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Summary

The activity of individual sensory neurons can be predictive of an animal's choices. These decision 

signals arise from network properties dependent on feedforward and feedback inputs; however, the 

relative contributions of these inputs are poorly understood. We determined the role of 

feedforward pathways to decision signals in MT by recording neuronal activity while monkeys 

performed motion and depth tasks. During each session, we reversibly inactivated V2 and V3, 

which provide feedforward input to MT that conveys more information about depth than motion. 

We thus monitored the choice-related activity of the same neuron both before and during V2/V3 

inactivation. During inactivation, MT neurons became less predictive of decisions for the depth 

task but not the motion task, indicating that a feedforward pathway that gives rise to tuning 

preferences also contributes to decision signals. We show that our data are consistent with V2/V3 

input conferring structured noise correlations onto the MT population.

Introduction

How sensory information is used to guide decisions is a longstanding question in cognitive 

and systems neuroscience. The well mapped visual response properties of the middle 

temporal visual area (MT) in the macaque monkey (reviewed in Born and Bradley, 2005) 

have provided a fertile test bed for linking sensory signals to perceptual decisions (reviewed 
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in Parker and Newsome, 1998). Such a linkage has now been firmly established between 

MT neurons and tasks involving visual cues for motion and depth using a variety of 

approaches, ranging from lesions/inactivation (Chowdhury and DeAngelis, 2008; Newsome 

and Pare, 1988) to microstimulation (DeAngelis et al., 1998; Krug et al., 2013; Salzman et 

al., 1990) to measuring correlations between the activity of single neurons and both sensory 

stimuli (Britten et al., 1992; Uka and DeAngelis, 2003) and behavior (Britten et al., 1996; 

Dodd et al., 2001; Parker et al., 2002; Uka and DeAngelis, 2004). The presence of this latter 

type of correlation means that an animal's choices during a perceptual task can be predicted, 

albeit imperfectly, by measuring the activity of single MT neurons, a relationship referred to 

as either "choice probability" (CP) or "detect probability" (DP), depending on the nature of 

the task. These signals, subsequently shown to be present in a number of brain areas during 

a variety of perceptual tasks (see Haefner et al., 2013 and Nienborg et al., 2012 for 

discussion), have figured prominently in models of sensory decision making (Haefner et al., 

2013; Shadlen et al., 1996).

More recently, neurophysiologists have sought to address the question of how and where 

these decision-related signals arise. Early studies focused on bottom-up sources, such as 

shared sensory inputs (Shadlen et al. 1996); however, more recent experiments have made it 

clear that top-down factors, such as attention, also play an important role (Cohen and 

Newsome, 2009; Dodd et al., 2001; Nienborg and Cumming, 2009, 2010). A top-down 

contribution has been observed as early in the visual hierarchy as V2 (Nienborg and 

Cumming, 2009).

On the other hand, many of MT's most salient stimulus-related response properties appear to 

be directly inherited from its inputs (Movshon & Newsome 1996; Pack et al. 2006; Priebe et 

al. 2006). Individual MT neurons are tuned to both direction of motion and stereoscopic 

depth of visual stimuli, and it appears that information about these two features arrives via 

segregated anatomical pathways: a direct projection from V1 provides predominantly 

motion information (Movshon & Newsome 1996) while an indirect input through V2 and 

V3 provides mainly binocular disparity information (Figure 1A; Ponce et al., 2008). In the 

latter study, it was shown that reversibly inactivating V2 and V3 selectively impaired the 

tuning of MT neurons for binocular disparity, while leaving tuning for direction of motion 

largely intact.

We exploited our ability to selectively and reversibly inactivate the indirect pathways to MT 

in order to determine how feedforward input contributes to decision-related activity of 

individual MT neurons. We hypothesized that in a feedforward framework the same inputs 

that carry information about a task-relevant stimulus attribute will also give rise to decision-

related signals in this task. Insofar as inputs from V2/V3 are important sources of depth, but 

not motion, signals we should see a reduction in decision-related activity in MT during a 

perceptual task dependent on depth but not one dependent on motion. To test our hypothesis, 

we trained two macaque monkeys to perform motion and depth detection tasks while we 

reversibly inactivated V2/V3. While animals performed the tasks, we recorded the activity 

of single MT neurons, which allowed us to monitor the changes in choice-related activity of 

the same neuron both before and during inactivation. We found that V2/V3 inactivation 

reduced the selectivity of MT neurons for binocular disparity—an important cue for depth—
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more so than the selectivity for direction of motion, as reported previously (Ponce et al., 

2008). In addition, V2/V3 inactivation reduced MT neurons’ correlation with behavioral 

reports during the depth detection task but not during the motion detection task, indicating 

that this feedforward input has a significant and modality-specific contribution to choice-

related activity in MT. Finally, we discuss our results in the context of a computational 

feedforward framework and show that they can be explained by assuming that detection 

decisions are based on the comparison of the activity of two neural pools.

Results

Two macaque monkeys performed reaction-time motion and depth detection tasks in which 

they were rewarded for detecting the onset of coherent motion or depth in a noisy random 

dot stimulus (Figure 1B). Signal onset was randomly timed and animals were rewarded for 

responding within 650 ms; otherwise, the trial was classified as a ‘miss’ and no reward was 

given. The two tasks were interleaved in blocks of 25 trials and the monkeys had to correctly 

complete two trials at the easiest signal strength at the start of each block before more 

difficult trials were introduced. Each monkey was experimentally naïve before these 

experiments began and thoroughly trained to perform both tasks before we began 

inactivating V2/V3.

We recorded the activity of 75 well-isolated single neurons in MT both immediately before 

and during inactivation of V2/V3 (34 in monkey S; 41 in monkey Q). Task stimuli were 

matched to the receptive fields of each neuron, which were confined to the “scotoma,” the 

part of the visual field previously shown to be affected by cooling (Figure 2C of Ponce et al. 

2008). The experimental timeline is shown in Figure 1C. Each day, we initiated cooling after 

mapping the neuron’s receptive field properties and collecting neuronal and behavioral data 

during both tasks at physiological temperature (“pre-cool”; typically requiring one hour). 

We repeated these measurements during the “cool” phase, which lasted at most one hour, 

and when possible, again during “recovery” when the temperature returned to within ~5°C 

of physiological temperature.

Effects of V2/V3 inactivation on behavioral performance

In order for us to reliably measure choice-related activity, animals had to be actively 

engaged in both tasks. Although monkeys’ behavioral performance was impaired during 

both tasks during inactivation, several lines of evidence indicate that they continued to fully 

engage in and perform both tasks quite well. In the example session in Figure 2A the percent 

increase in behavioral thresholds was 56% and 29% during the depth and motion tasks, 

respectively (depth thresholds: 27% pre-cool, 42% cool; motion thresholds: 24% pre-cool, 

31% cool). During this session and others, both monkeys continued to rely on stimulus 

information during inactivation, evidenced by the sigmoidal relationship between 

performance and signal strength. More than 90% of psychometric functions were well fit by 

a sigmoid during both tasks in all conditions (deviance cumulative probability < 0.95, 

Wichmann and Hill, 2001). Across sessions, behavioral performance was typically impaired 

somewhat during both tasks (Figure 2B, D). We summarized the effect on behavioral 

threshold in each task with an “effect index” (EI) of the following form:
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(1)

where pre and cool refer to the behavioral threshold before and during cooling, respectively. 

One of the two monkeys (S) was consistently more impaired during the depth task (median 

paired difference in EI, depth − motion = 0.29; p = 0.0005, sign test; see Table S1 for EI 

values). The other animal (Q) tended to be slightly more affected during the motion task but 

the paired difference between tasks was not significant (median paired difference in EI = 

−0.14; p = 0.4, sign test). We discuss the difference between animals in the context of the 

changes in the neuronal representation of depth and motion in MT in the next section.

Additional evidence suggests no change in motivation or degree of guessing. Fitted lapse 

rates never exceeded 5%, and we observed only small changes in fixation breaks and false 

alarms in both monkeys (Table S1). During 22 sessions we included a general control for 

motivation, in which, on alternating trials, we measured behavioral performance in the 

visual field ipsilateral to the location of the cryoloops (Figure 2C, E). Median behavioral 

EIs in this part of the visual field were ≤ 0.05 (Table S1), indicating that behavioral effects 

of cooling were restricted to the scotoma and therefore not due to a generic reduction in 

motivation.

Behavioral performance was stable within and across cooling sessions, suggesting no 

change in strategy. We did not find a significant difference in performance between the first 

and last third of each cooling session in either animal: the median differences in thresholds 

were less than 3.5% for both animals during both tasks and these differences were not 

significantly different from zero (sign test p-values: depth: 0.24 monkey S, 0.49 monkey Q; 

motion: 0.38 monkey S, 0.54 monkey Q). The behavioral effects were also stable across 

several months of repeated inactivation (Figure S1). As in the example in Figure 2A, 

performance returned to pre-cool values following recovery on all days on which it was 

tested. The median difference in behavioral thresholds during recovery and pre-cool period 

was less than 1% in both animals during both tasks (n = 12 for each animal, data not shown).

Effects of V2/V3 inactivation on the representation of depth and motion in MT

At the neuronal level, we found that V2/V3 inactivation led to larger impairments of 

binocular disparity processing than direction processing in MT of both animals. We 

computed each neuron’s neurometric performance (NP), which describes how well each 

neuron can perform the signal detection task and quantified the change in NP with an effect 

index, as described by equation (1). NP values were first converted to distances from 0.5, the 

chance value (e.g. pre = NP − 0.5). NP was impaired during both tasks but more so during 

the depth task in both monkeys (Figure 3A, B). The difference between depth and motion EI 

was significant in the combined data and in monkey S, but not in monkey Q (difference in 

medians, EIdepth − EImotion: combined = −0.13, p = 0.03, Wilcoxon rank sum test; Monkey S 

= −0.16, p = 0.03; Monkey Q = −0.1, p = 0.24; see Table S2 for EI values). These effects are 

similar to the behavioral impairments of each animal, reinforcing the idea that MT activity is 

closely linked to performance on these tasks. Specifically, the larger impairment in depth 

task NP in monkey S is consistent with this animal’s larger behavioral impairment during 
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the depth task and the more similar effects of cooling on monkey Q’s NP in the two tasks is 

consistent with the similar behavioral impairment in the two tasks, although monkey Q’s 

behavioral performance was affected slightly more during the motion task while NP was 

affected slightly more during the depth task. It is important to note, however, that both 

differences were small and in neither case could we reject the null hypothesis of no 

difference (at alpha = 0.05). We did not find a significant relationship between the 

magnitude of the EI and the behavioral impairment across sessions during either task in 

either animal (Figure S2). Although we believe that neurometric impairments in MT are 

largely responsible for the animals’ behavioral decrements, the change in a single neuron’s 

neurometric threshold probably only captures a small fraction of the variability of the global 

cooling effects on a given day.

Basic tuning for binocular disparity and direction of motion followed a similar pattern, but 

with a more pronounced difference between the effects on binocular disparity and direction 

tuning, consistent with a previous report using different animals (Figure 3C,D; Ponce et al., 

2008). We compared tuning with a discrimination index (DI; Ponce et al., 2008; Prince et 

al., 2002). Values near one indicate the neurons are strongly modulated by the stimulus 

while small values suggest modulations are simply due to noise. The median change in DI 

(cool − pre-cool) in data combined across monkeys was −0.14 for binocular disparity and 

−0.03 for direction tuning with a median pairwise difference (depth − motion) = −0.08, 

which was significantly different from zero (sign test, p = 3.7 × 10−8; see Table S2). 

Notably, monkey Q exhibited a larger impairment in direction tuning than monkey S 

(difference in median direction tuning impairment = 0.05, p = 0.0007, Wilcoxon’s rank sum 

test), a pattern consistent with the neurometric and behavioral impairment differences 

between the animals.

Choice related activity in MT is selectively reduced during the depth task

We measured the degree to which neuronal activity in MT was predictive of behavioral 

reports by computing the "detect probability" (DP), a metric that compares response 

distributions between trials on which the signal onset was detected and those on which it 

was missed. We computed the time course of DP from firing rates aligned to the signal onset 

and combined data across the population of recorded MT neurons in both animals (Figure 

4A). The population DP computed in a 375 ms window following signal onset (gray region) 

decreased by 40% during the depth task between pre-cool and cool conditions from 0.60 to 

0.56 (p = 0.001, resampling test for equal pre-cool and cool DPs). The change in motion DP 

was smaller and not statistically significant (from 0.58 to 0.59, p = 0.8). The DP change was 

significantly different between the two tasks, as determined by a separate bootstrap 

procedure that compared the distributions of re-sampled effect magnitudes (p = 0.003). 

Results were similar for each animal considered individually (Figure 4B; Table S3).

We observed the same pattern when we computed DP for each neuron (Figure 4C): the 

median DP during the depth task changed from 0.57 to 0.55 (p = 0.03) with cooling and 

during the motion task from 0.58 to 0.59 (p = 0.64). On a neuron-by-neuron basis we found 

no relationship between the changes in DP during the motion and depth tasks, consistent 

with the interpretation that individual neurons’ DP changed independently for the two tasks 
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(r = 0.07, p = 0.56). Further, we found no significant relationship between the change in DP 

and changes in behavior or neurometric performance during either task (ΔDP vs Δbehavior: 

depth r = −0.01, p = 0.92, motion r = 0.08, p = 0.51; ΔDP vs ΔNP: depth r = 0.09, p = 0.48, 

motion r = −0.10, p = 0.40).

The selective reduction in depth DP was reversible within single sessions. For the 9 units for 

which we collected recovery data, DP returned close to pre-cool values during the depth task 

(Figure 4D), demonstrating that the changes in DP during inactivation were reversible on a 

similar timescale (depth DP: pre-cool = 0.65, cool = 0.57, recovery = 0.63, p = 0.25 for 

difference in DP between pre-cool and recovery; motion DP pre-cool = 0.59, cool = 0.59, 

recovery = 0.60, p = 0.61).

V2/V3 inactivation reduces spiking variability in MT

Although MT neurons remained robustly visually responsive during cooling, visually 

evoked responses decreased by an average of 42% (Figure 5A), consistent with the 

inactivation of a major excitatory input. Further, although cortical neurons typically exhibit 

a stereotyped relationship between the mean and variance of the spike count across trials 

("Fano factor", Geisler and Albrecht, 1997; Nawrot et al., 2008; Shadlen and Newsome, 

1998; Tolhurst et al., 1981), this relationship changed dramatically in MT neurons during 

inactivation (Figure 5A, B). These data were similar between the two animals and were 

therefore combined. The raw Fano factor (FF) computed in 50-ms bins is shown aligned to 

stimulus onset and, separately, signal onset for each task in Figure 5A. The FF was lower 

during inactivation than during pre-cool throughout the trial during both tasks, including 

during the stimulus-driven decline in FF (Churchland et al., 2010). We computed the FF for 

each neuron in a 250 ms time window after signal onset (see Experimental Procedures). 

Unlike other cooling-induced effects, the decline in FF was not significantly different 

between tasks (median paired difference = 0.02, p = 0.76, Wilcoxon signed-rank test) so we 

pooled these data for subsequent analyses. The median FF was 1.0 before cooling and 0.67 

during cooling, a reduction that was significantly different from zero in a paired comparison 

(p = 3.6 × 10−17, sign test). The decrease in FF was independent of differences in the mean 

spike count; it persisted when we compared the FF for spike counts ranging from 5-12 (gray 

region in Figure 5B), which contained approximately the same number of data points in the 

two conditions (pre-cool FF = 1. 0, cool FF = 0.61; p = 1.8 × 10−15, sign test). The 

implications of reduced variability in MT for decision-related activity are elaborated upon in 

the Discussion.

Possible mechanisms for the changes in choice-related activity in MT

Theoretical work has shown that choice-related activity depends both on the structure of 

correlated variability among the neurons under study (Shadlen et al., 1996; Nienborg and 

Cumming, 2010; Haefner et al., 2013) and on the way neurons’ activity is read-out by 

decision-making areas (Haefner et al., 2013, Newsome & Parker, 1998). Several lines of 

evidence indicate that our results are most consistent with a change in noise correlations in 

MT and not a change in read-out weights. Although animals can quickly alternate between 

strategies—i.e. read-out weights—within a day’s session (e.g. Cohen and Newsome, 2009; 

Sasaki and Uka, 2009), these strategies must first be learned via a mechanism akin to 
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reinforcement learning over the course of weeks or months of training (Law and Gold, 2008, 

2009; Uka et al., 2012). We saw no evidence of the gradual improvements in performance 

that would accompany such learning either within or across sessions (Figure S1), even 

though we monitored behavioral performance of both animals from the first cooling day. We 

also measured DPs as early as the fifth cooling day and in 34 sessions thereafter in one of 

the animals (Monkey S) and found no trend or significant relationship between cool DPs 

during either task and session number (Figure S3, regression slope < |0.001|, p > 0.7 in both 

cases; see legend for values). There was no relationship between DP and session number in 

the other animal in which we first measured DPs in the fifteenth cooling session and in 42 

sessions thereafter (regression slope < |0.001|, p > 0.1 in all cases; see Figure S3 for values). 

Thus we saw no evidence that behavior or DP changed gradually, as would be expected with 

a learning process.

Instead, it is more likely that our results can be explained by a change in the correlations 

among MT neurons resulting from inactivating a proportion of their inputs. Cooling can 

affect the correlations among MT responses in two ways: 1) by altering the input 

correlations that MT inherits from V1 and V2/V3, and 2) by reducing the firing rate of MT 

neurons. We first address why the latter cannot account for our result. De la Rocha et al. 

(2007) reported that a reduction in the firing rate implies a reduction in the magnitude of the 

output (or response) correlations even as input correlations are unchanged. The relationship 

presented by de la Rocha et al. allows us to estimate the overall reduction in the correlations 

between MT responses as a direct result of the observed reduction in firing rate to be about 

7%, which translates into a reduction in DPs of roughly 4% (Supplemental Experimental 

Procedures; Figure S4). Thus the reduction in MT firing rate can only explain a small part of 

the 40% reduction in DPs that we observed in the depth task.

Excluding the possibility that the decrease in DP is due to a reduction in MT firing rate leads 

to the hypothesis that cooling reduces the input correlations conferred by V2/V3. While we 

acknowledge that cooling V2/V3 may also indirectly affect feedback to MT or V1, we will 

show that our data can be explained by our manipulation of the direct feedforward pathway 

alone.

Although the nature of the read-out of sensory neurons in detection tasks is currently 

unknown, our results are consistent with a model in which the subject’s decision is based on 

comparing the average response of a population of sensory neurons that increase their firing 

in response to the target stimulus (called ‘pref pool’) to the average response of neurons that 

either decrease their response to or are indifferent to the target stimulus (‘null pool’)—in 

analogy to models of discrimination tasks (Link and Heath, 1975; Shadlen et al., 1996). 

Such a read-out strategy has the benefit of being able to subtract out common sources of 

variability and thereby increase performance compared to one-pool models (e.g. Smith et al. 

2011). As previously recognized for discrimination tasks (Nienborg & Cumming 2010, 

Haefner et al. 2013), choice-related activity in the 2-pool model is the result of a difference 

in the average correlation between neurons in the pref pool, and the average correlation 

between neurons belonging to different pools:
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(2)

 is the average correlation across pairs of MT neurons in which both neurons 

belong to the same pool (pref or null) as defined by the motion task, while  is 

the average correlation across pairs with neurons belonging to different pools as defined by 

the motion task.  and  are the equivalent quantities for the depth task. 

In the feedforward framework, the observed correlations in MT are primarily inherited from 

the major input areas V1 and V2. As a first approximation, we assume the inputs to MT 

neurons to be a linear combination of its V1 and V2 inputs: . 

We assume cooling scales down the V2 input, quantified by parameter ▱ ranging from 1 (no 

cooling) to 0 (complete cooling). Then the correlation between the inputs to two neurons ▱ 

and ▱ in the MT population is given by (Experimental Procedures, assuming equal 

variances):

(3)

Importantly, the input correlations to MT depend in such a way on the correlations between 

the V1 inputs, , the correlations between the inputs from V2, , and the correlations 

between the inputs from V1 and , that they can either increase, stay unchanged, or 

decrease as κ decreases from 1 towards 0 during cooling depending on the specific values 

for these input correlations. In order to gain an intuition, we can ignore the inter-area 

correlations (which appear both in numerator and denominator and which are likely smaller 

than the within-area correlations), and find that as a first approximation, the input 

correlations to MT are the weighted average of the correlations contributed by V1 and V2, 

respectively. This means that if the correlation contributed by V1 is greater than that 

contributed by V2, cooling will lead to an increase in correlations, otherwise a decrease.

We assume that binocular disparity and direction tuning in MT are independent of each 

other (DeAngelis and Newsome, 1999; Smolyanskaya et al., 2013) and, for simplicity, that 

V2/V3 input confers only information about binocular disparity and V1 input only 

information about motion. We further assume that the correlation between two inputs 

depends primarily on their stimulus tuning, i.e. the correlation of V1 inputs differs 

systematically depending on the motion preference of the MT neurons they contribute to, 

while V2 inputs selective to binocular disparity will have different correlations depending 

on their disparity tuning. This assumption is based on the positive relationship between 

similarity of tuning and noise correlations observed in a large number of studies (reviewed 

in Cohen and Kohn, 2011). As a result, on average, model V2 input correlations will be the 

same to MT neuron pairs belonging to the same or to different motion pools, but will vary 

with regard to MT neuron’s binocular disparity tuning preferences. The opposite will be true 

for MT neurons belonging to the same or different binocular disparity pools.
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It then directly follows from equation (3) that the correlation difference between motion 

pools increases with cooling, i.e. with decreasing κ (ignoring V1-V2 correlations for 

simplicity, full equations in Experimental Procedures):

(4)

Equivalently, it follows for the disparity-task related input correlations:

(5)

We see that as κ decreases, the binocular-disparity related difference in input correlations 

decreases and—together with the decrease in firing rates—leads to the decreasing disparity 

DPs that we empirically observe. Note that while complete cooling reduces the disparity-

related structure in the correlations, and hence disparity DP, by 100%, the increase in 

motion-related structure is only 50%, which would translate into a DP increase of 22% if 

firing rates did not change with cooling. Since firing rates decrease, the increase in observed 

DP is predicted to be even smaller. Note also that optimal read-outs are a special case of the 

2-pool read-out discussed here, with the main difference being that the above equations 

systematically overestimate DPs for read-outs close to optimal (Haefner et al. 2013).

For illustration purposes, we show the results of a representative simulation based on 

homogenous V1 and V2 populations providing input to MT. We assumed limited-range 

correlations commonly found in cortex and read-out weights that depend systematically on 

the preferred stimulus of each neuron (Figure 7). As in the data and the analytical prediction, 

cooling leads to a reduction in DP during the depth task and a slight increase in DP during 

the motion task. The results are qualitatively the same for realistic simulations with 

heterogeneous neuronal populations and are robust to the details of the read-out (i.e. whether 

pooling weights are random or optimal; Figure S5). These simulations demonstrate that a 

large class of feedforward models, including a wide range of read-outs from uniform to 

optimal, and realistic correlation structure, is compatible with our empirical observations.

Discussion

We found that the feedforward V2/V3 input to MT, which conveys more information about 

depth than motion, makes a substantial contribution to choice-related signals in MT during a 

depth task but not a motion task. Our modeling results suggest that the selective change in 

decision signals can be explained by a change in noise-correlation structure among MT 

neurons that would be expected from the selective inactivation of inputs that confer 

selectivity for binocular disparity.

Based on several lines of evidence, we think it is highly likely that V2 confers noise 

correlations on pairs of MT neurons according to the similarity of their tuning for binocular 

disparity. There are two basic, non-exclusive ways in which this can happen: 1) V2 might 

already contain such correlations and pass them on to MT and 2) they might be created by 

the convergence of V2 inputs on to MT neurons. With respect to the first possibility, there is 

already evidence from many studies that similar stimulus selectivity generally entails higher 
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noise correlations (summarized in Cohen & Kohn 2011) and, furthermore, such a correlation 

structure is required for observing choice-related activity in V2 in a depth discrimination 

task, as reported by Nienborg and Cumming (2006). The second possibility is likely due to 

the mechanisms of inherited stimulus selectivity—that is, MT neurons that have similar 

tuning properties for binocular disparity are more likely to receive convergent input from 

similarly tuned V2 neurons. Given these reasonable assumptions, it follows that inactivating 

V2 would reduce the noise correlations among MT neurons selectively according to the 

similarity of their tuning for binocular disparity.

We did not record from pairs of neurons in our experiment and were therefore not able to 

measure such noise correlations directly. However, the reduction in spike count variability 

in our data is highly suggestive of a reduction in correlated input in a classic model of 

cortical neuron responses relating spike count variability to input correlations (Shadlen and 

Newsome, 1998). Prevailing models of cortical spiking necessitate the presence of input 

correlations to account for the typically high levels of spike count variability (e.g. FF ≥ 1) 

observed in neocortex (Shadlen and Newsome, 1998; Stevens and Zador, 1998). A decline 

in Fano factor is therefore likely a signature of a decline in correlated input arriving to MT 

neurons via the V2/V3 pathway. The observation that the Fano factor was reduced during 

both tasks, both before and during stimulus onset, and during receptive field mapping (data 

not shown), when the animal’s only task was to maintain fixation, argues against a 

feedback-mediated change in task strategy. That one of the two animals exhibited a 

neurometric and behavioral impairment during the motion task provides additional evidence 

against a top-down change. The impetus for top-down mediated changes—in the form of an 

increased number of errors during inactivation—was almost as strong in this animal with 

regard to motion processing as that for depth; however motion task DP did not change.

It is not clear why one animal’s task-related motion processing was impaired even though 

tuning was substantially more impaired for binocular disparity, as in the three other animals 

in which it has been tested (this study and Ponce et al. 2008). It is possible that more motion 

information arrived via V2/V3 in this animal, or that this animal was simply more 

susceptible to non-specific visual changes that may have been produced by inactivation. 

Whatever the reason, the data indicates that even if some motion information arrives via 

V2/V3, this input does not confer the structured correlations that give rise to motion task 

DPs. Instead, these arrive via the convergence of V1 input, from feedback to MT, or both.

We found that considerable choice related activity remained during the depth task, even 

though V2 neurons were virtually silenced by inactivation (Ponce et al., 2008). This reveals 

an oversimplification in our model, in which we assume that the V2/V3 input is the only 

source of binocular disparity information in MT. In fact, various measures of binocular 

disparity information in MT—neurometric performance, tuning index—confirm that some 

information remains during V2/V3 inactivation. These signals could either arrive directly 

from V1, which also contains neurons tuned for binocular disparity (Cumming and 

DeAngelis, 2001) or they could arise from neurons in V2 or V3 that are incompletely 

silenced.
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Our analytical modeling results assume that the decision is based on the difference in 

average activity of two pools of neurons (Shadlen et al. 1996). Using simulations we 

confirmed that our qualitative conclusions hold for a wide range of read-out schemes. As 

long as the two pools are approximately balanced in their contribution to the decision, depth-

task DPs depend primarily on the binocular disparity-related structure in MT correlations, 

and motion DPs depend primarily on the motion-related structure, and not on other details 

such as average correlations or structure with respect to variables that are not related to the 

task. If, on the other hand, the decision is only based on comparing the activity of a single 

pool of neurons to an internal threshold, the effect of cooling on DP will depend on these 

other factors and on the V1-V2 correlations. In this scenario the model requires fine-tuning 

to reproduce the observed effects, making the 2-pool model the more parsimonious one.

Our work differs from previous studies aimed at dissociating the roles of different sources of 

choice-related signals, which focused primarily on measuring the relative contributions of 

causal bottom-up signals and top-down cognitive modulations (Cohen and Newsome, 2009; 

Nienborg and Cumming, 2009; Smith et al., 2011). It has been reported that a large 

component of the decision signals in V2 arises from a source resembling top-down attention 

(Nienborg and Cumming, 2009). As a consequence, the feedforward pathway from V2 to 

MT is likely to carry a mix of bottom-up and top-down information. Thus inactivating V2 

has the effect of removing both a sensory (“bottom-up”) and a task-related (“top-down”) 

contribution to decision-related signals in MT. Furthermore, it is possible that direct 

feedback onto MT neurons changed during V2/V3 inactivation simply by virtue of the fact 

that inactivation likely changes activity in higher level visual areas that feed back onto MT. 

To account for the disproportionate change in DP during the depth task this top-down input 

would have to selectively affect neurons based on their depth preferences. Although such 

selective feedback mechanisms are known to exist (Treue and Martinez-Trujillo, 1999), it is 

not known whether or how they are affected by inactivation of bottom-up inputs.

There are several trivial explanations for changes in decision signals that we believe do not 

account for our results. They fall into two categories of factors that may differ with 

inactivation: changes in neuronal response properties or changes in the animals’ behavioral 

state. The differential changes in DP during the two tasks, which were interleaved in short 

blocks and measured for every neuron reported, could not be due to generic changes in the 

gain of the neuronal response or reduced behavioral motivation. Instead, to account for our 

results any changes must be specific to the depth task. Since the changes in neuronal 

responsiveness were similar between the two tasks, this rules out confounds from changes in 

spiking statistics.

The link between neuronal activity and behavior can be broken if animals simply guessed 

more often during inactivation. However, our data indicate that motivation was unchanged. 

Both animals’ performance was unaffected on interleaved trials presented in the ipsilateral 

visual field, they continued to respond to the stimuli in proportion to the amount of signal in 

each trial, and we found no changes in false alarms or breaks in fixation that would suggest 

reduced motivation or a decrease in criterion. We also found no relationship between 

changes in behavioral performance and changes in DP within sessions. Together, these 

results demonstrate that our results are not due to changing behavioral strategies.
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In summary, we used a causal intervention to selectively probe the role of a feedforward 

anatomical input to decision signals in MT. The strength of our experiment comes from 

monitoring the choice-related activity of the same neuron both before and during 

inactivation, allowing us to make a direct assessment of the contribution of this input. We 

found that the V2/V3 pathway, which conveys sensory information predominantly about 

binocular disparity to MT, makes a substantial contribution to choice-related activity during 

a depth task but not a motion task. These results provide the first direct evidence for a 

modality-specific role of feedforward inputs to choice-related activity. Further, we propose a 

mechanism by which this input contributes to choice-related activity in MT by inducing 

structured correlated noise among MT neurons. Combining these methods with population 

recoding techniques in the future will allow us to more completely understand how 

feedforward inputs affect the correlation structure and decision signals at subsequent 

processing stages.

Experimental Procedures

All animal procedures complied with the National Institutes of Health Guide for Care and 

Use of Laboratory Animals, and were approved by the Harvard Medical Area Standing 

Committee on Animals.

Detailed methods regarding the behavioral task, visual stimuli, and electrophysiology can be 

found in the Supplemental Experimental Procedures. In brief, two experimentally naïve 

adult male macaques (Macaca mulatta, 10 and 12 kg) performed reaction-time depth and 

motion detection tasks in which they detected onset of coherent depth—as specified by 

binocular disparity—or motion in noisy random dot stimuli (Cook and Maunsell, 2002a). 

After a 500 ms fixation period, a random dot stimulus appeared. Stimuli were noisy with 

regard to either depth or motion, depending on the task block, and after a random time 

(0.5-5.5 seconds, exponentially distributed with a mean of 1.4-1.6 seconds) changed to 

contain signal in the relevant dimension (“signal onset”). Animals were rewarded for 

making an eye movement toward the stimulus within 200-650 ms after signal onset. Trials 

were classified as false alarms if the animal responded early or less than 200 ms after signal 

onset and as misses if the animal did not respond within 650 ms of signal onset. When 

fixation deviated from the 0.8-1.2° window around the fixation point, the trial was aborted 

and excluded from analysis.

Activity of single neurons in MT was recorded using standard electrophysiological 

techniques. Great care was taken to ensure single unit isolation during the entire experiment 

using online windowing and offline spike sorting.

Inactivation

Cortical tissue was inactivated by cooling loops of metal tubing—“cryoloops”—chronically 

implanted in the lunate sulcus as described by Ponce et al. (2008). Chilled methanol was 

pumped through the cryoloops to cool the surrounding brain tissue to 10-15°C, which is 

sufficient to eliminate visually evoked activity in the immediately surrounding cortex 

(Lomber et al., 1999). Temperature at each cryoloop was monitored and independently 

controlled by changing the flow rate of methanol from its dedicated pump.
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Experimental Protocol

Figure 1C depicts each day’s experimental timeline. Upon isolation of a single MT neuron at 

physiological temperature (35-38°C) its preferred location, size, and speed were determined 

by hand mapping and direction and binocular disparity tuning were measured quantitatively 

using 100% coherent stimuli presented for 400 ms at least 6 times. Direction tuning was 

measured with a range of 8 directions spaced 45° apart and disparity tuning with 11 

disparities with the following values: ±1.2, ±0.8, ±0.6, ±0.4, ±0.2, 0. If a neuron did not 

have a clear tuning preference for either direction or binocular disparity, it was not studied 

further, although such neurons were rare. Otherwise, monkeys performed the detection tasks 

with visual stimuli tailored to the preferences of the neuron. “Pre-cool” task data were 

collected as monkeys performed the tasks for approximately one hour. “Cool” data 

collection began after the temperature at the cryoloops had stabilized at 10-15°C for at least 

5 minutes. This was done in the same way as the pre-cool data, with repeated measures of 

tuning properties followed by about an hour of task performance. Cooling lasted at most one 

hour and was never initiated more than once per day. Whenever possible, we collected 

“recovery” data when temperatures returned to at least 30°C at the cryoloops, sufficiently 

warm to resume normal visually evoked activity (Lomber et al., 1999).

Data Analysis

Behavioral performance—The proportion correct trials (out of correct and missed trials) 

as a function of signal strength was fitted with a logistic function using the psignifit toolbox 

version 2.5.6 for Matlab (http://bootstrap-software.org/psignifit/), which implements the 

maximum-likelihood method described by Wichmann and Hill (2001). To account for any 

changes in the animal’s guess rate between conditions we fixed the lower saturation to an 

estimate of the guess rate, which was obtained by convolving the rate of false alarms as a 

function of trial duration with the probability of the signal onset as a function of trial 

duration, while accounting for the allowed reaction time window. Typically the animals 

could make correctly timed guesses with a frequency of 5-15%. Behavioral performance 

was summarized with the behavioral threshold, the signal strength at which performance 

was 80% correct.

Task-related neuronal activity—Spiking activity of single neurons was collected as the 

animals performed the two tasks described above. Neurons were included in this study only 

if their mean spiking response to low-signal stimuli was greater than 15 spikes/sec in all 

conditions (pre-cool and cool) to preclude violations of normal assumptions. Results were 

similar when these neurons were included. Neuronal data were aligned to the onset of the 

signal stimulus unless stated otherwise. Only correct and missed trials were used.

Neurometric performance—For trials at each signal strength, the distribution of 

responses in the 500 ms immediately before signal onset was compared to those 50-550 ms 

after signal onset with the area under the receiver operating characteristic (ROC) curve (e.g. 

Bosking and Maunsell, 2011). For correct trials, spikes were only included up to 100 ms 

before the reaction time to exclude post-decision signals (Cook and Maunsell, 2002b; Price 

and Born, 2010) but results were similar with a variety of windows. To determine the effect 

of cooling on cell sensitivity we approximated a neurometric threshold by choosing the 
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signal strength at which the neurometric performance was closest to 0.8 in the pre-cool 

condition and calculating the change in neurometric performance during cooling only at that 

signal strength. Since most MT neurons are more strongly modulated by direction than 

binocular disparity (DeAngelis and Uka, 2003) many neurons did not achieve neurometric 

performance at or above 0.8 at the strongest disparity signal strengths, leading to slightly 

lower pre-cool thresholds during the depth task.

Detect probability—Detect probability (DP) was calculated for a given signal strength 

from the area under the ROC curve for spike counts compared between correct and missed 

trials. The DP time course was computed in a 100-ms time window moved in 20 ms steps 

(Price and Born, 2010). The results did not vary with reasonable variations of this window. 

For each neuron, DP was calculated using only stimuli that had at least 5 completed trials 

and in which one trial outcome (i.e. correct or miss) did not occur more than 75% of the 

time (Kang and Maunsell, 2012). Responses were z-scored and combined across all signal 

strengths that met these criteria. For the population comparison, responses were combined 

across all neurons with both pre-cool and cool data for both tasks; thus responses were 

combined across neurons that were not recorded simultaneously. The DP at each time point 

was given by the area under the ROC curve for the combined z-scored responses at that 

time. The standard error of the mean (SEM) was computed via a bootstrap procedure (Efron 

and Tibshirani, 1998). At each time point, we sampled, with replacement, unpermuted pairs 

of z-scored rate and behavioral response to compute a new DP value. The standard deviation 

of 1,000 samples was taken to be the SEM.

To compare changes in DP between pre-cool and cool conditions, DP was computed from 

the combined z-scored rates across all neurons in a single time window 100-475 ms 

following signal onset. We used a similar resampling procedure to determine whether DP 

values were different between pre-cool and cool conditions, with the null hypothesis being 

that differences in DP were drawn from a distribution with mean 0. We first computed 

resampled DPs for each task and condition (cool, pre-cool) by sampling with replacement 

from the neuronal responses associated with each behavioral outcome. The reported p-value 

is the probability of observing a difference greater than zero in the distribution of differences 

between resampled cool and pre-cool DP for each task. Controls for involuntary eye 

movements are described in the Supplemental Experimental Procedures.

Spike count mean to variance relationship—The Fano factor (FF) time course was 

computed in a sliding 50-ms window moved every 25 ms using the Variance toolbox 

(Churchland et al., 2010) without mean-matching. At each time point we computed the 

mean and variance of the spike count response to each unique stimulus tested with each 

neuron. Individual neurons’ FF was computed from spike counts collected in a fixed 

window 50-300 ms after signal onset. The variance-to-mean ratio was computed for each 

unique stimulus type—each signal strength for each task—and then averaged for each 

neuron.
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Modeling

Assuming a linear read-out of the responses r of a population of sensory neurons by a 

hypothetical decision neuron, rD = wT r (Shadlen et al. 1996, Haefner et al. 2013), which is 

compared to a fixed threshold to make a binary decision, the detect probability of an 

individual neuron i, DPi, is related to the noise covariance matrix for the sensory population, 

C = cov(r, r), the read-out weights, w, and the fraction of detect trials, pdetect, by the 

following (approximate) equation (Haefner 2015):

(8)

As described in Supplemental Experimental Procedures, the range of fraction of detect trials, 

0.3 ≤ pdetect ≤ 0.7, is narrow enough in our experiments that the influence of the criterion, 

g(pdetect), can be ignored, and that we can use equation (2) previously derived for choice 

probabilities (Haefner et al. 2013). While equation (2) was derived for uniform weights 

within each pool, it is a good approximation for the average DP for a wide range of read-out 

weights, e.g. weights proportional to how informative a neuron is about a stimulus (Figure 

S5). The deviation from the true DPs becomes larger for weights closer to linear optimality 

but is still largely confined to an overall scaling (Haefner et al. 2013).

For our model we assume the inputs to MT neurons to be a linear combination of the V1 and 

V2 inputs: . Based on this assumption we can compute the correlation 

between the inputs to two MT neurons i and j from the ratio of their covariance and 

variances:

(9)

and

(10)

Where  is the covariance between inputs i and j from area X, and Cii are the 

corresponding variances. For homogenous inputs of equal response variance, the covariance 

C in these equations can be replaced by correlations to directly yield equation (3).

In the remainder of the main text we ignored the correlations between inputs received from 

V1 and from V2 for simplicity. Including them, equations (4) and (5) read:

(11)

Since  will generally be small and positive (Cohen and Kohn, 2011), this expression 

behaves qualitatively the same as the case of  = 0 presented in the main text, 
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increasing in value as κ decreases from 1 to 0 with cooling. Equivalently, it follows for the 

disparity-task related input correlations:

(12)

We assumed a population size of 1000 neurons in our simulations. We drew the covariance 

matrices for the V1 and V2 inputs from a Wishart distribution with 104 degrees of freedom 

around a mean defined by limited-range correlations with an exponential decay. A 10:1 ratio 

between degrees of freedom and number of neurons was chosen to yield an intermediate 

level of heterogeneity in the resulting covariance structures but our results were not sensitive 

to this parameter. The maximum value for inputs to neurons with the most similar tuning 

preferences was 0.2 and it decreased to 0.07 for the least similar neurons. We did not 

attempt to fit measured DP values exactly since that would require too many assumptions 

about unconstrained details of the correlation structure, but emphasize the qualitative 

agreement with our data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental Design
(A) Schematic of the two major cortical inputs to MT. The cube icon indicates data related 

to depth and the arrows icon indicates data related to motion throughout this paper.

(B) Behavioral task design. Each panel depicts a phase of the trial. The gray region indicates 

the inactivation “scotoma”, the dotted circle indicates the edges of a neuron’s receptive field, 

and the solid circle depicts the extent of the visual stimulus.

(C) Experimental timeline. “RF” indicates receptive field mapping and “tasks” refers to the 

epoch in which the animal performed the motion and depth tasks.
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Figure 2. Behavioral Performance
(A) Sample behavioral performance during the depth and motion task is shown on the left 

and right, respectively. Psychometric thresholds are shown in the upper right corner.

(B) Comparison of pre-cool and cool psychometric thresholds during the depth (left) and 

motion (right) tasks, color-coded by monkey. Error bars are 95% confidence intervals on the 

threshold from bootstraps on the function fit, shown for every fifth data point. Note log-log 

axes.

(C) Psychometric thresholds for performance in the visual hemifield ipsilateral to the 

cryoloops, where we did not expect effects of cooling. Same conventions as in (B).

(D) Paired comparison of the Effect Indices (EI; see text) in the scotoma.

(E) Histogram of changes in EI in the ipsilateral visual field. See also Table S1, Figure S1.
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Figure 3. Neuronal Effects of Inactivation
(A) Each neuron’s neurometric performance (NP) during the depth (left) and motion (right) 

tasks, color-coded by monkey. Error bars are the SEM, shown for every fifth data point.

(B) Histogram of NP effect indices (EI) combined across monkeys (left) and for each 

monkey individually (right two panels). Depth task effects shown in black and motion task 

effects shown in grey. Triangles indicate medians.

(C) Tuning discrimination indices (DI) for binocular disparity (left) and direction (right) 

tuning. Same conventions as in (A).

(D) Paired comparison of the effect of cooling between the direction and binocular disparity 

tuning DI. Same marker conventions as in (A).

See also Table S2, Figure S2.
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Figure 4. Detect Probability
(A) Time course of detect probability (DP) ±SEM, aligned to signal onset at t = 0. The gray 

region indicates the time window used to calculate the population DP reported in the text, 

the individual neurons’ DP in (C) and the DP in (D). Only neurons that contributed data to 

both tasks and conditions (pre-cool and cool) are included in this analysis.

(B) DP time course shown separately for each monkey.

(C) DP for each of the 75 neurons, color-coded by monkey. Filled symbols indicate DPs that 

were statistically significantly different between pre-cool and cool conditions.

(D) Grand DP ±SEM computed in the time window indicated by the gray region in (A). 

Note only the 9 neurons for which we had data for all three conditions were included here.

See also Table S3, Figure S3.
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Figure 5. Trial-to-Trial Variability
(A) Average firing rate (top) and Fano factor (FF) ± SEM (bottom) aligned separately to 

onset of the visual stimulus and the time of the change during the depth (left) and motion 

(tasks).

(B) Scatter plot of the variance and mean of the spike count collapsed across tasks and time. 

Each data point corresponds to a unique stimulus presented to one neuron and there are 2-14 

data points per neuron.
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Figure 6. Feedforward model framework
Correlated inputs from V1 and V2 determine the output (response) correlations in MT. 

Cooling reduces the firing rate of V2 and MT neurons and thereby the relative weighting of 

correlated V1 and V2 inputs. Since our data suggest no change in read-out weights with 

cooling, the observed changes in DP must be due to the reduction in correlated V2 input. 

Quantities affected by cooling are indicated in blue. See also Figure S4.

Smolyanskaya et al. Page 24

Neuron. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Simulation of the effect of V2 inactivation
(A) Correlation structure of inputs from V1 to MT. MT neurons sorted by preferred motion 

direction.

(B) Correlation structure of inputs from V2 to MT. Since MT neurons are sorted by 

preferred direction, and since we assumed no systematic relationship between direction and 

disparity tuning in MT, the limited-range correlation structure with respect to disparity 

(analogous to the one with respect to motion direction in A) is shuffled in this view.

(C) Resulting input correlation structure to MT in the control condition. During cooling, the 

influence of V2 decreases, and with complete cooling, the total input correlations to MT are 

identical to those provided by V1 shown in A.

(D) Read-out weights depend on the preferred stimulus in each of the motion and depth 

tasks (different for each task) such that most informative neurons are preferentially read out. 

Qualitatively identical results are obtained in panels E and F for random weights, and 

optimal weights (see also Figure S5).

(E) Motion DP change due to cooling. Blue: simulation, red: analytical approximation.

(F) Depth DP change due to cooling. For simulation parameters see Experimental 

Procedures. For DP calculations we assume the total input correlations to MT to be equal to 

the response correlations since the effect of the decrease in firing rate on output correlations 

is small in our data.
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