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Abstract

Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for 

revolutionizing the field of regenerative medicine through the development of novel therapeutic 

strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to 

developing these strategies is improving our understanding of biological mechanisms responsible 

for governing stem cell fate and self-renewal. Increasing attention is being given to the 

significance of metabolism, through the production of energy and generation of small molecules, 

as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now 

allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective 

on key metabolic and molecular pathways which influence stem cell biology. Understanding the 

analytical platforms and techniques that are currently used to study stem cell metabolomics, as 

well as how new insights can be derived from this knowledge, will accelerate new research in the 

field and improve future efforts to expand our understanding of the interplay between metabolism 

and stem cell biology.
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Stem cells and metabolism

Stem cells are the foundation of all multi-cellular organisms. They have the ability to self-

renew, maintain pluripotency, as well as differentiate to specific cellular lineages. Many 

factors, from transcriptional signaling to epigenetics, have been shown to contribute to fate 
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determination; in addition, increasing attention is being given to the role of metabolism as a 

regulator of stem cell fate (Vacanti and Metallo, 2013; Ramm Sander et al., 2013; Ito and 

Suda, 2014). With new advancements in technology, we are now able to probe stem cell 

metabolism like never before (Fig. 1), leading to discoveries that are reshaping our 

traditional ideas regarding the role of metabolism in stem cell biology. The objective of this 

review is to provide a primer for entering the field of stem cell metabolomics with examples 

of frequently used methodologies and how they can be employed to uncover novel 

metabolic mechanisms important for the regulation of stem cell biology.

From metabolism to metabolomics

Metabolism refers to all chemical reactions, essential for life, that occur in living organisms. 

These reactions involve metabolites (small molecules, less than 1kDa) and the enzymes that 

process them, and are organized in a set of pathways that allow cell growth, reproduction, 

and response to the environment. The complete set of metabolites within a cell or tissue is 

called “the metabolome.” The abundance of each metabolite within the metabolome depends 

on the specific physiological, developmental, and pathological state of a cell or tissue. 

Therefore, the metabolome reflects the phenotype of a cell or tissue, resulting in response to 

different genetic or environmental influences (Fiehn, 2002).

Traditionally, metabolism has been studied through biochemistry, focusing on one pathway 

at the time. From its inception in the 19th century (1833 discovery of amylase, Anselme 

Payen) to peak discoveries in the mid-20th century (glycolysis, Krebs cycle, electron 

transport chain), biochemistry has proven invaluable to our understanding of life. In 

addition, over the past decade, it has been increasingly important to grasp the whole 

metabolome in an unbiased way in order to understand how gene-environment interactions 

affect metabolic status of the cell. Consequently, studies of metabolism expanded toward a 

systems biology approach, metabolomics.

Metabolomics is the scientific study of global metabolite profiles of cells, tissues, and 

organisms, or “the metabolome” (Nicholson et al., 2012). The complexity of the 

metabolome has led to development of different analytical strategies in order to discern its 

details, such as targeted analysis and metabolomic profiling. While targeted analysis implies 

quantitation of a class of metabolites that comprise a specific metabolic pathway, 

metabolomic profiling provides the complete metabolite composition of a cell or a tissue. 

Metabolomic fingerprinting, a subcategory of the metabolomic profiling, represents a scan 

of a large number of intracellular metabolites, aiming to find a specific signature of a given 

tissue or a certain state of the tissue. In essence, it is a non-invasive and medically applicable 

technique for detection of low quantities of known metabolites and identification of 

unknown compounds (Griffin et al., 2002).

Unlike genomics, transcriptomics, and proteomics, metabolomics analysis is less complex 

because of fewer endpoints. It has been estimated that in the human body, there are more 

than 500 different histological cell types consisting of unique, dynamic cellular genomes, 

proteomes, and metabolomes (Nicholson et al., 2012). Nonetheless, the total number of 

human metabolites identified is relatively modest (the Human Metabolome Database 
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(Wishart et al., 2007) currently has 41511 metabolite entries) compared with transcriptomics 

(∼85000) and proteomics (> 10000000), where more targets can be identified and quantified 

(Sreekumar et al., 2009; Shah et al., 2012). In addition, a major advantage of metabolomics 

over other ‘omics’ strategies is that metabolites are inherently linked to phenotypes (Fiehn, 

2002). Metabolomics builds on more than 100 years of knowledge in biochemistry, which 

has thoroughly defined metabolic pathways enabling much faster translation of profile data 

than what is possible with other ‘omics’ fields. This has largely been mediated by publicly 

available pathway databases, such as KEGG (Kanehisa and Goto, 2000), Reactome (Milacic 

et al., 2012), and Biocarta (Nishimura, 2000), which enable one to map and consider 

metabolites of interest in systems-level context.

Despite advantages, metabolomics research has its own set of pitfalls. These primarily stem 

from an incredible physical and chemical complexity of the metabolites (de Graaf et al., 

2010). This prevents identification and quantification of the whole metabolome by any one 

of the existing platforms. In general, when the goal of a study is to be as inclusive as 

possible, the method is termed untargeted, unbiased metabolomics. In contrast, when the 

goal is to be as accurate as possible on a known subset of the metabolome, the method is 

termed targeted metabolomics. Here, we outline in brief the major platforms for 

metabolomics studies, as well as considerations for sample preparation and data analysis.

Metabolomics: technology and techniques

Profiling the metabolome of stem cells requires the acquisition of high quality data on 

hundreds or thousands of unique molecules in the system. While there are many available 

options to achieve this goal, the two most common profiling platforms are mass 

spectrometry and nuclear magnetic resonance spectroscopy (Dunn et al., 2011). Further, 

metabolomics can be employed to study either steady-state metabolic differences between 

control and experimental conditions, which is valuable for biomarker discovery, or 

metabolic flux analysis, useful for assessing changes in the metabolic pathway utilization. 

When designing metabolomics experiments, careful consideration should be given to the 

pros and cons of each of these factors.

Technology

Mass spectrometry (MS) is an attractive platform in the pursuit of metabolomics data due 

to its high resolution and sensitivity. Briefly, MS is based on the concept of molecular 

separation by mass-to-charge (m/z) ratios. Every MS consists of 3 components: an ion 

source, a mass analyzer, and a detector (Dass, 2007). As the sample enters the instrument, 

molecules in the sample become charged via the ion source. The charged molecules are then 

accelerated and subjected to a magnetic or electric field which promotes separation based on 

each ion's m/z ratio. This separation promotes the detection of unique ionic species, 

allowing the MS to detect metabolites at very low concentrations within a sample. In 

metabolomics, mass spectrometry coupled to liquid chromatography (LC-MS) or gas 

chromatography (GC-MS) are commonly utilized as chromographic separation reduces 

matrix effects and the complexity of the sample (Gika et al., 2014). One major disadvantage 

of using MS is that samples are not recoverable after ionization; that is, MS is a destructive 
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platform. Another disadvantage is that samples must be chemically prepared prior to 

analysis, possibly resulting in increased analytical variance and making absolute quantitative 

measurement challenging.

Conversely, Nuclear Magnetic Resonance Spectroscopy (NMR) is a platform that provides 

relatively low sensitivity but very accurate and reproducible quantitative measurements 

within a large dynamic range. NMR is a physical phenomenon whereby nuclei in a magnetic 

field absorb and re-emit electromagnetic energy at a specific resonance frequency depending 

on the strength of the magnetic field and the magnetic properties of the atoms (de Graaf, 

2008). Mostly, NMR metabolomics utilizes proton (1H)-based spectroscopy, but analyses of 

other nuclei, such as 13C-, 31P-, and 15N-, are also relevant. Typically, a metabolite 

detected by the 1H-NMR contains one or more protons and each of the protons produces one 

or more peaks that can resonate at different chemical shifts. The pattern of NMR spectrum is 

also affected by scalar coupling (J coupling or spin-spin coupling), originating from the 

interactions among magnetic moments of nuclei. Such interactions can split resonances into 

several smaller ones. Consequently, the number of peaks and their resonances directly relate 

to the chemical structure of the molecule. Although each metabolite has a unique spectral 

pattern, one or more spectral peaks of different metabolites may overlap; therefore, the 

ability to resolve overlapping peaks is critical to any analytical method. To assist the 

identification of unknown metabolites a variety of 2D-and 3D-NMR approaches (COSY, 

TOCSY, high-resolution HSQC, HSQC-TOCSY) can be used. NMR is the basis for many 

applications, ranging from medical diagnostics (MRI scanners) and quantum computer 

design to high throughput metabolomics (Vandersypen et al., 2001; Mountford et al., 2010). 

One major advantage of NMR is that it requires little to no sample preparation prior to 

analysis, thus minimizing analytical variance and facilitating applications such as 

noninvasive metabolomic profiling. In addition, it does not require sample destruction for 

analysis, which is useful when sample quantities are limited as well as when the same 

sample needs to be utilized for other types of analyses. The primary disadvantage of NMR 

for metabolomic applications is its low sensitivity, which restricts the number of detectable 

molecular species. However, the high degree of connectivity within metabolic networks can 

somewhat reduce the problem of low sensitivity, because changes in low concentration 

metabolites may lead to indirect changes in higher concentration metabolites. In addition to 

analysis of biofIuids, cells, cell extracts, and tissue homogenates, NMR can be used for 

intact tissue analysis, using high resolution magic angle spinning (HR MAS). HR MAS has 

a high degree of reproducibility and a non-destructive nature, and thus, the same specimen 

can be assessed by histopathology, gene expression profiling or other methods after spectral 

analysis (DeFeo and Cheng, 2010). This allows direct comparisons between spectral and 

other features of the tissue, as well as integration of multitude of approaches for phenotypic 

characterization.

Recently, NMR and MS have started to be linked both instrumentally and experimentally. 

For analysis of a given sample, NMR is used first to provide quality control and basis 

content of untargeted metabolites, followed by MS for targeted analysis. The adoption of the 

combined approach is envisioned as a major accelerator of metabolomics field, not only for 

basic research but also for hands-on clinical applications. With new analytical 

methodologies, such as statistical heterospectroscopy (SHY), direct cross-correlation of 
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chemical shifts (NMR) and m/z data (MS) can provide both structural and metabolic 

information (Coen et al., 2008), highly enhancing the utility of combined platforms for 

metabolomics research.

Ion mobility spectrometry (IMS) has long been considered an important analytical 

technique for detection of trace levels of analytes. In basic terms, IMS is a gas-phase 

electrophoretic separation of ions carried out in the presence of a neutral gas, under the 

influence of an electric field. In the past few decades, several research groups have coupled 

IMS to mass spectrometry (MS) to obtain a separation dimension based on the ion-neutral 

collision cross-section, which complements the m/z separation of MS. IM-MS provides at 

least four tangible benefits over conventional MS instrumentation: (i) improved dynamic 

range, in terms of both concentration and mass range, (ii) enhanced identification 

capabilities by differentiating analytes of different molecular class (e.g. nucleic acids, 

peptides, and lipids), (iii) in contrast with conventional scanning MS/MS approaches, IM-

MS/MS can fragment all precursor ions simultaneously, and (iv) IM-MS provides further 

analytical dimensionality by increasing peak capacity and throughput through providing 

ultrafast (ms-ms) 2D separations in an infusion experiment or in concert with LC-MS 

methods (Sowell et al., 2004; Castro-Perez et al., 2011; Zinnel et al., 2012).

Capillary electrophoresis-mass spectrometry

Capillary electrophoresis (CE) when combined with QQQ or Q-TOF-based mass 

spectrometry, offers high separation efficiency high speed, and economy of sample size. The 

coupling of CE with MS combines the extremely high resolving power and structural 

information in one system. In CE-MS, analytes are identified both by their differential 

separation and their molecular masses and/or fragmentation patterns (Nevedomskaya et al., 

2010; Takeuchi et al., 2013). This technology requires very small sample size, making it 

useful for applications such as cancer stem cell analysis or metabolo-mics of subsets of stem 

cells obtained from a given tissue.

Gas chromatography-flame ionization detection/mass spectrometry (GC-FID/MS) is 

another analytical method which shows promise in the field of metabolomics. In GC/FID-

MS, samples are first separated on the GC via temperature gradient. Then, as analytes elute 

from the GC, they are simultaneously sent to the FID and MS instruments. FID provides an 

excellent means of precise quantification, which relies on the detection of ions formed 

during combustion where the abundance of ions is directly proportional to the concentration 

of the analyte coming from the GC. When coupled with the spectral information originating 

from the MS, this analytical method provides accurate identification and quantification. This 

platform has been useful in the quantification of lipid species found in biofiuids such as 

plasma and urine (Fancy et al., 2006; Zhang et al., 2011).

The “metabolomic phenotyping microarrays” are based on the premise that cells utilize 

metabolites in various biochemical pathways and generate reducing equivalents in the form 

of NADH or NADPH. These reducing equivalents can be quantified using a tetrazolium dye 

and reflect the biochemical reactome for the particular metabolite (Putluri et al., 2011). 

There are at least 14 different substrate plates available that can measure the flux through 

carbohydrate and amino acid/dipeptide pathways as well as utilization of ions (Bochner et 
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al., 2011; Luo et al., 2012). Stem cells with various experimental conditions may be cultured 

with these small molecules, and the fluctuations in the cellular metabolism of each 

respective small molecule can be detected by chemometric changes with an energy-rich 

NADH redox dye. Although the Phenotype MicroArrays for mammalian cells system can 

screen through various metabolites, more targeted assays are also developed.

A Seahorse analyzer (XF 24) enables detailed analysis of mitochondrial biogenesis and 

mitochondrial dysfunction associated with oxidative stress and altered substrate utilization. 

It is a fully integrated, multi-well instrument that measures the oxygen consumption and H+ 

production of the cells in real-time, using disposable cartridge containing the probes and 

assay kits. It simultaneously measures oxygen consumption rate and extracellular 

acidification rate in as little as five minutes. With just a small number of cells, XF analyzer 

can measure the effects of up to four compounds on cellular metabolism, glycolysis, 

respiratory capacity, mitochondrial dysfunction, fatty acid oxidation and cell signaling. As 

mitochondrial changes underlie metabolic and cellular switches from pluripotent to 

differentiated states and vice versa, this technology may be strongly considered for specific 

studies of stem cell state transitions.

Technologies for studies of metabolism in vivo

The correlate of NMR is proton magnetic resonance spectroscopy (1H-MRS), used to 

detect and quantify a small number of metabolites in the living tissue (Soares and Law, 

2009): N-acetylaspartate (NAA), a marker of neurons whose major peak resonates at 2.02 

ppm; Creatine, resonating at 3.02 ppm, an energy metabolite considered to be stable and 

thus used as a house-keeping metabolite for normalization; Choline, resonating at 3.23 ppm 

and considered a marker of glial cells and membrane turnover, and Myoinositol, a marker of 

astrocytes which resonates at 3.56 ppm. Other metabolites commonly detected include 

alanine, lactate, glutamate, glutamine, glucose, GABA, and some macromolecular proteins 

and lipids (Soares and Law, 2009). The major issue with MRS is very low sensitivity, and its 

utility has been limited by analytical methods that focus on independently evaluated 

metabolites and require prior knowledge about which metabolites to examine.

Nevertheless, fatty acid moiety resonating at 1.28 ppm has been associated with NPCs in the 

human hippocampus (Manganas et al., 2007). Initially discovered in rodent NPCs, by high-

field NMR (Manganas et al., 2007), the fatty acid enrichment appears to reflect increased 

amounts of mobile lipids necessary for the function of these cells (Knobloch et al., 2013). 

The identity of the 1.28 ppm metabolite remains unknown. Although it most likely contains 

a fatty acid component (Manganas et al., 2007), its exact molecular nature has not yet been 

determined and its functional significance for neurogenesis awaits further studies. Recent 

reports indicate that the 1.28 ppm and adjacent resonances may also be associated with 

apoptosis. A similar signal resonating at 1.30 ppm has been also reported in apoptotic 

ratgliomas in vivo (Liimatainen et al., 2008), and more recent studies have found that the 

1.28 ppm signal in cultured NPCs increased during conditions that favored quiescence and 

apoptosis (Ramm et al., 2011). Apoptosis is common in the hippocampal neurogenic niche, 

as vast amounts of newborn cells die during critical periods of survival (Sierra et al., 2010). 

Thus, whether the 1.28 ppm peak detected in living brains originates from living or 
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apoptotic NPCs remains to be determined and more research is necessary to unequivocally 

establish whether the 1.28 ppm spectral peak is a marker of neurogenesis with clinical value.

In addition to targeted MRS analysis, an untargeted, metabolomics type of analysis is also 

possible using MRS (Vingara et al., 2013). Metabolomic-type analysis can overcome signal 

distortions that can occur with MRS, providing previously unavailable information about 

living tissue, in vivo. Unlike other quantification tools, metabolomic analysis of the full 

resolution spectra has the advantage of not requiring a priori knowledge such as the line 

shapes of the metabolite resonances. Therefore, the resonances identified are not limited to 

the user's input criteria, and changes in small resonances can be extracted (Vingara et al., 

2013). The untargeted metabolomics analysis can be used for comprehensive noninvasive 

tissue profiling of diseased and healthy tissue in vivo, as it captures in a single analysis 

metabolic alterations that otherwise require several independent studies. This analytical 

platform has not yet been applied for studies of stem cells. Nevertheless, in vivo 

metabolomics could be extended to studies of stem cells in any organ and particularly cancer 

stem cells, to model disease subtype, progression, or for treatment monitoring. In addition to 

being valuable for creating more patient-specific assessments such methodologies can also 

provide insight into the stem cell pathology.

Biochemical assays can theoretically be translated to in vivo studies. Fluorination of a 

metabolite of interest is used in studies involving Positron Emission Tomography (PET) 

(Buchsbaum and Hazlett, 1998). Such technique is limited by the metabolism of the small 

molecule in question and gives limited spatial information of 4 to 5 mm range. For stem 

cells, the utility of a particular technique is limited by the resolution, which requires 

resolution in a μm ranges. More advances in label-free microscopy methods of metabolic 

detection have given single cell resolution, which have allowed detection of stem cells in 

vivo. Using two-photon fluorescent microscopy, live rodent imaging can be done to 

distinguish metabolic markers of stem cells (Quinn et al., 2013; Stringari et al., 2015). As an 

example, two-photon excitation fluorescence can detect NADH and the second harmonic 

generation can detect collagen (Stringari et al., 2015). These two excitation parameters can 

be detected simultaneously using the same objective, thus giving single-cell resolution 

images. Using this method, the fluxes of NADH/NAD+ ratio can be determined, thus 

reflecting the glycolytic/oxidative phosphorylation ratio of various cell types. Since stem 

cells have more glycolytic characteristics, such technique is utilized to detect stem cells in 

vivo. In addition, Raman Scattering Spectroscopy is another label-free method that can be 

used in conjunction with other microscopy modalities to study lipid metabolism in stem 

cells. Recently developed modalities, such as Coherent Anti-Stokes Raman Scattering 

(CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy, can be used for 

chemical imaging, as they allow visualization of certain classes of molecules such as lipids, 

at the sub-cellular level. These technologies are based on the vibration of a specific chemical 

group, which permits high-resolution imaging of individual molecules in vivo (Folick et al., 

2011; Yu et al., 2014).
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Metabolomics studies: Sample preparation

Appropriate collection, handling, and storage of the samples is critical to metabolomics 

analyses, as the methods are sensitive to small changes in the metabolite profile that may be 

introduced through poor sample handling procedures. With the exception of systems 

specifically equipped with a magic angle-spinning probe for tissue analysis (Duarte et al., 

2009), all classic high resolution NMR as well as MS-based analytical methods require 

homogeneous liquid samples (Wu et al., 2008). Therefore, cell lysis and extraction is 

necessary to obtain samples adapted to liquid analytical spectroscopic techniques. These 

preparations are often the most labor intensive and rate-limiting steps in metabolomics as 

they require accuracy and reproducibility as well as robustness. There is a significant body 

of literature dedicated to optimizing metabolomic extraction methods (Mushtaq et al., 2014; 

Ser et al., 2015). A general extraction protocol will involve some form of quenching to cease 

metabolic activity, followed by metabolite extraction with a mixed solvent (i.e. 

methanol:chloroform:water). Depending on the source material (i.e cultured cells, tissue, 

biofluids, etc.) and types of metabolites to be investigated (i.e. lipids, amino acids, etc.), the 

sample extraction methods will differ, typically by varying the ratio of aqueous and organic 

solvents as well as pH of the buffer.

Sample preparation for MS-based examination of metabolome (unbiased and targeted)

Optimally, at least 25 mg of tissues or 5 million cells is necessary for the mass spectrometry-

based metabolomic profiling. The process of metabolite extraction for these samples 

involves the introduction of an equimolar mixture of standard compounds followed by 

homogenization of the specimen. Subsequently, the metabolites in the homogenate are 

extracted using sequential application of aqueous (chilled water) and organic (chilled 

methanol and chloroform) solvents in the ratio 1:4:3:1 (water:methanol:chloroform:water) 

(Sana et al., 2008). The extract is deproteinized and the filtrate, containing metabolites, dried 

under vacuum and re-suspended in the injection solvent (Putluri et al., 2011). An equimolar 

mixture of the standard compounds and/or a characterized tissue sample (when examining 

cell line or tissue-based extracts) or a urine or plasma sample (when examining biofluids), is 

extracted and analyzed in tandem with the experimental samples. Each of the controls needs 

to be included multiple times in the randomization scheme to ensure that sample preparation 

and analytical variability are constantly monitored. Further, each sample needs to be 

followed by at least two blank runs to prevent any carryover of metabolites between 

samples. For LC-MS, the polar, mid-polar, and some of the non-polar compounds are 

separated using aqueous normal phase or reverse phase chromatographic separation. For 

GC-MS, the samples are re-dried under vacuum desiccation for a minimum of 24 h prior to 

being derivatized. Derivatization is a metabolite-dependent process and the modifying agent 

is selected based on the chemistry of the compound to be assessed. The quality control 

procedure prior to sample analysis involves locking the retention time using d27-myristic 

acid (Kind and Fiehn, 2009; Kind et al., 2009). For lipidomics studies, samples need to 

undergo additionally prepared because lipids represent a large class of molecules and as 

such, there are variations how to successfully prepare various classes of lipids. Identification 

of the individual species is based on their chromatographic, ion mobility drift times, and 

mass spectral characteristics and comparison to those of chemically defined standards.
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Sample preparation for NMR-based examination of metabolome

NMR provides largely untargeted analysis of metabolites in given samples, using 1D-NMR 

and 1H-, 13C-, 31P-, and 15N-nuclei assessments. Samples are prepared based on the 

experimental design. The aqueous extracts are obtained in 500 uL of reconstitution buffer 

with lmM TSP as an internal standard. The organic extracts are reconstituted in 500 uL of 

CDCl3 with 0.03% TMS as an internal standard. The NMR acquisition then involves 

locking to the solvent and shimming to achieve optimal line-shape. Specific pulse-sequences 

are applied depending on the experimental hypothesis. Typically, ID 1H NMR includes zgpr, 

noesyprld (for single solvent suppression) and lclpnf2 (for double-solvent suppression. 

Typical 2D NMR comprises COSY and TOCSY sequences. Hetero nuclear experiments 

include 1H-13C HSQC and HMBC sequences. The obtained data are analyzed and the set of 

metabolites is determined. In dubious cases, the specific metabolites can be validated by 

spike-in experiments.

Metabolomics: Techniques

Biochemical perturbations can occur due to changes in steady-state levels of metabolites, 

alterations in the rate of pathway activity or both (Fig. 2). With this consideration, 

metabolomics applications are broadly divided into two branches of analysis: steady-state 

profiling and metabolic flux analysis.

Steady-state profiling

Steady-state profiling yields a static snapshot of the relative abundances of individual 

metabolite pools between biologic states (i.e. differentiated vs undifferentiated stem cells). 

This can easily be applied to fresh or frozen tissue, and can yield quantitative or 

semiquantitative data. Although this is a relatively new area in the field of stem cell 

research, several recent findings highlight the potential for new discovery using these 

techniques. Notably, proliferating NPCs possess elevated mobile lipids (MLs) and a distinct 

lipogenic state important for neurogenesis, as demonstrated by both mass spectrometry and 

NMR metabolomics (Manganas et al., 2007; Knobloch et al., 2013). Additionally, an MS-

based analysis has shown that the distribution of phosphatidylcholines and 

phosphatidylethanolamines, components of MLs, is significantly altered between embryonic 

stem cells (ESCs) and induced pluripotent stem cells (iPSCs), suggesting that differences in 

lipid metabolism, among others, may be linked to important regulatory differences 

underlying ESC and iPSC biology (Meissen et al., 2012). Interestingly, there have also been 

reports that MLs are elevated in glioblastoma cancer stem cells; however, as different 

groups have published conflicting results, it remains to be seen whether MLs are a marker of 

sternness or apoptosis (Ramm et al., 2011; Loewenbrück et al., 2011; Guidoni et al., 2014). 

In addition to lipogenesis, there are important studies outlining changes in energy 

metabolism between differentiated cells and stem cells (Fig. 3). Through the use of MS-

based and NMR-based methods, ESCs, iPSCs, and long-term hematopoietic stem cells (LT-

HSCs) have all been reported to shift away from oxidative phosphorylation toward 

glycolysis (Folmes et al., 2011; Panopoulos et al., 2012), a metabolic alteration akin to the 

Warburg Effect often observed in cancer (Warburg, 1956). Additionally, a large body of 

literature exists demonstrating that stem cells of all kinds show elevated levels of the amino 
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acids glycine, alanine, and others (Urenjak et al., 1993; Griffin et al., 2002; Kulak et al., 

2010), and it has been reported that mouse ESCs are highly dependent on threonine 

metabolism (Wang et al., 2009). MS-based metabolomics has identified that mouse ESCs 

possess more unsaturated molecules such as arachidonic acid and diacylglyercol compared 

to their differentiated progeny (Yanes et al., 2010). Knowing the differences in metabolic 

profiles as a function of stem cell type, potency, and state will be the key for determining 

how metabolic properties of stem cells, and particularly adult stem cells, are connected to 

quiescence and proliferation, differentiation capacity and age-related changes (Rando, 

2006). Toward this goal, while steady-state profiling can be used to nominate which 

metabolic compartments are significantly altered in stem cells, it can be difficult to pinpoint 

the source of the metabolic alterations without kinetic data, such as those obtained using 

metabolic flux analysis.

Metabolic flux analysis

Metabolic flux analysis is used to gather knowledge on metabolic pathway kinetics (Dass, 

2007). With the high degree of interconnectivity between biochemical pathways, as well as 

the reversible nature of pathways or reactomes, a metabolite could participate in multiple 

pathways as well as function as a substrate or product within a pathway. The fate of the 

metabolite in each pathway and its nature of participation in different pathways define the 

flux or kinetics for the given metabolite. When put in a global perspective, individual 

metabolite fluxes together define the biochemical activity of a cell which in turn describes 

the physiological state of that cell. Hence, flux describes the dynamic nature of the 

biochemical pathway and is a key component in mechanistic underpinnings of cellular 

function.

Flux analysis can be accomplished by a range of technology platforms based on MS, NMR 

and non-MS-based methods (Dass, 2007). These define flux or pathway activity in cell lines, 

animal models and patients, and thus support basic and clinical translational research. Flux 

in pathways pertaining to a metabolite is a function of multitude of variables that include 

expression level of enzymes, affinity constants of the enzyme for the metabolite, rate of 

transport of the metabolite between various compartments of the cell and from outside, 

presence of inhibitors etc. Thus, the platform chosen for flux analysis needs to measure rates 

of synthesis, breakdown, utilization, and uptake of metabolite as well as corresponding rates 

of energy production, oxygen consumption etc. This is typically done through the use of 

isotopically-labeled tracer metabolites (e.g. glucose, glutamine, etc.) which are fed to cells in 

culture and allowed to be metabolized for a given time. When the cells are extracted, the 

relative amount of the isotopic label which became incorporated into downstream 

metabolites can be quantified and used to calculate the kinetic rate of the pathway, or flux. 

This data are then input into a model of the metabolic pathway to derive estimates of 

pathway activity (Antoniewicz et al., 2007; Zamboni et al., 2009).

At this time, there are very few published reports utilizing metabolic flux analyses to study 

stem cell metabolism (Turner et al., 2008; Sepúlveda et al., 2010; Yanes et al., 2010), apart 

to reinforce the importance of energy metabolism discovered via steady-state profiling. 

Given the observations of altered lipids and amino acids from steady-state profiling, there 
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are many opportunities to apply metabolic flux analysis and phenotyping microarrays to 

further understand the role of metabolism in stem cell biology.

Single cell metabolomics

In addition to a common, population-based systems biology methods, single cell ‘omics’ 

studies are slowly starting to emerge (Zenobi, 2013). The need for such studies comes from 

a large heterogeneity of cell populations, particularly common confounder when studying 

stem cells. Namely, in any given preparation of a stem cell culture or a tissue enriched in 

stem cells, these cells can be found in a variety of different states – from quiescent, to any 

cell cycle stage, to different degrees of differentiating lineages. Thus, single cell 

investigations are very relevant to discern metabolic properties of each state of the cell. For 

single cell metabolomics, mass spectrometry is the platform of choice because of its 

detection sensitivity – the concentration of metabolites needs to be in attomole range 

(Amantonico et al., 2008; Heinemann and Zenobi, 2011). Several approaches are being 

developed, including nano-electrospray ionization, microfluidic chips and sample arrays for 

monodispersed sample droplets as sample sources for MS data acquisition (Urban et al., 

2010). Detection of single cell metabolites is also a focus of emerging imaging mass 

spectrometry, which may achieve spatial resolution at the micron level (Secondary Ion Mass 

Spectrometry, SIMS) (Klerk et al., 2010). While this technology remains qualitative, it 

provides additional data relevant for molecular phenotyping in a variety of experi-mental 

conditions. These approaches may indeed prove invaluable for studies of stem cell 

metabolism, for detection of minute changes that ultimately lead to differentiation as well as 

those that lead to continuous proliferation as seen in cancer.

Metabolomics data analysis

Similar to other ‘omics’ data, such as genomics, transcrip-tomics, proteomics etc., 

metabolomic data pose special challenges for data analysis because they are high 

dimensional, acquired by multiple analytical methods, have some degree of missing data, 

and some degree of collinearity, nonlinearity, and non-normality, all of which need to be 

accounted for to achieve meaningful data interpretation. An additional challenge of 

metabolomics analysis is that the number and the identity of metabolites in the sample are 

unknown, which makes the power calculations very difficult.

In principle, the analysis of metabolomics data should start with an unsupervised method, 

such as Principal Component Analysis (PCA), that can identify outliers and the main source 

of variability. Since multivariate analysis methods such as PCA are based on variance, i.e., 

they seek out the greatest variance of the data, the variables need to be centered and scaled 

to reduce the bias placed on large variables (Craig et al., 2006). As with most analytical 

data, a large peak will exhibit a greater absolute variance than a small peak. To minimize 

this effect, the standard in metabolomics is to apply unit-variance or Pareto scaling. Once 

the outliers are identified and eliminated, supervised multivariate methods for pattern 

separation, such as Partial Least-Squares Regression (PLS) and Orthogonal PLS (OPLS), are 

employed to explore class differences and highlight explanatory spectral variables 

(Goodacre et al., 2004; Dunn et al., 2005; Weckwerth and Morgenthal, 2005; Coen et al., 
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2008; Allen and Maletic-Savatic, 2011). The dimensionality of the data can also be reduced 

to simple linear combinations that assist in identification of the metabolites that provide the 

largest variability (Allen et al., 2014). Variables that contribute to clustering of experimental 

groups are identified based on loadings plots. These variables then need to be annotated as 

the respective metabolites. SIMCA-P software (Umetrix, Malmö, Sweden) is commonly 

used for multivariate, pattern analysis in metabolomics, and AMIX package (Bruker, Inc.) 

provides similar paradigms. When using multivariate analyses, one needs to be aware that 

they suffer from over-fitting and thus, validation is obligatory. To build and validate the PLS 

or OPLS models for class discrimination and prediction, the data need to be randomly 

divided into a training set and a test set. The test set is excluded from model construction, 

and the model is used to predict class membership of the data in the test set. Typically, 

cross-validation approaches are used in which a proportion of the data (for example, every 

10th sample) is removed, and the model is built with the remaining training set. This 

procedure is repeated many times until each sample has been in the test set exactly once. 

The accuracy of the model on the test samples gives an estimate of the predictive power and 

the robustness of the model to perturbations of the data (Castaldi et al., 2011; Ioannidis and 

Khoury, 2011).

Once multivariate analysis and statistical threshold (Bon-feronni, false discovery rate etc.) 

are done, the next step in analysis is metabolite identification and quantification. This part 

depends on the acquisition method used and can be done either as targeted analysis by mass 

spectrometry or by query of metabolomic databases for candidate metabolite identification, 

such as the Human Metabolome Database (HMDB; Wishart et al., 2007; Ulrich et al., 2008). 

In addition, several computational algorithms have been developed for deducing metabolite 

identities from NMR data. Statistical Total Correlation Spectroscopy (STOCSY), designed 

for NMR data analysis, explores correlations among the intensities of various peaks across 

the whole spectrum, and interprets the original data set as a two dimensional pseudo-

spectrum. STOCSY algorithms improve not only the assignment of compounds in a biologic 

mixture, but also provide potential molecular connections for analyzing metabolic pathways. 

However, the interpretation of STOCSY data are not always straightforward (Blaise et al., 

2010), and the existence of many different STOCSY algorithms indicates the scope of the 

challenge. Statistical diffusion-ordered spectroscopy (S-DOSY) uses signal intensity 

variations under different pulsed field gradient conditions to identify metabolites and 

requires sophisticated data filtering procedure when peak overlap exists in the sample 

(Smith et al., 2007). Iterative-STOCSY (I-STOCSY) calculates correlations from a “driver” 

peak and recursively finds correlated peaks to form nodes, the connectivity among which are 

then used to explore the inter- and intra-metabolite connections (Sands et al., 2011). 

However, parts of nodes generated in I-STOCSY algorithm to identify a specific metabolite 

can be missed due to peak overlap (Sands et al., 2011). Grouping procedures which utilize 

STOCSY are also numerous. Cluster analysis statistical spectroscopy (CLASSY) employs 

correlation matrix of peaks and an intersection matrix context to determine local clusters and 

consequently explore the intra and intermetabolite connections by hierarchical clustering of 

those local clusters (Robinette et al., 2009). Statistical recoupling of variables (SRV) groups 

variables by scanning the covariance/correlation landscape and combines the grouped 

variables (clusters) to superclusters according to the correlation strength among those 
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clusters. STOCSY is then applied on the superclusters to help metabolite identification 

(Blaise et al., 2010). However, SRV clusters may be misled when overlapped peaks 

introduce variations that are not structural (Blaise et al., 2009). Recently published 

STOCSY-scaling method scales the spectra by designed functions to decrease the 

contribution of metabolites that have dominant intensities, such as glucose, to explore and 

identify metabolites that are covered at these regions (Maher et al., 2012). However, 

artificial correlation caused by peak overlap can also lead to undesired suppression of 

signals that actually should not be suppressed or lead to failing to suppress the targeted 

signals (Maher et al., 2012). As metabolite identification and quantification is mandatory for 

further analysis, many times it requires validation by experimental spike-in confirmation.

Finally, identified metabolites can be explored in the context of metabolic networks, through 

existing databases such as KEGG, Gene Spring, Ingenuity Pathway Analysis, and GeneGO, 

and freely-available software such as Gene Set Enrichment Analysis (GSEA), among others.

These approaches emerged as it was recognized that identifying a list of differentially 

expressed metabolites that may play a significant role in a biologic process most often fails 

to provide mechanistic insights into the underlying biology of the condition under study. 

Hence, attention has shifted from lists of molecules to sets of functionally related 

coordinated alterations that constitute pathways or bioprocesses, which in concert 

orchestrate the underlying biology at cellular or organismal level. In other words, this so 

called pathway-centric approach results in reduction of data dimensionality while preserving 

the interaction between the components within an experiment (Glazko and Emmert-Streib, 

2009; Peterson et al., 2013). There are different approaches to define pathways using 

metabolomics data, some of which involve mapping metabolites to existing pathway maps 

and rely on enrichment methods, while others are much more sophisticated in that they 

explore enrichments across larger compendia of molecular processes assembled within 

databases without the prerequisite for pre-defined pathway maps. Eventually, the networks 

need to be visualized to allow the user to consider related pathways which cannot be readily 

inferred from the given profile. Network visualization can be achieved using Cytoscape with 

its app/plug-in KEGGscape (http://apps.cytoscape.org/apps/keggscape) (Nishida et al., 

2014). Overall, the analytical path from data acquisition to network discovery in 

metabolomics involves numerous steps, computational and statistical analysis, as well as 

bioinfor-matics approaches necessary to produce accurate and biologically meaningful data.

Conclusion and future considerations

Undeniably, studies of metabolism of stem cells are critical for gaining insights into their 

fate and function. The metabolic phenotypes seen in stem cells and their progeny correlate to 

the energy demands for proliferation, lineage specification, and quiescence. Different cell 

states require specific metabolic programs to support the unique bioenergetics demands 

underlying their specialized functions. A variety of platforms and techniques are now 

available to delve deeper into the stem cell metabolism. The growing interest in 

metabolomics of stem cells as it pertains to both biology and pathology holds substantial 

promise for future discoveries in this relatively new field of science.
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Figure 1. 
Platforms for studying stem cell metabolism.
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Figure 2. 
Metabolomics can be used to either (A) detect and quantify metabolites directly or (B) 

follow isotopically labeled carbons to determine metabolic pathway activity.
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Figure 3. 
Metabolomic and flux analysis studies have demonstrated that pluripotent stem cells (PSCs) 

have increased dependence on glyolytic flux compared differentiated counterparts which 

exhibit increased mitochondrial oxidation. There are multiple hypotheses for why this 

occurs, such as PSCs minimize glucose oxidation in order to provide anabolic precursors to 

fuel self-renewal, or that ROS-induced stress may promote differentiation.
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