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KEYWORDS Abstract Very few selected species of primates are known to be capable of entering torpor. This
Metabolic rate depression; exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait
Signal transduction; among primates and, in phylogenetic terms, is very close to the human lineage. To explore the
Mitogen activated protein regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to
kinase discover those involved in coordinating tissue responses during torpor. The responses of

mitogen-activated protein kinase (MAPK) family members to primate torpor were compared in
six organs of control (aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins
examined include extracellular signal-regulated kinases (ERKSs), c-jun NH,-terminal kinases
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(JNKs), MAPK kinase (MEK), and p38, in addition to stress-related proteins p53 and heat shock
protein 27 (HSP27). The activation of specific MAPK signal transduction pathways may provide a
mechanism to regulate the expression of torpor-responsive genes or the regulation of selected down-
stream cellular processes. In response to torpor, each MAPK subfamily responded differently dur-
ing torpor and each showed organ-specific patterns of response. For example, skeletal muscle
displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues
showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of
ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and
JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical
for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized
as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in
the regulation of primate organs during torpor.

Introduction

The ability to generate internal heat and maintain a high body
temperature (7},) has huge advantages for mammals, e.g., sup-
porting advanced cognitive capabilities, speed and agility, and
ability to live in cold climates [1]. However, there are high ener-
getic costs to a life as a warm-blooded mammal. Many small
mammals live “right on the edge” with the amount of food
that they eat each day barely sufficient to keep them alive
and warm until morning [2]. As a result, added stresses on
the animal, particularly seasonal shortages of food/water
and/or extreme environmental temperatures can be lethal.
The solution for many small mammals is to temporarily lower
their energy needs by regulating a strong suppression of their
metabolic rate, causing T}, to fall, and enter either short-term
daily torpor or long-term (days or even weeks) continuous
hibernation [3-5].

Although alien to humans, daily torpor and hibernation
occur in multiple mammalian groups including monotremes,
marsupials, rodents, bats, and bears [4]. Various ground squir-
rel, bat, hamster, and mouse species have been main models
for most of the lab-based studies of the biochemical and
genetic control of the phenomena [3-5]. It is now known that
torpor also occurs in a few species of primates — specifically,
some lemurs that are native to Madagascar [2,6-8]. In phylo-
genetic terms, this indicates that the ability to enter torpor
is an ancestral trait of the primate lineage, occurring among
species that are very close to the human line [9].

Mouse lemurs of the Microcebus genus are the smallest
primates in the world but among these, the gray mouse lemur,
Microcebus murinus, is the largest (weighing around 85-110 g)
[2]. Mouse lemurs are nocturnal and sleep in tree holes during
the day. They are found along the entire west coast of Mada-
gascar with other populations in the north-central and south-
eastern regions of the country. This land is lush and wet during
the summer but cool and dry in the winter [10]. To deal with
periodic food shortages, limited water supply, and cool winter
temperatures, mouse lemurs employ hypometabolism [7,8,10].
Daily torpor occurs frequently in mouse lemur species and
multi-day hibernation has also been reported for both M. mur-
inus and Microcebus griseorufus [8]. Environmental factors
such as photoperiod, ambient temperature, and food availabil-
ity are each involved in shaping the biological rhythms of these
animals that are characterized by a winter resting period, an
active summer breeding season, and an autumn fattening stage
[2]. Although several studies have documented the physiologi-
cal responses of mouse lemur torpor/hibernation [§], this study

and the others in this series are the first to explore some of the
molecular mechanisms that regulate the phenomena.

Many studies of small mammal torpor and hibernation
have discovered compelling commonalities. A prominent
theme is a strong global suppression of metabolic rate, involv-
ing a regulated and coordinated reduction in all metabolic pro-
cesses [3,11]. Moreover, fine cellular controls are needed to
selectively modulate gene expression and direct specific cellular
responses to meet the unique needs of individual organs [3,11].
Established models of mammalian hibernation are typically
coincident with low T}, values [5]. By strongly suppressing
energy-expensive cell functions and letting Tb values cool to
ambient (sometimes as low as 0—5 °C), metabolic rate can often
be reduced to < 5% of normal resting values in euthermia [1].
While hibernation provides an eloquent solution to seasonal
shortages; it is often difficult to distinguish between the specific
molecular adaptations necessary for metabolic rate depression
from those that contribute to surviving cold 7%. This has been
a significant area of controversy in hibernation research [12].
Interestingly, summer-active hibernating species are as suscep-
tible to metabolic damage from hypothermia or hypoxia
insults as are non-hibernating mammals, but during the winter
they can easily transition into torpor, letting 7}, fall to near
0 °C and displaying substantially-enhanced hypoxia/ischemia
tolerance [11,12]. The lemur model is extremely attractive for
studies of mammalian hypometabolism and has several advan-
tages as a model: (a) as primates, these animals are the most
closely-related species to human that exhibit natural hypome-
tabolism, and (b) they enter torpor at high ambient tempera-
tures so they show a “pure” form of hypometabolism that is
not confounded by the additional biochemical adaptations
needed by most species to adjust enzymes/proteins for low
temperature function.

Studies from a range of animal models with various toler-
ances to different environmental stresses (freezing, anoxia,
low pH, dehydration, efc.) have shown that global metabolic
rate suppression, mediated via reversible protein phosphoryla-
tion (RPP), is crucial for survival [3]. RPP can produce major
changes in the activity states of many enzymes and functional
proteins, often providing on/off control. Apart from direct reg-
ulation of functional proteins, RPP is also responsible for the
detection of extracellular stimuli and their propagation via
intracellular signal transduction networks. The use of RPP
provides a fast and coordinated mechanism to regulate the
function of a wide number of cellular processes that can also
be rapidly reversed once the stress is removed [13]. In particular,
important targets for RPP control include proteins involved in
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catabolic pathways that regulate ATP supply, and proteins
that regulate major ATP-consuming cell processes such as
transmembrane ion transport, gene transcription, and protein
translation [3,14]. Given the extensive research that RPP has
received, it has been well-established that RPP is a central
mechanism in the coordination of cellular functions through-
out bouts of torpor/hibernation and arousal in hibernating
species, just as it does in many other systems of natural hypo-
metabolism [15,16].

In light of an overall suppression of gene transcription and
protein translation, expression of a small number of genes that
are necessary for survival is upregulated in the hypometabolic
animal [3]. The identification and characterization of these
upregulated genes is particularly important as they provide
insight into what cellular functions are important for long-
term survival [17.18]. To date, these important cellular func-
tions have been shown to include protein chaperones, proteins
involved in reorganization of fuel metabolism, antioxidant
defense, muscle restructuring, system regulators (growth,
cell cycle, apoptosis, atrophy), and proteins that support
non-shivering thermogenesis [16,19-21].

It has been well documented that mitogen-activated protein
kinase (MAPK) signaling pathways are crucial in the regula-
tion of the cellular stress response, and several studies have
documented their role in hibernation at low body temperatures
[15,22-30]. In the lemur, the activation of selected MAPK sig-
naling pathways may provide a rapid response mechanism for
stress-responsive gene expression, contributing to the control
of torpor entry/exit. The present study examined the protein
expression and phosphorylated state of extracellular signal-
regulated kinase 1/2 (ERK1/2), MAPK kinase (MEK), c-jun
NH,-terminal kinase (JNK), and p38, as well as the down-
stream targets heat shock protein 27 (HSP27) and p53, in dif-
ferent tissues of lemurs by comparing torpid animals with
control aroused animals. By utilizing an animal that can enter
hypometabolism without the confounding effects of low Ty,
the majority of cellular reorganization seen during torpor at
warm T}, values can be attributed to active induction of meta-
bolic rate depression.

Results

Using custom multiplex panels, which were validated to cross-
react in both primate and rodent species (Bio-Rad, Hercules,
CA), relative changes in total and phosphoprotein expression
of ERK, MEK, JNK, p38, HSP27, and p53 were assessed in
the skeletal muscle, heart, liver, kidney, brown adipose tissue
(BAT), and white adipose tissue (WAT) by comparing control
(aroused) and torpid lemurs. In skeletal muscle, relative pro-
tein levels of ERK, JNK, p38, and p53 were significantly
increased in torpid animals, which are 1.2 + 0.1 (P < 0.05),
1.9 £0.1 (P<00l), 1.7£02 (P <0.01), and 1.4 £ 0.1
(P < 0.01) fold of those in controls, respectively (Figure 1A).
In contrast, the relative expression of HSP27 in skeletal muscle
decreased significantly, being 72 + 11% of the control value
(P < 0.05). The phosphorylation of three targets in skeletal
muscle also changed when comparing control and torpor con-
ditions. During torpor, the ratio (i.e., relative phosphoryla-
tion/relative total expression) of phosphorylation for HSP27
(Ser78) was significantly increased, being 1.4 + 0.1 fold of
that in control animals (P < 0.05), whereas the relative

2.5 1
I Control
[ Torpor

2.0 4

0.5 1

Relative MFI in skeletal muscle (total protein) >
5

0.0

HSP27 p53

0.8

0.6

0.4

0.2

Relative MFI ratio in skeletal muscle
(phosphorylated / total)
=

0.0

Figure 1  Expression and phosphorylation of MAPK kinases and
targets in skeletal muscle of gray mouse lemurs

A. Relative total protein levels of ERK, MEK, JNK, p38, HSP27,
and p53. B. Relative ratio of phosphorylation levels (relative
phosphorylation/relative total protein expression) of p-ERK1/2
(Thr202/Tyr204, Thr185/Tyr187), p-MEK (Ser217/221), p-JNK
(Thr183/Tyr185), p-p38 (Thr180/Tyr182), p-HSP27 (Ser78), and
p-p53 (Serl5). All data were obtained by multiplex analysis using a
Luminex 100 instrument and analyzed with Milliplex analyst
software. Shown are histograms of mean of median fluorescent
intensity (MFI) of immune-reactive multiplex beads (mean =+
SEM), n = 4 independent samples from different animals from
control (aroused) and torpid experimental conditions. Significant
differences in torpid animals in comparison to controls are
denoted with "(P < 0.05) and “(P < 0.01), respectively (two-
tailed Student ¢-test).

phosphorylation ratios of ERKI1/2 (Thr202/Tyr204,
Thr185/Tyr187) and MEK (Ser217/221) phosphorylation were
lower, 36 = 10% (P < 0.01) and 27 + 8% (P < 0.05) of
those in control animals, respectively (Figure 1B). In the heart
tissue (Figure 2A), ERK levels in the heart during torpor were
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Figure 2 Expression and phosphorylation of MAPK kinases and
targets in the heart of gray mouse lemurs

Significant differences in torpid animals in comparison to controls
are denoted with “(P < 0.05) and (P < 0.01), respectively (two-
tailed Student z-test).

87 £ 2% of the control (aroused) value (P < 0.05), whereas
JNK levels during torpor were 1.2 = 0.1 fold of controls
(P < 0.01), with no appreciable changes observed in other tar-
gets. Assessment of the relative phosphorylation ratios of the
targets in the heart showed no significant changes (Figure 2B).

In the liver, total protein levels of all six targets were
unchanged in response to torpor (Figure 3A). However, the
ratio of relative phosphorylated p53 (Serl5) was significantly
higher (1.3 £+ 0.09 fold, P < 0.01) during torpor, whereas rel-
ative HSP27 (Ser78) phosphorylation was lower (58 + 8% of
the control value; P < 0.01) (Figure 3B). In kidney, the
relative protein expression of HSP27 was elevated (1.4 £ 0.1-
fold) during daily torpor (P < 0.05), the only one of the tar-
gets to show a significant change (Figure 4A). However, the
relative ratios of phosphorylation for three targets were
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Figure 3  Expression and phosphorylation of MAPK kinases and
targets in liver of gray mouse lemurs

Significant differences in torpid animals in comparison to controls
are denoted with “(P < 0.05) and “"(P < 0.01), respectively (two-
tailed Student ¢-test).

reduced significantly and substantially in kidney (Figure 4B)
during torpor. The relative phosphorylation of MEK
(Ser217/221), INK (Thr183/Tyr185), and p38 (Thr180/Tyr182)
decreased to 65 £ 9%, 71 £ 10%, and 64 £+ 2% of control
(aroused) values, respectively (P < 0.05).

No significant changes were observed for any of the
six total protein targets analyzed in BAT during torpor
(Figure 5A), but phosphorylation of ERK1/2 (Thr202/Tyr204,
Thr185/Tyr187) and p38 (Thr180/Tyr182) were significantly
elevated, being 1.3 £ 0.1 and 1.4 £ 0.1 fold of that in control
animals, respectively (Figure 5B; P < 0.05). Data for WAT
showed that total protein levels of ERK, p38, and HSP27 were
significantly increased during torpor, which are 1.1 &+ 0.1
(P <0.05), 1.4 £ 0.1 (P <0.05, and 1.1 £ 0.1 (P < 0.01)
fold of those in control (aroused) animals, respectively
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Figure 4 Expression and phosphorylation of MAPK Kkinases and
targets in kidney of gray mouse lemurs

Significant differences in torpid animals in comparison to controls
are denoted with (P < 0.05) and ""(P < 0.01), respectively (two-
tailed Student ¢-test).

(Figure 6A). Furthermore, in WAT of torpid lemurs, all six
targets exhibited significant elevation in phosphorylation as
compared to control animals, with fold changes of 1.8 + 0.3
(MEK Ser217/221; P < 0.01), 2.3 + 0.2 (ERK1/2 Thr202/Tyr204,
Thr185/Tyr187; P < 0.01), 1.5+ 02 (JINK Thrl83/Tyrl85;
P <005), 1.4 = 0.2 (p38 Thr180/Tyrl82; P < 0.01), 1.4 £ 0.1
(HSP27 Ser78; P < 0.05), and 1.8 £ 0.1 (p53 SerlS; P < 0.01),
in relative to total protein expression (Figure 6B).

Discussion

Mammals have the ability to maintain a constant high core T}
over a wide range of ambient temperatures. However, during
periods of food restriction, often associated with cold or dry
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Figure 5 Expression and phosphorylation of MAPK kinases and
targets in brown adipose tissue of gray mouse lemurs

Significant differences in torpid animals in comparison to controls
are denoted with “(P < 0.05) and (P < 0.01), respectively (two-
tailed Student ¢-test).

conditions, the high cost of metabolic heat production can
be detrimental to survival. Accordingly, some mammals dis-
play significant heterothermy and/or use torpor as means to
conserve energy during periods of severe environmental stress
[1,3,11,12]. Torpor in heterothermic endotherms is character-
ized by a controlled reduction of metabolic rate that then
results in a drop in Ty, often to near ambient temperature,
as well as a suppression of multiple physiological functions
(e.g., heart rate and breathing rate) [1,11,12]. Low tempera-
tures often confound experiments aimed at studying the regu-
lation of torpor in classic hibernators [12,31-33]. However,
torpor/hibernation in the tropics or subtropics provides
researchers with models of mammalian hypometabolism,
which are much more “pure” in the sense that the effects of
adaptations to low body temperatures can be factored out of
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Figure 6 Expression and phosphorylation of MAPK kinases and
targets in white adipose tissue of gray mouse lemurs

Significant differences in torpid animals in comparison to controls
are denoted with (P < 0.05) and “"(P < 0.01), respectively (two-
tailed Student z-test).

the analysis. Indeed, 7T}, at the nadir of daily torpor in the
mouse lemurs used in the present study was only 30-33 °C.
Hence, studies of torpor in the gray mouse lemur offer the
option to explore the regulation of a relatively pure reduction
in metabolic rate, without the confounding influence of low
temperature.

To date, the majority of research on mammalian torpor and
hibernation has focused on species from seasonally-cold envi-
ronments such as bats and a variety of rodents including
ground squirrels, hamsters, chipmunks, and marmots, whose
seasonal heterothermy is necessitated by the subzero winter
temperatures that must be endured [16,34.35]. Although
lemurs live in tropical Madagascar, they experience similar
periods of heterothermic torpor that allow them to deal with

the dry cool season when food is scare. This shows that tor-
por/hibernation is not just a temperature-driven phenomenon.
Rather, induction of a heterothermic phenotype is more
strongly linked to the seasonal availability of nutrients [33],
as is estivation, another form of hypometabolism that is typi-
cally associated with hot, arid conditions that also impact food
availability [36]. As yet, there have been few studies examining
the molecular mechanisms of primate torpor. The present
study focused on the MAPK cascades that are major cell sig-
naling pathways mediating environmental stress signals with
primary effects on gene expression. The expression and relative
phosphorylation status of three MAPK cascades (ERK1/2,
p38, and JNK) were characterized in six tissues of gray mouse
lemurs comparing aroused and torpid animals. Interestingly,
we observed unique patterns of tissue-specific response in all
three MAPK cascades, when the torpor-responsive MAPK
expression in the lemur was compared to expression in models
of mammalian hibernation at low body temperatures.

The ERK signaling pathway is initiated by the activation
of G-proteins, which leads to the sequential phosphorylation
and activation a three-tiered cascade involving a MAPK
kinase kinase, a MAPK kinase and finally the MAPK. For
the ERK cascade the three kinases are RAF kinase
(MAPKKK) - MEK (MAPKK)— ERK (MAPK). Upon
activation by phosphorylation at Thr202 and Tyr204, ERK1
and ERK2 function as potent Ser/Thr kinases that phosphory-
late a wide array of downstream targets. To date, approxi-
mately 160 different ERK substrates have been discovered
with the majority of downstream proteins involved in regulat-
ing cellular proliferation, growth, and survival [37.38]. In the
lemur, both MEK and ERK1/2 displayed unique patterns
across six tissues during torpor. Despite an increase in ERK
total protein in skeletal muscle, a strong reduction in the rela-
tive levels of phosphorylation for ERK1/2 and MEK was evi-
dent during torpor (Figure 1). Such reduction might be
attributed to a decrease in the level of mitogenic stimuli during
torpor; suggesting that cell growth and proliferation are sup-
pressed in skeletal muscle during torpor. In other tissues, a
moderate reduction of total ERKI1/2 protein level was
observed in the heart whereas a reduction of relative phos-
phorylated MEK occurred in kidney during torpor.

Interestingly, both BAT and WAT showed increases in rel-
ative ERK1/2 phosphorylation during torpor, indicative of
increased ERK action. The thermogenic BAT is the main
source of heat for rewarming the body during the arousal
phase of torpor/hibernation, whereas WAT is the primary
metabolic fuel storage organ [39]. Both showed a significant
increase in ERK1/2 phosphorylation in torpor (Figures 5
and 6B) and WAT also showed a small increase in ERK1/2
protein levels and relative phosphorylation of MEK. Thus,
as opposed to the trend observed in skeletal muscle, WAT
showed a dramatic increase in ERK signaling, suggesting a
possible increase of cellular functions such as proliferation
and growth in this tissue during torpor. Studies have recently
shown that wintering lemurs spare the consumption of body
protein mass during periods of food shortage, indicating a reli-
ance on lipids, mobilized from WAT, as the primary source of
metabolic fuel in torpor [2]. This seasonal shift in oxidative
metabolic fuel results in a 6-fold increase of fat mass during
winter preparation in lemurs as compared to summer animals
[2]. Fat storage and reliance on lipids as the main metabolic
fuel is well-known for other models of mammalian
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torpor/hibernation. For example, rodent hibernators display a
respiratory quotient of 0.7 during torpor, a value indicative of
nearly 100% fatty acid oxidation [40]. As well, key enzymes of
carbohydrate catabolism such as pyruvate dehydrogenase
and glycogen phosphorylase are suppressed in hibernating
ground squirrels, indicating conservation of carbohydrate
reserves [41].

Like ERK1/2, both JNK and p38 are activated via phos-
phorylation by a direct upstream MAPK kinase and are
primarily involved in stress-activated cellular responses.
Although both JNK and p38 cascades can be activated
through similar stimuli, each cascade elicits distinct down-
stream responses [42-46]. JNK is involved in pro-apoptotic
signaling through phosphorylation of p53 at Serl5, which is
critical in stabilization of p53 [43,44]. An upregulation of
JNK protein levels was evident only in the two muscle types
(cardiac and mixed skeletal) during torpor in lemurs whereas
relative phosphorylation of JNK occurred only in WAT (Fig-
ures 1-0). Since the functional role of JNK phosphorylation
has been linked to numerous downstream processes, it is often
hard to predict its primary function when activated. Nonethe-
less, an increase in p53 phosphorylation at Serl5 was corre-
lated with JNK phosphorylation in WAT. Whereas JNK is a
known regulator of p53 activity, the broad spectrum of JNK
downstream effectors and variety of kinases upstream of p53
provides possible explanations for the discord between JNK
and p53 activation in other tissues. For example, ataxia telang-
iectasia mutated (ATM) and ATM- and Rad3-related (ATR)
kinases both phosphorylate p53 at Serl5 in response to
DNA damage [47,48]. In summary, the lack of correlation
between JNK and p53 phosphorylation pattern in selected tis-
sues suggests that the regulation of JNK signaling could play a
minor role in regulation of apoptosis (mediated by p53) during
torpor, and the activation of JNK in selected tissues functions
to activate other downstream targets, which have yet to be
identified in the lemur.

The third subfamily of MAP kinases, p38, is also activated
through similar extracellular stimuli as JNK and, as such, it
was predicted that the regulatory pattern of p38 would be sim-
ilar to that observed for INK during torpor. Total p38 protein
expression was upregulated in skeletal muscle and WAT; how-
ever, active phosphorylated p38 (Thr108/Tyr182) increased in
BAT, and WAT, while decreasing in the kidney (Figures 1-6).
As mentioned, distinct downstream phosphorylation targets
for p38 and JNK have been each identified. For example,
HSP27, a chaperone protein that is activated during periods
of cellular stress, lies downstream of p38 [49]. Our findings
show that although tissue-specific patterns of HSP27 expres-
sion are evident during torpor, only WAT displayed a correla-
tion between HSP27 and p38 phosphorylation. Similar to p53,
HSP27 can be phosphorylated by a number of different
upstream kinases, including p90 ribosomal S6 kinase (RSK)
and protein kinase C (PKC) [50,51]. Although the selected
JNK/p38 downstream targets measured in this study did not
uncover evidence for pathway activation, the increased phos-
phorylation of JNK and p38 (which is necessary for kinase
activity) observed in torpor suggests the presence of stress-
activated stimuli in selected tissues of the lemur during torpor.

When comparing the regulation pattern of the three MAP
kinase subgroups, no uniform pattern was discerned between
tissues during torpor. In the skeletal muscle, decrease in rela-
tive phosphorylation of ERK and its upstream kinase MEK

was most evident. By contrast, kidney showed no changes in
total protein levels of any of the MAPKs (or MEK) but dif-
fered in relative phosphorylation of the kinases, displaying a
notable decrease in phosphorylated JNK and p38 (as well as
MEK). The most interesting findings of this study were the
patterns observed in the adipose tissues during torpor. Both
BAT and WAT showed significant increases in relative ERK
and p38 phosphorylation, with WAT exhibiting an increased
phosphorylation of all three MAP kinases (and MEK) during
torpor. As mentioned earlier, both adipose tissues possess
specialized functions that are critical for torpor, with
BAT required for non-shivering thermogenesis and WAT as
the primary source of metabolic fuel [52,53].

The relative changes in both total and phosphorylated
ERK1/2, INK, MEK and p38 kinase expression observed in
the organs of the hibernating gray mouse lemur, M. murinus,
suggest important cellular roles for MAPK signaling in adapt-
ing the animal for torpor. The activation of these selected sig-
nal transduction pathways may influence the expression of a
panel of torpor-responsive genes, which are critical to the regu-
lation of distinct cellular processes that are necessary for survival
in the metabolically-depressed state. Hence, the role of MAPK
signaling may involve the execution of unique, tissue-specific sur-
vival programs that support torpor in this primate model. Given
current efforts to sequence the genome of M. murinus, it is pos-
sible that future proteomic analysis of primate torpor will be
able to identify torpor-responsive signaling pathways unique to
either daily torpor or seasonal hibernation.

Materials and methods

Animals

Gray mouse lemurs (M. murinus) used for this study consisted
of 8 adult females, 2-3 years of age (mean body mass
106.3 + 15.5 g), that were born in the authorized breeding col-
ony at the National Museum of Natural History of France
(Brunoy, France; European Institution Agreement # E91-
114-1). Standard procedures for animal holding, experimenta-
tion and sampling were conducted by Dr. Martine Perret and
the Adaptive Mechanisms and Evolution team (MECADEV-
Mecanismes Adaptatifs et Evolution, Department of Ecology
and Management of Biodiversity) as previously described
[2,54]. In the breeding colony, mouse lemurs were exposed to
a photoperiod regime that parallels the alternating 6 month
winter short days (10 h light/day) and 6 month summer long
days (14 h light/day) of Madagascar.

All animals in the present study were under winter short
day conditions for at least 6 weeks before being transferred
to individual cages (0.5 % 0.3 x 0.3 m) that were visually sepa-
rated from each other and contained nest-boxes and branches.
Cages were housed in a climate chamber where all mouse
lemurs were maintained under short day conditions at a ther-
moneutral ambient temperature (24-25 °C) with a constant rel-
ative humidity (55%). T, and locomotor activity were
recorded with internal thermosensitive radio-transmitters
(TA10TA-F20, 3.2 g, Data Sciences International, St Paul,
MN) and receiver boards (RPC-1, Data Sciences Interna-
tional) placed in each cage. Body temperature was recorded
for 10 s every 5 min whereas locomotor activity was continu-
ously recorded.
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Mouse lemurs were separated into two experimental groups
(n = 4each for control and torpid groups). Lemurs in the torpor
group were exposed to a calorie-restricted diet for 5 days (60%
of the control diet; 86 x 107> J/day versus 144 x 107> J/day for
controls) to enhance the depth of their torpor bouts. Control
animals were also capable of entering torpor but were fed
ad libitum. Ty, and locomotion were monitored and used to deter-
mine the state of torpor, which was assessed as a continuously
low Ty (with no evidence of animal activity). Control animals
were euthanized at the end of a daily torpor bout (i.e., after spon-
taneous rewarming to 35—36 °C), whereas torpid mouse lemurs
were euthanized during a torpor bout (when T}, was at its mini-
mum). For the animals in the present study, the nadir 7}, was
30.8 £ 1.6 °C (range 30-33 °C). Animals were euthanized by
decapitation following approved protocols used by the MECA-
DEV team. Samples of selected tissues were rapidly excised,
immediately frozen in liquid nitrogen and subsequently air
freighted to Carleton University on dry ice where they were
stored continuously at —80 °C until use. All animal experiments
were performed in accordance with the Principles of Laboratory
Animal Care (National Institutes of Health publication 86-23,
revised 1985) and the European Communities Council Directive
(86/609/EEC). All experiments were conducted under personal
license (license No. C91-563) and the Internal Review Board
of the UMR 7179. In accordance with the recommendations
of the Weatherall report, “The use of non-human primates in
research”, special attention was paid to the welfare of animals
during this work. All efforts were made to minimize nociception.
For transport, all tissues were logged as per Convention on
International Trade in Endangered Species of Wild Flora
and Fauna (CITES) regulations under CITES export permit
No. FR1009118231-E and CITES import permit No.
10cA02291/QWH.

Multiplex analysis

Two custom multiplex assay panels were prepared by Bio-Rad
(Hercules, CA) and used to measure the total protein levels of
ERK1/2, MEK1, JNK, p38, HSP27, and p53 as well as their
phosphorylated forms including p-ERK1/2 (Thr202/Tyr204,
Thr185/Tyr187), p-MEK (Ser 217/221), p-JNK
(Thr183/Tyr185), p-p38 (Thr180/Tyr182), p-HSP27 (Ser 78),
and p-p53 (Serl5). All antibodies assay panels used were pre-
viously demonstrated by the manufacturer to cross-react with
both primate and rodent species (i.e., human, mouse, and rat).
Lysis, assay, wash and resuspension buffers were all supplied
by Bio-Rad (Cat. No. 171-304011).

Extracts of frozen tissue samples were prepared as per man-
ufacturer’s instructions. Briefly, ~50 mg samples were weighed
and homogenized in lysis buffer with a Dounce homogenizer
with 2 mM phenylmethylsulfonyl fluoride (PMSF) added.
Samples were then frozen at —80 °C and thawed at room tem-
perature. After another freeze-thaw treatment at —20 °C,
homogenates were centrifuged at 4000 x g for 4 min and super-
natants were collected as total soluble protein lysates. Protein
concentration of the lysates was determined using the Brad-
ford assay with the Bio-Rad prepared reagent and then further
diluted to an appropriate concentration using assay buffer.

Premixed coupled beads for all the protein targets were
diluted by mixing with wash buffer. A 96-well filter microplate
was then prepared by adding wash buffer to the desired

number of wells and drawing the buffer through the plate by
vacuum. A 50 pl aliquot of diluted coupled beads was then
added to each well. After washing twice, 50 pl of sample lysate
(protein concentration 500 pg/ml) was added to the wells and
incubated overnight on a shaker. The detection antibodies
(25pul) were then added to each well and incubated
for 30 min. The antibody solution was then drawn through
the wells by vacuum pressure. After washing, 50 pl of 1 X
streptavidin-PE (diluted in wash buffer) was added to each
well and incubated for 10 min. Wells were then vacuumed
and washed with 100 ul of resuspension buffer for a total of
three washes. After washing, 125 pl of re-suspension buffer
was added into each well and then data acquisition was carried
out on a Luminex 100 instrument (Luminex, Austin, TX) with
Milliplex analyst software (Millipore, Billerica, MA).

Statistical analysis

Data was collected as median fluorescent intensity (MFI) of
the immunoreactive multiplex beads detected by the Luminex
100 instrument. All numerical data are expressed as mean-
s =+ SEM (n = 4). Statistical analysis was performed using
SigmaPlot (v.11) software using a two-tailed Student’s -test.
Differences were considered significant at P < 0.05 or
P < 0.01.
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