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Huygens synchronization of two 
clocks
Henrique M. Oliveira1,* & Luís V. Melo2,*

The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens 
during the XVII century. This type of synchronization is observed in other areas, and is fundamentally 
different from the problem of two clocks hanging from a moveable base. We present a model 
explaining the phase opposition synchronization of two pendulum clocks in those conditions. The 
predicted behaviour is observed experimentally, validating the model.

The synchronization between two periodic systems connected through some form of coupling is a 
recurrent, and still pertinent, problem in Nature, and in particular in Physics. During the 17th century 
Huygens, the inventor of the pendulum clock, observed phase or phase opposition coupling between 
two heavy pendulum clocks hanging either from a house beam and later from a board sitting on two 
chairs1. These two systems are inherently different in terms of the coupling process, and in consequence 
of the underlying model. The later case has been thoroughly studied2–9 by considering momentum con-
servation in the clocks-beam system. The first case has been approached in theoretical works10–13. We 
present a mathematical model where the coupling is assumed to be attained through the exchange of 
impacts between the oscillators (clocks). This model presents the additional advantage of being inde-
pendent of the physical nature of the oscillators, and thus can be used in other oscillator systems where 
synchronization and phase locking has been observed14.The model presented starts from the Andronov15 
model of the phase-space limit cycle of isolated pendulum clocks and assumes the exchange of single 
impacts (sound solitons, for this system) between the two clocks at a specific point of the limit cycle. Two 
coupling states are obtained, near phase and near phase opposition, the latter being stable. Our experi-
mental data, obtained using a pair of similar pendulum clocks hanging from an aluminum rail fixed to 
a masonry wall, match the theoretical predictions and simulations.

Andronov model
The model for the isolated pendulum clock has been studied using models with viscous friction by phys-
icists2,3,5–9. However, Russian mathematicians lead by Andronov published a work15 where the stability of 
the model with dry friction is established (Andronov clock). The authors prove the existence and stability 
of the limit cycle.

We adopt as basis for our work the first of the aforementioned models, assuming that dry friction 
predominates. Using the angular coordinate q, the differential equation governing the pendulum clock is

μ ω+ + = , ( )̈q q qsign 0 12

where μ >  0 is the dry friction coefficient, ω is the natural angular frequency of the pendulum and sign(x) 
a function giving − 1 for x <  0 and 1 for x >  0 and sign 0 ∈  [− 1,1]. In15 was considered that, in each cycle, 
a fixed amount of normalized kinetic energy h

2

2
 is given by the escape mechanism to the pendulum to 

compensate the loss of kinetic energy due to dry friction in each complete cycle. We call to the transfer 
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of kinetic energy a kick. We set the origin such that the kick is given when = − μ
ω

q 2 , which is very close 
to 0. The phase portrait is shown in Fig. 1.

There are anchors with geometries allowings two symmetric kicks per cycle. The theoretical treatment 
is similar but we adopted the first model, with one kick per cycle, due to the geometry of the anchor of 
the clocks used in the experimental setting.

Considering initial conditions ( = ) = − μ
ω

q t 0 2  and ( = ) =q t v0 0, we draw a Poincaré section 
(16 vol.  II,  page 268) as the half l ine = − μ

ω

+
q 2

 and >q 0 15.  The symbol +  refers to the fact 
that we are considering that the section is taken immediately after the kick. There is a loss of velocity 
− μ
ω
4  due to friction during a complete cycle. Considering ( )= π

ω

+
v qn

n2  the velocity at the Poincaré 

section in each cycle one obtains15 the non-linear discrete dynamical system

μ
ω

=


 −



 + ,

( )+v v h
4

2n n1

2
2

which has the asymptotically stable fixed point

ω
μ

μ
ω

= + .
( )

v h
8

2
3f

2

The fixed point (2) attracts initial conditions v0 in the interval ( ), +∞μ
ω
4

2 .

Model for two pendulum clocks
We consider two pendulum clocks suspended at the same wall. When one clock receives the kick, the 
impact propagates in the wall slightly perturbing the second clock. The perturbation is assumed instan-
taneous since the time of travel of sound in the wall between the clocks is assumed very small compared 
to the period. The interaction was studied geometrically and qualitatively by Abraham10,11. However, that 
approach does not give estimates on the speed of convergence.

In Vassalo-Pereira13, the theoretical problem of the phase locking is tackled. The author makes the 
assumptions:

1. Dry friction.
2. The pendulums have the same exact natural frequency ω.
3. The perturbation in the momentum is always in the same vertical direction in the phase space, see also10,11.

Figure 1. Limit cycle of an isolated clock represented as a solid curve in the phase space. Horizontal axis 
represents the angular position and in the vertical axis the velocity. We use normalized coordinates to get 
arcs of circles.
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4. The perturbation imposes a discontinuity in the momentum but not a discontinuity in the dynam-
ic variable.

5. The interaction between clocks takes the form of a Fourier series12.

Vassalo-Pereira deduced that the two clocks synchronize with zero phase difference. This is the exact 
opposite of Huygens first remarks1 and our experimental observations, where phase opposition was 
observed. Therefore, we propose here a modified model accounting for a difference in frequency between 
the two clocks.

Consider two oscillators indexed by i =  1,2. Each oscillator satisfies the differential equation

μ ω α+ + = − ( ), , = , , ≠ , ( )̈q q q q i j i jsign for 1 2 4i i i i i i j
2

when = −
μ

ω
qi

i

i
2 , the kinetic energy of each oscillator is increased by the fixed amount hi as in the 

Andronov model. The coupling term is the normalized force α− ( ) qi j
, where  is the interaction func-

tion and αi a constant with acceleration dimensions.
We consider that the effect of the interaction function  is to produce an increment − α in the veloc-

ity of each clock leaving the position invariant when the other is struck by the energy kick, as we will 
see in equations (9). We could consider that the interaction function is the Dirac delta distribution 

δ


 +





μ

ω
q j

j

j
2

, giving exactly the same result.

The sectional solutions of the differential equation (4) are obtainable when the clocks do not suffer 
kicks. To treat the effect of the kicks we construct a discrete dynamical system for the phase difference. 
The idea is similar to the construction of a Poincaré section. If there exists an attracting fixed point for 
that dynamical system, the phase locking occurs.

Our assumptions are

1. Dry friction.
2. The pendulums have natural angular frequencies ω1 and ω2 near each other with ω1 =  ω +  ε and 
ω2 =  ω −  ε, where ε ≥  0 is a small parameter.

3. The perturbation in the momentum is always in the same vertical direction in the phase space10,11.
4. Since the clocks have the same construction, the energy dissipated at each cycle of the two clocks 

is the same, h1 =  h2 =  h. The friction coefficient is the same for both clocks, μ1 =  μ2 =  μ.
5. The perturbative interaction is instantaneous. This is a reasonable assumption, since in general the 

perturbation propagation time between the two clocks is several orders of magnitude lower than 
the periods.

6. The interaction is symmetric, the coupling has the same constant α when the clock 1 acts on clock 
2 and conversely. In our model we assume that α is very small.

All values throughout the paper are in SI units when not explicit.
To prove phase locking we solve sectionally the differential equations (4) with the two small interac-

tions. Then, we construct a discrete dynamical system taking into account the two interactions per cycle 
seen in Fig.  2 and 3. After that, we compute the phase difference when clock 1 returns to the initial 
position. The secular repetition of perturbations leads the system to near phase opposition as we can see 
by the geometrical analysis of Fig. 2 and 3.

The notation is simplified if we consider the function γ(ϕ) such that

γ
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and the function χ(ϕ) such that
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We make the assumption that the natural frequencies are near. A difference of 28 s per day in the 
movement of the clocks with natural periods in the order of 1.42 s, which is easy to obtain even with 
very poor clocks, means that ε is on the order of 10−3rads−1.

Figure 2. Interaction of clock 1 on clock 2 at t = 0+. We see the original limit cycle, before interaction, 
and the new one in solid and the original limit cycle in dashed. Note that the value of α and of h are greatly 
exaggerated to provide a clear view. The effect of the perturbation is secular and cumulative.

Figure 3. Second interaction. Interaction of clock 2 on clock 1 when clock 2 reaches its impact position. 
All the features are similar to the Fig. 2.
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This means that, in each cycle of each clock, the other one will give one perturbative kick to the 
other. Suppose that the clocks are bring to contact at t0 =  0. Consider that the fastest clock (number 1) 
is at position

μ
ω ε

ω ε
μ

μ
ω ε

( ) = −
+

, ( ) =
+

−
+
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− −
q q h0 0

8
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Using γ and χ we have
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The perturbation of clock 1 on clock 2 adds the value of − α to the velocity ( )−
q 02 , keeping the posi-

tion q2(0−).Thus, the new initial conditions at t =  0+ for the movement of the second clock are
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The new phase of clock 2, which is the phase difference of the two clocks ϕ′ 0, at 0+ is now

φ φ φ
α

γ φ ω ε
′ = Φ ( ) =
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To simplify the notation we consider the function
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therefore
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With power expansion in α
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The correction of the phase difference at =+ +t 00  is

φ φ φΔ ( ) = (Φ ( ) − Φ ( )) − ( )+ +t 0 140 2 0 1 0
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With first order term in α
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Now, both clocks start their natural movement.
We suppose that the clock 2 arrives at the vertical position without being overtaken by clock 1, if that 

is the case we begin our study after that situation occurs. Clock 2 takes the time π φ φ

ω ε

− − Δ ( )
−

+t2 0 0  to arrive 
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The next interaction is given by the kick from clock 2 to clock 1. Denoting the phase of clock 1 at this 
stage by
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ϕ π φ φ
ω ε
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ω ε
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t
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2 0 0 , we have the phase difference immediately before the second kick

π ϕΦ ( ) − Φ ( ) = − . ( )t t 2 192 1 1 1 0

The next interaction is given by the kick from clock 2 to clock 1. Using a process similar to the pre-
vious kick we have after the second kick
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and this expression can be further simplified remembering that
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To complete the study of the phase difference the clock 1 must return to the vertical position, which 
happens for the time −t2 . The time that this clock takes to return to the vertical position is π
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clock 1, that is
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If we call the affine function

π( , ) = ( − ), ( )r x d d x2 32

and the coefficients

ω ε
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the large expression (31) is the composition of four maps

φ ς ς φ ω ε α ω ε α= ( ( ( ( , − , ), ), + , ), ). ( )r r d d 341 0 1 2

The discrete dynamical system for n ≥  0 is given by the map Ω  such that

φ φ= Ω( ) ( )+ 35n n1

ς ς φ ω ε α ω ε α= ( ( ( ( , − , ), ), + , ), ). ( )r r d d 36n 1 2

Obviously, Ω  is a map from the interval [0,2π] to itself. Despite the apparent complexity of Ω , this map 
is relatively manageable. Under certain conditions we can prove that Ω  has a stable fixed point. In this 
work we deal only with the first degree approximation, relative to the small parameters α and ε, the value 
of the fixed point ϕf which is near to π. The phase difference is asymptotic to the solution ϕf. Knowing 
this value it is possible to prove the existence and stability of the limit cycle of each clock in interaction 
and the final asymptotic frequency ωf. Under this model we can say that Huygens sympathy occurs.

In first order of α and ε we have the iterative scheme
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We get in first order of α and ε the dynamical system for the phase difference
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The derivative of Ξ  at the fixed point φf
s must be |Ξ ′ (xf)| <  1 to have stability and the condition about 

the argument of the function arcsin gives
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Therefore, the limit of the phase difference is, in first order, π− π ε
αμ

arcsin h
4

2
 which is very near to π 

when the natural frequencies of both clocks are very near, i.e., small ε. When the system reaches this 
limit the corrections of phase are null for both clocks.

Simulation
To study the Huygens synchronization we used numerical simulations. We applied the map Ξ (x) without 
performing the Taylor expansion. We used the environment of Wolfram Mathematica 9.0 to produce 
the computations. The values of μ, h, ω, t0 were taken realistically from the experimental setup and kept 
fixed throughout the simulations. The coupling constant α and the half-difference between the clocks 
frequencies ε are adjusted in simulations.
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Figure 4. Photo of the experimental setup. The clocks can be seen hanging from the Al rail. The weights 
are outside of the picture. The cables in the background connect the optical sensors.
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Additionally, we introduced noise in the model with normal distribution acting directly on the phase. 
The effect of noise is to mimic the small perturbations that occur in the lab, e.g., vibrations in the wall 
and the stochastic changes of the level of the interaction, cycle after cycle. The strength of this stochastic 
effect is given by the parameter ρ. When the noise function is not used, i.e. ρ =  0, if the parameters are 
in the convergence region given by conditions (42) we have a fixed convergence point of Ω .

Experimental
Experiments were setup using a standard optical rail (Eurofysica) rigidly attached to a wall to which 
two similar pendulum clocks were fixed through modified rail carriers. This setup can be seen in Fig. 4. 
The clocks were 230 mm apart. This was the lowest distance still ensuring that the pendulums trajec-
tories were completely separated. The mass-driven anchor-pendulum clocks used were Acctim 26268 
Hatahaway. One mass travel supplies energy for around 5 days, and the clocks take about one day to 
relax to the final frequency after winding. The period, of the order of 1.42 s, is configured by rotating 
the screw at the bottom of the pendulum, thus changing the actual pendulum length. The chime mech-
anism was inhibited in order to reduce mechanical noise. Time was measured using one U-shaped LED 
emitter-receptor TCST 1103, connected to a Velleman K8055 USB data acquisition board operated with 
custom-developed Visual Basic 6 software running in a standard personal computer (PC). The time 
measured corresponds to the left maximum angle, and is the midpoint of the interval of the sensor 
coverage by the pendulum beam. The uncertainty in time acquisition typically expected in the ms range 
for the PC was overcame by performing running averaging of the period data, up to 1000. The data files 
were then processed offline using Mathematica. In order to obtain the appropriate parameters for the 

Figure 5. Simulations of delay between the two clocks in period units for two frequency differences. 
Upper curve (red): ε =  1.5 ×  10−4 rad/s. Lower curve (black): ε =  3.0 ×  10−3 rad/s. ω =  4.48799 rad/s.

Figure 6. Phase difference between the clocks in period units over more than three days (lower curve 
in green, right axis) and periods of the two clocks (upper curves, left axis; red for clock 1, black for clock 2). 
The initial behaviour corresponds to mechanical stabilization of the clocks during the first few hours of the 
experiment.
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simulation, the pendulums were filmed and the movement quantified using free software Tracker4.84 
(last date of access: 27/03/2015) from OSP https://www.cabrillo.edu/~tracker.

We assume that the coupling is obtained through the exchange of sound pulses between the clock 
propagated through the rail. This is consistent with the absence of coupling for other materials tried 
(MDF and fiberglass) The exact mechanism of how the pulse energy propagates through the clock hard-
ware down to the pendulum is hard to assess in detail and depends on the individual clock. The sound 
propagation speed in Al is 6420 ms−1, leading to a propagation time of the order of 3.0 ×  10−5 s, which 
is negligible in face of the 1.42 s period of the oscillators, and so the instantaneous propagation of sound 
assumed in the model is a reasonable approximation.

Results and discussion
Observing the movement of the pendulum alone (as a damped oscillator; initially at the limit cycle), we 
noticed a decrease of the maximum velocity of the pendulum according to a linear fit vmax =  0.2228 −  0.0023n, 
where n is the number of cycles, with correlation coefficient 0.994. The decrease of velocity per cycle 
predicted by the Andronov model is 

μ
ω
4

. With the value of the period T =  1.40000s and 
ω = = .π 4 48799

T
2  rad/s, we can estimate the value of μ = ≈ . ×ωΔ −2 54 10v

4
3.

The value of h can also be easily established by studying the movement at the limit cycle. We then 
have the maximum velocity = +ω

μ
μ
ω

v f
h
8

22
. We found consistently that the maximum velocity at the 

limit cycle is vf =  0.223 m/s. Therefore, h ≈  0.032.
We used different possible values of natural frequency difference. For the average natural angular 

frequency we take the same value of T =  1.40000 s, hence ω =  4.48780 rad/s. The fastest clock has a nat-
ural frequency of ω +  ε and the slowest ω −  ε. The angular frequency difference is in first order ε = Δπ t

T
2

2 , 
where Δ t is half of the period difference. Notice that when Δ t =  2 ×  10−4s, with a delay between the 
clocks of 24.6 s per day for the non coupled pair of clocks, the value of ε is ε =  6.4 ×  10−4 rad/s. We used 
values of ε in the range 10−4 to 10−3 rad/s as a realistic estimate for the performance of our setup.

The fixed parameters used for the simulations are then μ =  2.54 ×  10−3, h =  0.032, ω =  4.48799 rad/s, 
t0 =  0.8π s, and the phenomenological noise coefficient of ρ =  0.093, which fits the ripple observed at 
the experimental data. When we choose ε =  3 ×  10−3 rad/s, corresponding to a huge natural delay of 
116 s per day with the clocks in the isolated state, a value of α =  7 ×  10−4 yielded results matching the 
experimental data. The conditions (42), using the linear approximation, give a estimate threshold of 
ε =  2.2 ×  10−3 rad/s for the coupling with the same values of the fixed parameters. This is not contradic-
tory with our results, since we used in the simulations the function Ξ with no approximations and we 
found numerically that the actual threshold for that function is at ε =  3.5 ×  10−3 rad/s.

We expect more frequent escapes from stable states than if we choose ε =  1.5 ×  10−4 rad/s, corre-
sponding to a natural delay of 2.9 s per day. These values correspond to the values that could realistically 
be obtained in our experimental setup. The plots can be seen in Fig. 5.

Notice the small differences assumed for the frequencies, of the same order of the values measured for 
independent clocks. The time difference stabilizes in horizontal plateaus, corresponding to phase oppo-
sition coupling. The stochastic term introduced in the simulation unsets the system at some point, and 
then the phase difference increases quickly as the fastest clock runs away until the next synchronization 
plateau is reached, one or sometimes two periods away. For the simulation with the smaller difference 

Figure 7. Phase difference between the clocks in period units over more than three days (lower curve 
in green, right axis) and periods of the two clocks (upper curves, left axis; red for clock 1, black for clock 2). 
The initial behaviour corresponds to mechanical stabilization of the clocks during the firs few hours of 
the experiment. After running for around 250000 periods, clock 2 is stopped, and clock 1 keeps running 
undisturbed.

https://www.cabrillo.edu/~tracker
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between frequencies, the number of transitions between plateaus is smaller, as expected since the stability 
is much easier to reach and maintain.

This is strikingly similar to the behaviour observed in Fig.  6 for the actual clocks (right axis). The 
number of synchronization plateaus is of the same order and can be fine-tuned using the stochastic 
parameter in the simulation. It was observed that the system could be unsettled by a number of external 
noise sources, e.g. from doors closing nearby in the building, people entering or leaving the room, or 
even the elevator stopping, than proceeding to the next synchronization plateau.

The periods of both clocks from the same experiment can be seen on the same figure (left axis). The 
periods vary together within an interval of about 1 ms around 1.427 s when the clocks are coupled with 
correlation coefficient above 0.97 in the coupled state. Notice the almost perfect coincidence of the two 
curves except when the system leaves coupled states. Notice also the unstability of the coupled period, 
varying over an interval of almost 1 ms. When coupling is lost the period of one clock decreases sharply 
(up to 2 ms or more) and the period of the other clock increases by a (smaller) amount. These perturba-
tions in the periods are coincident with the loss of phase opposition coupling. Although one may expect 
changes in the frequency even when the clocks are not coupled, due to the interaction between them, the 
difference in period can be estimated at around 2 ms, corresponding to a difference in frequency of the 
order of 6 ×  10−3 rad/s. This asymmetry of the coupled period relative to the original periods is predicted 
by the model. Both periods return to the previous baseline value when the coupling is restored.

Fig.  7 shows data for another experiment. In this case the free clock frequencies were closer. Both 
periods are remarkably coincident, but vary in an interval in excess of 10 ms, when the clocks are cou-
pled. Since the frequencies are closer, the synchronization should be easier to maintain, hence the low 
number of plateaus, but also should be slower to attain, hence the longer transitions between plateaus. If 
the perturbation is large enough, especially if the frequencies are very close, it is possible to attain pla-
teaus both above and below. Between t =  100000 T and t =  112000 T approximately the synchronization 
is lost, and the periods become separated by more than 100 μs (corresponding to frequency difference 
around 3 ×  10−4 rad/s), but become stable (within 1 s). At instant t =  148000 T approximately clock #2 
is stopped. From that moment on the period of the remaining working clock becomes stable within 
about 10 s, an interval one order of magnitude below. This confirms that the clocks strongly disturb one 
another, but also that both periods are kept at the same value in order to keep the synchronization at the 
expense of some frequency unstability.

Conclusions
We have developed a model explaining the Huygens problem of synchronization between two clocks 
hanging from a wall. In this model each clock transmits once per cycle a sound pulse that is translated 
in a pendulum speed change. An equilibrium situation is obtained for almost half-cycle phase difference. 
These predictions match remarkably the experimental data obtained for two similar clocks hanging from 
a wall.
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