated protein

kinase
to/from torpor without disrupting cellular homeostasis. One such regulatory mechanism is reversi-

ble posttranslational modification of selected protein targets that offers fine cellular control without

the energetic burden. This study investigates the role of phosphorylation and/or acetylation in reg-

ulating key factors involved in energy homeostasis (AMP-activated protein kinase, or AMPK, sig-

naling pathway), mRNA translation (eukaryotic initiation factor 2a or eIF2a, eukaryotic initiation
factor 4E or eIF4E, and initiation factor 4E binding protein or 4EBP), and gene transcription (his-

tone H3) in six tissues of torpid and aroused gray mouse lemurs. Our results indicated selective

tissue-specific changes of these regulatory proteins. The relative level of Thr172-phosphorylated

AMPKa was significantly elevated in the heart but reduced in brown adipose tissue during daily

torpor, as compared to the aroused lemurs, implicating the regulation of AMPK activity during

daily torpor in these tissues. Interestingly, the levels of the phosphorylated eIFs were largely unal-

tered between aroused and torpid animals. Phosphorylation and acetylation of histone H3 were

examined as a marker for transcriptional regulation. Compared to the aroused lemurs, level of

Ser10-phosphorylated histone H3 decreased significantly in white adipose tissue during torpor, sug-

gesting global suppression of gene transcription. However, a significant increase in acetyl-histone

H3 in the heart of torpid lemurs indicated a possible stimulation of transcriptional activity of this

tissue. Overall, our study demonstrates that AMPK signaling and posttranslational regulation of

selected proteins may play crucial roles in the control of transcription/translation during daily

torpor in mouse lemurs.
Introduction

Daily torpor and multi-day torpor during seasonal hibernation
are strategies used by a variety of mammalian species for fue-
l/energy conservation. By strongly suppressing overall meta-

bolic rate and selectively shutting down various metabolic
processes, animals can greatly extend the time that they can
survive when facing environmental stress [1–3]. Exploration

of the molecular mechanisms behind such fascinating phenom-
ena not only provides answers to how natural torpor and
hibernation are accomplished but also develops insights that

could be applied for medical goals, including to avoid organ
failure and to develop inducible human torpor as an aid to
long term space flight [3–6]. The gray mouse lemur (Microce-
bus murinus) from Madagascar is one of the few primate spe-

cies that is able to enter a hypometabolic state to utilize
either daily torpor or multi-day hibernation [7]. Hence, this
primate represents an ideal model for investigating torpor in

the context of biomedical research.
The nocturnal gray mouse lemur enters torpor during its

inactive period when ambient temperatures (Ta) are low and

arouses again to euthermic conditions via endogenous heat gen-
eration [8]. During daily torpor bouts, the body temperature
(Tb) of mouse lemurs can drop to 27–33 �C, whereas Tb falls

to as low as 11.5 �Cduring 4 weeks of hibernation [9]. At the cel-
lular level, one common theme of hypometabolism is the coor-
dinated suppression of energy-expensive metabolic processes
such as protein synthesis, cell proliferation, and growth, while

upregulating pathways required for survival [10]. Studies have
shown that various hibernating species achieve this through
control at multiple levels including signal transduction, gene

expression, and downstream biological processes [3,11].
In the context of the hypometabolic state, it is crucial to

restrain net ATP expenditure, while effectively regulating

molecular responses that are essential to survival. Reversible
post-translational modification (PTM) of proteins/enzymes is
one such regulatory mechanism for differential control and

coordination of cellular processes. PTMs alter protein function
by introducing structural changes through the addition or
removal of covalently-attached functional groups on the
amino acid chain. Reversible protein phosphorylation and

protein acetylation are two well-studied PTMs. Major interme-

diary energy metabolism pathways rely heavily on the regula-

tion of enzyme activity via reversible protein phosphorylation,

so as many signal transduction pathways including those reg-

ulated by the AMP-activated protein kinase (AMPK) [12].

Reversible phosphorylation is also involved in transcriptional

and translational control. For example, in association with

acetylation, phosphorylation plays a crucial role in histone-

mediated control of gene transcription [13] and phosphoryla-

tion events on key proteins are critical to the assembly of

the eukaryotic translational complex that mediates protein

synthesis [14].

AMPK-dependent signal transduction plays an important

role in regulating energy-consuming biological processes when

ATP availability is limited (i.e., AMP levels are high) and

AMPK is often considered as the cellular energy sensor.

AMPK regulates cellular pathways to stimulate catabolic pro-

cesses that improve ATP production while simultaneously

inhibiting ATP-expensive anabolic activities. For example,

AMPK-mediated phosphorylation pathway inhibits acetyl-

CoA carboxylase that gates fatty acid synthesis [15]. Phospho-

rylation at Thr172 of its a-subunit [15] can trigger a �100-fold
increase in kinase activity [16]. Therefore, the relative amount

of phosphorylated AMPKa (p-AMPKa at Thr172) is a good

indicator of AMPK activity.

Protein synthesis is an energy-expensive process that

includes a stage-dependent assembly of various functional pro-
tein complexes [17]. For example, the multi-protein eIF4F pre-
initiation complex brings mRNA to ribosomes if several com-

ponents are accurately assembled. One of the components is
eIF4E, which binds to the 50m7G cap structure of a mature
mRNA [18]. Such binding is negatively regulated by the

eIF4E-binding protein (4EBP), which competes with the 50

cap for binding with eIF4E, thereby inhibiting assembly of
the pre-initiation complex. However, the inhibitory effect of
4EBP can be lifted by hyper-phosphorylation of the protein,

causing the dissociation of 4EBP-eIF4E [14,18]. In addition,
eIF4E is itself regulated by mitogen-activated protein kinases
(MAPKs) induced phosphorylation at Ser209 [19,20]. Further-



Figure 1 Response of p-AMPKa (Thr172) to daily torpor in

various lemur tissues

Histograms show relative absorbance based on antibody binding

to the phosphoprotein target under control (aroused) and torpid

states. Data are presented as mean ± SEM (n= 3–4 independent

trials on tissue from different animals). *Denotes significant

difference from the corresponding control by the Student’s t-test

(P < 0.05).
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more, protein synthesis is also regulated by eIF2, which is
responsible for delivering the initiating Met residue to the
assembling ribosome [21]. The a-subunit of eIF2 (eIF2) can

be phosphorylated at Ser51 in response to environmental
stresses, which attenuates the exchange of eIF2-GDP with
eIF2-GTP, leading to translational inhibition.

Histones serve as central structural components of the
nucleosome. Therefore, PTMs of histones play critical roles
in controlling the interaction between cis and trans regulatory

elements during initiation of gene transcription [22]. It is well-
established that phosphorylation at Ser10 of histone H3 pro-
motes gene transcription to facilitate a myriad of processes
including growth and cell division [23,24]. Phosphorylation

of histone H3 at Ser10 via stress-responsive kinase signaling
pathways leads to a more open chromatin structure that allows
gene transcription [25,26]. The N-terminus of histone H3 also

houses multiple Lys residues that are subject to acetylation.
Structural changes triggered by histone H3 acetylation lead
to a loosening of the compact wrapping of DNA, thereby giv-

ing transcription factors and RNA polymerase access to the
DNA-binding elements for transcription [27,28]. Furthermore,
multiple studies have proposed a close relationship between

histone H3 phosphorylation and acetylation [13].
Given that PTM is an effective and energy efficient way of

modifying protein/enzyme functions, the current study utilized
an enzyme-linked immunosorbent assay (ELISA) approach to

analyze the levels of phosphorylated and/or acetylated key
protein factors linked to AMPK signaling (AMPK), transla-
tion (eIF4E, 4EBP, and eIF2a), and transcription (histone

H3). By comparing responses of different tissues from aroused
versus torpid gray mouse lemurs, we explore the regulatory
control of transcription and translation during torpor.

Results and discussion

During mammalian torpor and hibernation, multiple energy-

expensive processes are suppressed. For example, transcrip-
tion, translation, and cell cycle progression are inhibited in
organs of hibernating ground squirrels and hamsters [29–32].

Numerous studies suggest that signaling pathways upstream
of crucial cellular processes are sensitive to limited energy
availability and react accordingly to depress metabolic rate

in a range of stress-tolerant species [33–36]. PTMs such as
reversible protein phosphorylation frequently mediate survival
adaptations under stress [10,37]. Therefore, the present study

investigates the relative levels of posttranslationally-modified
proteins involved in signal transduction, transcription, and
translation processes using ELISA in lemur tissues comparing
torpor and aroused states.

Differential responses of AMPK were previously reported
for organs of hibernating ground squirrels [32]. To examine
the response of the energy-sensing AMPK signaling pathway

to daily torpor in gray mouse lemurs, we measured the relative
level of p-AMPKa (Thr172) in torpid and aroused lemurs. Our
results showed that in the heart tissue, the relative levels of

p-AMPKa (Thr172) in torpid lemurs was significantly higher
than that of aroused lemurs (1.6 ± 0.03-fold). On the other
hand, p-AMPKa (Thr172) level in the BAT of torpid lemurs
was only 61.1 ± 4.8% of that of the aroused lemurs, which

is significantly lower (P < 0.05) (Figure 1). Since phosphoryla-
tion at Thr172 stimulates the catalytic activity of AMPK [15],
these data suggest that AMPK was activated in the heart but
inhibited in BAT during torpor. In the heart, AMPK signaling

is closely related to fatty acid metabolism [38]. One potential
action of AMPK-dependent stimulation of cardiac fatty acid
metabolism is to promote fatty acid uptake via upregulation

of the expression of the plasma membrane fatty acid trans-
porter (FAT/CD36) and the associated intracellular fatty acid
binding protein (FABP) [39]. FABPs are known to be upregu-

lated in the heart and some other tissues of hibernating ground
squirrels and bats [40,41]. Hence, the enhanced p-AMPKa
(Thr172) levels observed in lemur heart may contribute to
the stimulation of fatty acid uptake and transport to facilitate

the use of lipids as fuels during torpor.
AMPK signaling also influences mRNA translation. One

mechanism is via its effects on the target of rapamycin

(TOR)-4EBP pathway during translation initiation [42,43].
Active AMPK inhibits TOR (often called mTOR in mammals)
activity through direct phosphorylation of TOR, as well as the

TOR inhibitor protein, tuberous sclerosis (TSC) complex
TSC1-TSC2 [44,45]. Increased p-AMPKa (Thr172) level
in the heart of torpid lemurs (signaling energy limitation)
correlates with lowered metabolic rate and is an indicator of

inhibitory regulation of energy-expensive protein synthesis.
However, the level of p-AMPKa dropped significantly in
BAT of the torpid lemurs. Given that BAT is responsible for

non-shivering thermogenesis that drives the rewarming of the
body during arousal [46], it is possible that BAT must retain
some level of protein synthesis activity in the hypometabolic

state, which may explain the observed suppression of AMPK
in this tissue. Indeed, analysis of protein synthesis rates in an
in vitro translational assay revealed no change in 3H-leucine

incorporation into protein in BAT comparing hibernating
ground squirrels to euthermic ones, whereas the rate in kidney
extracts of hibernating squirrels was only 15% of the euther-
mic ones [45]. Furthermore, no signs of AMPK activation were

observed in BAT of ground squirrels during hibernation



Figure 3 Response of p-eIF2a (Ser51) to daily torpor in various

lemur tissues

Histograms show relative absorbance based on antibody binding

to the phosphoprotein target under control (aroused) and torpid

states. Data are presented as mean ± SEM (n= 3–4 independent

trials on tissue from different animals). *Denotes significant

difference from the corresponding control by the Student’s t-test

(P < 0.05).
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[32,47]. Overall, these data suggest that the gray mouse lemur
and 13-lined ground squirrel may share a similar strategy of
BAT adaptation under torpid conditions, to maintain a state

of readiness for protein synthesis that would support immedi-
ate demands by the tissue whenever thermogenesis is initiated.

The effects of torpor on other components of the TOR-

4EBP-eIF4E axis were also investigated in lemur tissues.
Active TOR phosphorylates 4EBP to release inhibitory bind-
ing of eIF4E and thereby promote the assembly of the pre-

translation initiation complex [43]. Our results showed no sig-
nificant changes in the p-4EBP level in any of the tissues tested
(Figure 2). Unaffected p-4EBP levels suggest that a potential
AMPK-dependent control over translation may be exerted at

other stages of translation. Similarly, the p-eIF2a level in tor-
pid lemurs remained comparable to that in aroused animals in
all tissues tested (Figure 3). Since AMPK is also able to regu-

late mRNA translation through eukaryotic elongation factor 2
(eEF2) [42], it is possible that the AMPK signaling exerts reg-
ulation over translation in lemur heart and BAT at another

stage of translation, such as elongation. Indeed, elevated
p-eEF2 (Thr56) levels were observed in liver, WAT, and
brain of hibernating ground squirrels, supporting the inhibi-

tory control at this level [32].
Interestingly, the level of p-eIF4E (Ser209) showed a tissue-

specific response to daily torpor. Skeletal muscle and WAT
possessed significantly more p-eIF4E (2.74 ± 0.3 and

2.0 ± 0.3 fold when compared to the arousal level, respec-
tively; P < 0.05); whereas kidney showed a decrease to
68.4 ± 4% of the level observed in the aroused animals (Fig-

ure 4). In addition to being a major downstream target to
AMPK signaling, eIF4E is also regulated by other stress-
responsive kinase pathways, such as MAPKs. For example,

eIF4E can be phosphorylated at Ser209 by p38MAPK and
ERK [19,20]. Given that p38MAPK and ERK pathways
respond to distinct stimuli, extracellular stresses [48–50], and
Figure 2 Response of p-4EBP (Thr37/46) to daily torpor in

various lemur tissues

Histograms show relative absorbance based on antibody binding

to the phosphoprotein target under control (aroused) and torpid

states. Data are presented as mean ± SEM (n= 3–4 independent

trials on tissue from different animals). *Denotes significant

difference from the corresponding control by the Student’s t-test

(P< 0.05).
mitogenic stimuli [51], respectively, the Ser209 phosphoryla-
tion events on eIF4E from those pathways make translation

capable of responding to various extracellular conditions.
Although further studies are needed in order to fully elucidate
the function of Ser209 phosphorylation on eIF4E [19], the

tissue-specific changes observed in the current study suggest
that p38MAPK and/or ERK signaling pathways might con-
tribute to control of the daily torpor in lemurs. Indeed, the

protein levels of both p38MAPK and ERK increased signifi-
Figure 4 Response of p-eIF4E (Ser209) to daily torpor in various

lemur tissues

Histograms show relative absorbance based on antibody binding to

the phosphoprotein target under control (aroused) and torpid states.

Data are presented as mean± SEM (n= 3–4 independent trials on

tissue from different animals). *Denotes significant difference from

the corresponding control by the Student’s t-test (P< 0.05).



Figure 6 Response of total acetyl-histone H3 to daily torpor in

various lemur tissues

Histograms show relative absorbance based on antibody binding

to the acetyl-protein target under control (aroused) and torpid

states. Data are presented as mean ± SEM (n= 3–4 independent

trials on tissue from different animals). *Denotes significant

difference from the corresponding control by the Student’s t-test

(P < 0.05).

Zhang J et al / AMPK & Metabolic Control During Lemur Torpor 107
cantly in skeletal muscle of torpid lemurs, which is consistent
with the observed enhancement of phosphorylated eIF4E con-
tent in the present study [52]. Activation of p38MAPK in

skeletal muscle has also been reported in Richardson’s ground
squirrels and little brown bats [53,54], indicating that
p38MAPK is sensitive to torpor conditions in multiple hiber-

nating species. Similarly, increased total protein and phospho-
rylation levels of major kinases in MAPK cascades were
observed in WAT of torpid lemurs [52]. Since WAT is the main

storage organ for lipid, the activation of MAPK cascades may
play crucial roles in the lipid-based energy metabolism that
supports hibernation [55]. Biggar et al. [52] also demonstrated
signs of inhibition of p38MAPK and ERK pathways in lemur

kidney during daily torpor (decreased p-p38MAPK and
p-ERK levels), which agrees with our observation that kidney
p-eIF4E content dropped significantly during torpor.

Gene transcription is another ATP-expensive process in
cells that typically shows global suppression during hypometa-
bolism [56]. Posttranslational phosphorylation and acetylation

of histone H3 lead to transcriptional activation by opening up
chromatin structure to facilitate binding of the transcriptional
apparatus [25]. We thus analyzed levels of p-Histone H3

(Ser10) and acetylated histone H3 in multiple tissues of lemurs.
The results show that both p-histone H3 (Ser10) and acetyl-
histone H3 levels remained unchanged in liver, skeletal muscle,
kidney, and BAT during torpor (Figure 5 and Figure 6).

However, WAT exhibited a strong and significant reduction
in the phosphorylated histone H3 level during torpor to only
4.5 ± 1% of the corresponding arousal level (Figure 5;

P < 0.05), suggesting suppressed transcriptional activity in
this tissue during torpor. On the other hand, the heart was
the only organ to show a significant change in acetylated his-

tone H3 levels in torpid lemurs, which is 1.8 ± 0.2-fold of
the control animals (Figure 6; P < 0.05), which could indicate
a stimulation of transcription activity during torpor. The heart

must remain relatively active (although at a much lower heart
Figure 5 Response of p-histone H3 (Ser 10) to daily torpor in

various lemur tissues

Histograms show relative absorbance based on antibody binding

to the phosphoprotein target under control (aroused) and torpid

states. Data are presented as mean ± SEM (n= 3–4 independent

trials on tissue from different animals). *Denotes significant

difference from the corresponding control by the Student’s t-test

(P < 0.05).
beat rate) during torpor in order to circulate blood and main-
tain oxygen and substrate supplies to tissues [57]. Thus, the

observed increase in acetylated histone H3 levels may facilitate
a more flexible chromosome structure needed to support selec-
tive gene expression during torpor. Indeed, previous studies

have reported substantial torpor-induced gene expression in
the heart during ground squirrel hibernation [58–60]. Our
observations on the heart acetyl-histone H3 level indicate a

similar pattern in lemur during daily torpor.

Conclusion

Accordingly, the current study provides insights into the
molecular regulatory network supporting daily torpor in gray
mouse lemurs stretching from the energy sensing AMPK path-

way to specific downstream processes including gene transcrip-
tion and mRNA translation. While the relative levels of most
posttranslationally-modified targets were unchanged during

torpor as compared with the aroused control, some tissue-
specific changes were observed. For example, p-AMPKa
(Thr172) levels increased in the heart but decreased in BAT.
Since some organs such as BAT serve unique functions that

are crucial for survival during torpor, it is not surprising that
tissue-specific changes in PTM-dependent functional regula-
tion of proteins were seen under torpor conditions. These find-

ings are consistent with the conservation and re-prioritization
of ATP expenditures in the hypometabolic state. This study
demonstrates for the first time that posttranslational modifica-

tions play a role in the regulation of transcription/translation
and energy homeostasis (via AMPK signaling) during gray
mouse lemur daily torpor. Our work provides a solid founda-

tion for future studies aimed at fully depicting the molecular
signatures of daily torpor, ranging from high throughput tran-
scriptomic and proteomic studies, to the potential species
specific genome characterizing.



108 Genomics Proteomics Bioinformatics 13 (2015) 103–110
Materials and methods

Animal care

Animal care and experiments are described in detail by Biggar
and his colleagues [52]. All imported tissues were logged accord-

ing to the Convention on International Trade in Endangered
Species of Wild Fauna and Flora (CITES) regulations (import
permit No: 10cA02291/QWH and export permit No:
FR1009118231-E). All tissues were stored at �80 �C prior to use.

Protein extraction

Frozen tissue samples (up to 50 mg) were homogenized 1:4

(w/v) in a pre-chilled lysis buffer (Millipore, catalog No. 43-
040) with 1 mM Na3VO4, 10 mM ß-glycerophosphate and
1% protease inhibitor cocktail (catalog No. PIC001, BioShop)

added using a Dounce homogenizer. Samples were incubated
on ice for 30 min before centrifugation at 12,000 · g for
20 min at 4 �C. Supernatants were collected as total soluble
protein lysates and protein concentrations were determined

using the Bradford assay. Aliquots of the lysate were then
adjusted to a final working concentration of 0.7 lg/ll using
the assay buffer provided with the corresponding ELISA kit.

For each assay, the amount of protein added was optimized
for each tissue and kit, ranging from 5 to 60 lg.

ELISA

PathScan ELISA kits (New England Biolabs, Canada) were
used to assess the amount of posttranslationally-modified
4EBP (p-4EBP Thr37/46, catalog No. 7216S), eIF4E (p-

eIF4E Ser209, catalog No. 7938S), eIF2a (p-eIF2a Ser51, cat-
alog No. 7286S), histone H3 phosphorylation (p-histone
Ser10, catalog No 7155S), histone H3 acetylation (pan A-

histone H3, catalog No. 7232S) and AMPKa (p-AMPKa
Thr172, catalog No. 7959C) in the liver, skeletal muscle, heart,
kidney, BAT, and WAT. Assays were carried out according to
manufacturer’s instructions. Briefly, capture antibody-coated

microwell strips were equilibrated to room temperature. Protein
samples were diluted to a value appropriate for each kit using
sample diluent (supplied with the ELISA kits). Aliquots of

100 ll of diluted protein samples were added into wells of the
microwell strips (mounted in a 96 well microplate frame), which
were subsequently covered with sealing tape and allowed to

incubate for 2 h at 37 �C. All wells were washed three times with
diluted (1 ·) wash buffer provided with the kit. Then 100 ll of
the detection antibody was added into each well and incubated

with samples at 37 �C for 1 h. After washing as above, samples
were then incubated with 100 ll HRP-conjugated secondary
antibodies for 30 min at 37 �C. Secondary antibodies were dis-
carded after incubation and the sample wells were washed before

adding 100 ll tetramethylbenzidine (TMB) substrate for colori-
metric detection. After 10 min, 100 ll aliquots of stop solution
were added into the sample wells and absorbance was read

and quantified at 450 nm using a spectrophotometer.

Data analysis

The quantified signals were compared between aroused and

torpid animals. The results are presented as relative
absorbance. All data are expressed as mean ± SEM (n= 3–
4 individual animals). The Student’s t-test was employed to
assess differences between samples from aroused and torpid

animals and difference was considered significant with
P < 0.05.
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