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Abstract

It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave 

in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial 

stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). This phenomenon has been used as the basis to design portable systems for 

continuously cuff-less blood pressure measurement, benefiting numerous people with heart 

conditions. However, the PTT-based blood pressure estimation may not be sufficiently accurate 

because the regulation of blood pressure within the human body is a complex, multivariate 

physiological process. Considering the negative feedback mechanism in the blood pressure 

control, we introduce the heart rate (HR) and the blood pressure estimate in the previous step to 

obtain the current estimate. We validate this method using a clinical database. Our results show 

that the PTT, HR and previous estimate reduce the estimated error significantly when compared to 

the conventional PTT estimation approach (p<0.05).
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I. Introduction

Blood pressure (BP) is one of the most important vital signs of the cardiovascular system 

and the general health. It is recommended that BP be measured regularly for health 

maintenance, and this is especially important for people of advanced age and who have, or 

are at a high risk of develop, heart disease [1]. BP varies continuously due to physical 

activity, medication, emotion and stress. Different oscillometric methods, such as 
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stethoscopes and phonocardiograms are conventional non-invasive techniques to measure 

blood pressure [2]. However, these cuff-based methods have some disadvantages, which 

limit their use in certain clinical or home settings, especially during certain a certain physical 

activity in which the cardiac output increases. A continuous BP cannot be measured using 

cuff-based methods because a pause of at least 1–2 minutes between two BP measurements 

is necessary to reduce errors in the measurement. Further, the patient may be disturbed by 

the inflation of the cuff and this disturbance may cause a sudden elevation of the BP. A 

continuous measurement of blood pressure is desirable in a multitude of clinical and home 

settings. For example, in perioperative care, the American Society of Anesthesiologists 

requires continuous perioperative BP monitoring for patients with severe systemic disease 

[3]. For other patients, conventional intermittent BP monitoring (NBP) may miss important 

clinical information because BP is not monitored at all times. An intra-arterial catheter has 

been used to continuously measure BP, but this costly and invasive method increases risks 

of arterial injury and skin infection [4]. Noninvasive, continuous and cuff-less BP 

measurement methods are thus highly desirable. Currently, the relationship between the BP 

and pulse transit time (PTT) has been studied extensively [5,6,] and the PTT has been 

demonstrated to be a valid and well accepted measure of BP [7,8]. Since PTT can be 

estimated from the measured ECG and photoplethysmogram (PPG), this method has been 

used to develop wearable devices to measure BP continuously and conveniently [9]. 

However, BP measurement using the PTT is not highly accurate due in part to the 

unaccounted physiological factors in the blood regulation mechanism. The heart rate (HR), 

for example, has been demonstrated to be correlated with the BP[10]. Whenever a person’s 

BP decreases, the HR increases in order to pump more blood and the arterial walls contract 

to increase the BP. As a result, besides the PTT and HR, the previous BP estimate may also 

play an important role in the current BP estimation. In this paper, we validate a new 

estimation model using simultaneously recorded arterial blood pressure (ABP), ECG and 

PPG signals documented in the standard Multi-parameter Intelligent Monitoring in Intensive 

Care (MIMIC) database [11]. We have found that the PTT, HR and previous BP estimate 

improve measurement result significantly..

II. Cuffless Blood Pressure Estimation

As the blood flows through arteries, pressure waves propagate at a certain velocity called 

pulse wave velocity (PWV). The PWV depends on the elastic properties of both arteries and 

blood. The Moens–Korteweg equation defines PWV as a function of vessel and fluid 

characteristics [12]:

(1)

where L is the vessel length, PTT is the time that a pressure pulse spends in transmitting 

through that length, ρ is the blood density, r is the inner radius of the vessel, h is the vessel 

wall thickness, and E is the elastic modulus of vascular wall. In this equation, the elasticity 

parameter E is closely related to BP according to the following equation [13]:
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(2)

where α is a constant, E0 is the zero-pressure modulus of the vessel wall, and P is the BP 

within the vessel.

Based on these two equations, the BP can be computed from PTT assuming all other 

parameters are held constant. From (1) and (2), we can obtain a logarithmic dependency 

between BP and PTT:

(3)

There are many physical factors that influence cardiac output and BP, such as the blood 

volume, resistance of the blood vessels, and blood thickness. BP is the product of cardiac 

output and peripheral resistance. In practice, each individual's autonomic nervous system 

responds to and regulates all these interacting factors. When BP decreases, the nervous 

system is stimulated. In response, HR increases in an effort to increase cardiac output and 

the arterial walls contract to increase BP. In other words, BP is related to both HR and the 

previous BP [14]. Therefore, we formulate the BP estimation function as:

(4)

where PTT can be obtained from the time difference between ECG and PPG signals, HR can 

be easily measured from the ECG, and BPn−1 is the previous BP estimate. The four 

coefficients (a,b,c and d) can be calculated by applying the least square method.

III. Data Processing

The MIMIC database, maintained by the Massachusetts Institute of Technology (MIT), is a 

collection of physiological data recorded from patients in the Intensive Care Unit (ICU). We 

chose continuous, synchronized ABP, ECG and finger PPG signals for our study. The 

signals were recorded at 125 Hz with a 12-bit resolution. The following procedure was 

utilized to extract HR, PTT, and SBP/DBP from the original data.

1) Baseline removal

Slow drift component in each signal (ECG, PPG and ABP) is removed using a modified 

denoising algorithm in the wavelet domain. The input signal is first decomposed into 

approximation and detail coefficients in different scales. Because the frequency of the drift 

component is usually low, the approximtion coefficients at the coarsest scale level 

(correspondng to a frequency around 0.5Hz) were set to zero, before the signal is 

reconstructed by the inverse wavelet transform. The Daubechies-wavelet was used in this 

modified denoising procedure. An example of a signal before and after the baseline removal 

is shown in Fig. 1(a) and (b).
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2) Calculation of HR and PTT

After waveket processing, the peaks in the ECG and PPG signals are mostly well-defined. 

Therefore, we utilize a thresholding method for peak detection. In order to correct variations 

in signal amplitude and reduce peak detection error, the ECG and PPG signals are 

normalized with respect to their respective value ranges prior to peak detection. Taking the 

ECG as an example, first, we use a two-second window within which the maximum signal 

value is found. This value normally corresponds to an R-peak, but sometimes it does not. In 

order to aviod false detection, we used a threshold, which is 60% of the maximum value of 

the peak value computed from all windows to suppress misdetections. However, due to the 

use of a fixed-size window (two seconds), in some cases, two or more peaks may be present 

within the same window, thus some peaks may be missed as shown in Fig.1(c) and (d). 

Thus, in the next step, we estimate the average R-R interval from the detection result. For 

locations where peaks are missing indicated by a sudden increase in R-R intervals, the input 

signal is re-examined using the same algorithm but with an adjusted window size according 

to the average R-R interval. As the result, the missing R-peaks are recovered (Fig.1 (e) and 

(f)). The HR is determined by calculating the time interval between the nearest R peaks. 

Similarly, the delay between each R-peak and the corresponding PPG-peak is calculated as 

the PTT.

The HR and the logorithm of the PTT, denoted by ln(PTT), are normalized using the 

following equation so that the HR and ln(PTT) are in approximately the same scale:

(5)

where mean(x) and std(x) are the mean and the standard deviation of HR or ln(PTT), 

respectively, and y is the normalized HR and ln(PTT). The distributions of ln(PTT). and HR 

are considered normal, so the data points, at which y is greater than 2 or less than −2, are 

regarded as outliers and thus removed.

3) Detection of SBP and DBP

The peak detection algorithm described previouysly is also used to detect the extrema in the 

ABP signal. Two types of extrema are identified, local maxima and local minima which 

correspond to the SBP and DBP, respectively. They are located with a slide window detector 

sliding from the right to the left. The local maxima, which correspond to the SBP, are 

detected. Then, near each local maximum, the local minimum, corresponding to a DBP 

point, is detected within the window. If the minimum is at the edge of the window, the 

minimum is generally not a DBP point and the window slides one point to the left util a 

local minimum is found. We repeat this process to obtain all SBP and DBP points.

4)Linear regression model for BP estimation

The regression model (Equation (4)) is built with the least square method for BP estimation. 

The ten-fold cross-validation method is used to evaluate the model. The input dataset is first 

randomly divided into ten equal sized subsets. Nine of them are used for training the 

regression model, while the remaining one is left as the testing data. This validation 
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procedure is then repeated ten times (ten folds) with each subset used once as the testing 

data. The estimation error for this segment is calculated by averaging the errors in all ten 

testing subsets.

In each model training, an error bar, which is defined as the 95% confidence interval (CI) of 

the differences between the ground truth and the estimates using the regression model[15], is 

obtained. If the boundary values of the CI have the same sign, the estimate is considered 

biased and the corresponding data points are determined to be outliers. They are then 

removed from the trainng data and the model is retrained with the updated training data. 

This process is repeated until the final model is obtained in which no outliers are found or 

the R-square statistic is above 0.85.

III. RESULTS

Data recorded from six patients with complete ECG, PPG, and ABP signals were extracted 

from the MIMIC database. Each data record contains twenty five-minute segments. The 

PhysioBank Automated Teller Machine (ATM) software was used to extract the signals 

from the database [11]. Fig. 2 shows part of the ABP data with detected maxima (top panel), 

R-peaks in the ECG signal (middle panel), and peaks in the PPG signal (bottom panel).

Table 1 shows the average correlation of BP-PTT and that of BP-HR over the twenty input 

segments for each patient. The correlation coefficients for both the SBP and DBP cases are 

more than 0.6, indicating that both the PTT and HR are important for the estimation of BP. 

However, traditionally, BP has been commonly estimated using PTT only. In order to 

compare BP estimation performances, we implemented the PTT model (Equation (3)) and 

our proposed PTT-HR-BPn−1 model (Equation (4)). For each patient record, twenty pairs of 

averaged estimation errors were obtained for both models. The mean and the standard 

derivation of the estimation error of each record are shown in Table 2. A one-sided paired t-

test with an alpha value of 0.05 was used to compare whether the average estimation errors 

obtained from the second models is smaller. Our results show that the average estimation 

error of the second model was significantly smaller than that of the first model (p<0.05).

As a typical example, Fig.3 shows the estimated error, measured BP and the estimated BP 

using the second model for a segment of Record 221. It can be seen that the measured and 

estimated signals are in close agreement, and the estimated waveform follows the trend of 

the measured BP waveform. The mean estimated error was less than 1 mmHg.

V. DISCUSSION AND CONCLUSIONS

This paper proposes, justifies, and validates the use of a combination of the PTT, HR and 

BPn−1 to estimate the current BP value. Our study on the signals extracted from the MIMIC 

database showed that there were considerable correlations among these physiological 

variables, and that taking advantage of these correlations can improve BP estimation 

significantly.

Since the continuous BP data are not attainable from healthy people, we had to utilize data 

from patients. The data provided by the MIMIC database were recorded from patients with 
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cardiovascular or pulmonary diseases. Some patients might have taken medications or been 

treated in certain ways which were not fully documented. Therefore, their BP values may 

have been affected by these unknown factors. In our future work, we plan to test the model 

on healthy people using a different measurement as the ground truth. In addition, the 

ultimate goal of this project is to carry out real-time, continuous measurement of BP 

unobtrusively using a mobile (e.g., a smartphone) or a wearable device. The new model 

presented in this paper is suitable for this extremely important application because the 

required variables, i.e., PTT, HR and BPn−1, can be obtained easily in practice. We will 

continue this work which may greatly benefit numerous people who have, or have a high 

risk to develop, heart disease and certain other life-threatening conditions.
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Figure.1. 
The original, the filtered ECG and R wave peak detection results
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Figure.2. 
Maxima of ABP, R-peak of ECG, and peaks of PPG
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Figure 3. 
Measured and estimated SBP and DBP, estimated errors of SBP and DBP using model 2, for 

part of record 221.
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Table 1

Correlation for PTT versus SBP and DBP

Correlation
Arterial Blood Pressure

SBP(mmHg) DBP(mmHg)

S1
PTT −0.7528±0.1222 −0.7789±0.1168

HR 0.7452±0.1187 0.7878±0.1798

S2
PTT −0.6753±0.1328 −0.6812±0.0.1272

HR 0.6673±0.1388 0.6634±0.1872

S3
PTT −0.7498±0.1565 −0.6878±0.1718

HR 0.7021±0.1689 0.7234±0.1412

S4
PTT −0.7982±0.1761 −0.7567±0.1273

HR 0.7312±0.1547 0.7121±0.1668

S5
PTT −0.7045±0.1086 −0.6891 ±0.1154

HR 0.6882±0.1067 0.6432±0.1123

S6
PTT −0.7789±0.1344 −0.7979±0.1502

HR 0.7523±0.1225 0.7655±0.1126
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