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Fine Mapping Causal Variants with an Approximate
Bayesian Method Using Marginal Test Statistics
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ABSTRACT Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-
mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods
leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based.
However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and
BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the
Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer
both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different
numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other
methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-
fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that
CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting
the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf.
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UNTIL recently, there have been .2000 genome-wide
association studies (GWAS) published with different

traits or disease status (Hindorff et al. 2014). Most of them
reported only regions of association, represented by SNPs
with the lowest P-values in each region. Only a few provide
further information of likely underlying causal variants.
A noted exception is refinement based on Bayesian methods
(Maller et al. 2012). Fine mapping the causal variants from
the verified association regions is an important step toward
understanding the complex biological mechanisms linking
the genetic code to various traits or phenotypes.

Fine-mapping methods can be roughly divided into two
groups. The first group was developed before the availability
of high-density genotype data. These fine-mapping methods
assume the causal variants are not genotyped in the data and

aim to identify a region as close as possible to the causal
variants (Morris et al. 2002; Durrant et al. 2004; Liang and Chiu
2005; Zollner and Pritchard 2005; Minichiello and Durbin
2006; Waldron et al. 2006). Because the causal variants are
not observed in the data, these methods usually rely on various
strong assumptions to model the relationship of the causal and
the observed variants. Examples include models based on the
coalescent theory (Morris et al. 2002; Zollner and Pritchard
2005; Minichiello and Durbin 2006) or statistical assumptions
about the patterns of linkage disequilibrium (LD) (Liang and
Chiu 2005). There are at least two limitations of these methods.
First, the result is usually a region with a confidence value
rather than candidate causal variants. Second, the result may
be unreliable if the model assumptions are too strict and deviate
far away from the real data, or the inferred region may be too
wide to be useful if the model assumptions are too general.

The second group of fine-mapping methods assumes that
the causal variants are among those measured. As the se-
quencing technology advances and with the availability of
the HapMap Project (Altshuler et al. 2010) and the 1000
Genomes Project (Abecasis et al. 2012), it is feasible to obtain
the sequence data of the association regions or impute almost
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all common variants with high quality. Now it is plausible
to assume the causal variants exist in the data, either mea-
sured or imputed. How to best prioritize the candidate
causal SNPs for follow-up functional studies becomes the
aim of fine mapping (Faye et al. 2013). One simple way to
prioritize variants is based on P-values. However, there are
at least two limitations of this method. First, P-values do
not give a comparable measure of the likelihood that a var-
iant is causal across loci or across studies (Stephens and
Balding 2009). Second, a noncausal variant could have the
lowest P-value due to LD with a causal SNP and statistical
fluctuation. This may also happen when a noncausal vari-
ant is in LD with multiple causal SNPs.

There have been several methods developed to address the
above problems. For example, inMaller et al. (2012), a Bayesian
method was developed to refine the association signal for 14
loci. This method circumvents the first limitation of using
P-values by using the posterior inclusion probability (PIP). How-
ever, it assumes only a single causal variant for each locus.
Recently, two fine-mapping methods, CAVIAR (Hormozdiari
et al. 2014) and PAINTOR (Kichaev et al. 2014), were pro-
posed, which lift the restriction of a single causal variant in
a locus and show much better performance than other fine-
mapping methods. Another advantage is that only the mar-
ginal test statistics and the correlation coefficients among
SNPs are required, instead of the original genotype data,
which makes it easier to share data among different groups.
When only marginal test statistics are available, which is not
uncommon, the correlation among SNPs in a study can be
approximately computed from an appropriate reference pop-
ulation panel, e.g., from the 1000 Genomes Project. We noted
that BIMBAM (Servin and Stephens 2007; Guan and Stephens
2008), a Bayesian method, can be used for fine mapping mul-
tiple causal variants by setting the maximal number of causal
variants allowed in the model. Both CAVIAR and PAINTOR
use the marginal test statistics directly and are likelihood
based. The relationship with other Bayesian methods, such
as BIMBAM, which takes the original genotype data as input,
is not clear. In this study, we derive and explain the relation-
ship between CAVIAR/PAINTOR and BIMBAM, which leads to
a unified Bayesian framework for both fine mapping and as-
sociation testing using marginal test statistics. We call our
proposed method CAVIAR Bayes factor (CAVIARBF). We also
compared the performance of different fine-mapping methods
in simulations with multiple causal variants.

Compared to CAVIAR, PAINTOR has an additional op-
tion to include extra functional annotations about the
variants. Even though it is important to include the anno-
tations when they are available, we focus on the scenario
where no annotation is available and discuss functional
annotations in the Discussion. There are other Bayesian-
based methods in fine mapping, such as those in Wilson
et al. (2010) and Guan and Stephens (2011). These methods
are based on sampling techniques, such as the Markov chain
Monte Carlo (MCMC) algorithm. Because MCMC methods can
require more computation time than BIMBAM or CAVIARBF,

where the Bayes factors are calculated analytically and
exhaustively enumerated, MCMC methods have compu-
tational limitations. We further discuss these issues in the
Discussion.

Materials and Methods

Approximate equivalence between BIMBAM
and CAVIAR

In this section we derive the equivalence between BIMBAM
using a D2 prior and CAVIAR. Suppose X is an n 3 m SNP
matrix. It is coded additively as 0, 1, and 2 for the number
of a specified allele for each SNP, where n is the number
of individuals and m is the number of putative causal
SNPs. First, we scale X so that each column of X has mean
0 and variance 1; i.e., ð1=nÞPn

i¼1Xij ¼ 0; ð1=nÞPn
i¼1X

2
ij ¼ 1;

j ¼ 1; 2; . . . ; n: Xij is the element of row i and column j in X.
The quantitative phenotype y is a n 3 1 vector. We also
center y so that we can use the linear model without the
intercept as

y ¼ Xbþ e; (1)

where b is the effect size and e � Nð0; ð1=tÞIn). Here In
denotes the n 3 n identity matrix.

Bayes factor from BIMBAM using the D2 prior given t: The
D2 prior from Servin and Stephens (2007; Guan and
Stephens 2008) assumes that b has a prior normal distribu-
tion N(0, vð1=tÞ), where v is a diagonal matrix and b and e
are independent. Assume all SNPs have the same variance
s2
að1=tÞ; i.e., v ¼ s2

aIm: Then we have

Eðyjt;XÞ ¼ EðEðyjt;X;bÞÞ ¼ EðXbÞ ¼ 0;

Varðyjt;XÞ ¼ EðVarð yjt;X;bÞÞ þ VarðEðyjt;X;bÞÞ

¼ E
�
1
t
In

�
þ VarðXbÞ

¼ 1
t
ðIn þ XvXTÞ:

Note that XT means the transpose of X: Since y is a linear
transformation of the multivariate normal random vector
ðb; eÞT; y has a normal distribution

y
��t;X � N

�
0;

1
t

�
In þ XvXT��: (2)

The likelihood of model (1) is Pð yjt;XÞ ¼
ð2pÞ2ðn=2ÞjDj2ð1=2Þexpð2ð1=2ÞyTD21yÞ; where D ¼
ð1=tÞðIn þ XvXTÞ: The null model is that b ¼ 0; i.e., v ¼ 0
Im or s2

a ¼ 0: Therefore the likelihood of the null model is
P0ð yjt;XÞ ¼ ð2pÞ2ðn=2ÞjD0j2ð1=2Þexpð2ð1=2ÞyTD21

0 yÞ; where
D0 ¼ ð1=tÞIn: Then the Bayes factor is
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BF1 ¼ ð2pÞ2ðn=2ÞjDj2ð1=2Þexp
�
2ð1=2ÞyTD21y

�
ð2pÞ2ðn=2ÞjD0j2ð1=2Þexp

�
2ð1=2ÞyTD21

0 y
�

¼ ��In þ XvXT
��2ð1=2Þexpð2 1

2
yT
�
In þ XvXT�21

yt þ 1
2
yTytÞ:

From the Woodbury matrix identity (Harville 2008),
ðIn þ XvXTÞ21 ¼ In 2Xðv21 þ XTXÞ21XT; resulting in

BF1 ¼ ��In þ XvXT��2ð1=2Þ
exp
�
1
2
yTX

�
v21 þ XTX

�21
XTyt

�
:

Bayes factor from CAVIAR given t: Suppose X has full col-
umn rank. From result (2), we have

1ffiffiffi
n

p XTy
��t;X � N

 
0;
1
t

 
XTX
n

þ XTXvXTX
n

!!
:

Let Sx ¼ XTX=n; which is the correlation matrix among
SNPs in X. We can write

1ffiffiffi
n

p XTy
���t;X � N

 
0;
1
t
ðSx þ SxðnvÞSxÞ

!
⇔

1ffiffiffi
n

p XTy

ð1=tÞ1=2

� Nð0;Sx þ SxðnvÞSxÞ:

Let u ¼ nv and z ¼ ð1= ffiffiffi
n

p ÞðXTy=ð1=tÞ1=2Þ; then
z � Nð0;Sx þ SxuSxÞ: If the variance 1=t is replaced by
the maximum-likelihood estimate from the linear model (1)
when keeping one SNP in the model at a time, the resulting
vector ẑ ¼ ðz1; z2; . . . ; zmÞT consists of exactly the marginal
test statistics for each SNP used in CAVIAR (Hormozdiari
et al. 2014). The likelihood of z is

Pðzjt;XÞ ¼ ð2pÞ2ðn=2ÞjSx þ SxuSxj2ð1=2Þ

3 exp
�
2
1
2
zTðSx þ SxuSxÞ21z

�
:

For the null model, u = 0, the likelihood of z is

P0ðzjt;XÞ ¼ ð2pÞ2ðn=2ÞjSxj2ð1=2Þexp
�
2
1
2
zTðSxÞ21z

	
:

Then the Bayes factor based on z is

BF2 ¼
��Sx þ SxuSx

��2ð1=2Þexpð2 ð1=2ÞzTðSx þ SxuSxÞ21zÞ��Sx
��2ð1=2Þexpð2 ð1=2ÞzTðSxÞ21zÞ

:

Because X has full column rank m, Sx also has rank m and is
nonsingular. Therefore,��Sx þ SxuSx

�� ¼ ��SxðIm þ uSxÞ
�� ¼ ��Sx

����Im þ uSx
��

¼ ��Sx
����Im þ vXTX

��:
From Sylvester’s determinant theorem (Harville 2008),��Im þ vXTX

�� ¼ ��In þ XvXT
��: Therefore,

��Sx þ SxuSx
�� ¼ ��Sx

�����In þ XvXT
���:

From Woodbury matrix identity, ðSx þ SxuSxÞ21 ¼
S21
x 2 ðu21 þ SxÞ21; resulting in the Bayes factor

BF2 ¼ ��In þ XvXT��2ð1=2Þ
exp

 
1
2
zT
�
u21 þ Sx

�21
z

!
:

By plugging in the definition of z and u,

BF2 ¼
���In þ XvXT

���2ð1=2Þ
exp

 
1
2
1
n
yTX

�
1
n
v21þ 1

n
XTX

�21

XTyt

!

¼
���In þ XvXT

���2ð1=2Þ
exp
�
1
2
yTX

�
v21þ XTX

�21
XTyt

�
¼BF1:

Therefore, given t, BIMBAM (using D2 prior) and CAVIAR
have the same Bayes factor. In practice, t is unknown.
BIMBAM uses a noninformative prior for t and integrates it
out. On the other hand, CAVIAR uses the maximum-likelihood
estimate (MLE) of 1=t by putting one SNP at a time in model
(1); i.e., only one column of X is used each time. There are
two approximations here. First the MLE is used instead of the
true unknown 1=t: Second, different MLEs of 1=t from dif-
ferent columns of X are used for each element of z. The
second approximation makes the result of CAVIAR farther
away from a true Bayes factor. An alternative approximation
is to use the MLE of 1=t from model (1) with the full X
matrix. However, this loses the ability to directly use marginal
test statistics. For fine mapping of a region, because SNPs in
a region usually explain only a very small portion of the total
variance of y, e.g., ,5%, the MLEs from different columns
of X may be all close to the true parameter. In practice, the
calculated Bayes factors from CAVIAR and BIMBAM are
usually similar to each other, given that the same v is used.

In the CAVIAR article (Hormozdiari et al. 2014), all SNPs
in a region are used in calculating Bayes factors. The varian-
ces of the SNPs not in the putative causal model are set to
a very small positive value. When this value approaches 0, the
result approaches the case where only putative causal SNPs
are used as above. Using only putative causal SNPs to com-
pute the Bayes factor can also be faster. Another advantage of
the above derivation is that even when X is not full column
rank, which is very common for SNPs in high LD, we can still
use the following formula to calculate the Bayes factor:

BF2 ¼
���Im þ nvSx

���2ð1=2Þ
exp

 
1
2
zT
�
ðnvÞ21 þ Sx

	21
z

!
:

(3)

For small u ¼ nv; e.g., u21 . 1023; this avoids the need to
add a small positive value to the diagonal of Sx; which is
required in the current CAVIAR implementation. When u
gets larger and Sx is singular, the exponent in Equation 3
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may be unstable. In this case we still need to add a small
positive value to the diagonal of Sx; e.g., 1023: This may
have some shrinkage effect on the Bayes factors compared
to that from BIMBAM based on our simulations. Our imple-
mentation of CAVIARBF is based on Equation 3.

BIMBAM can naturally incorporate a dominance effect by
adding an extra column to X for each SNP, which is coded as 1
for the heterozygous genotype and 0 for others. The same
could be used for CAVIAR to extend it to incorporate a domi-
nance effect. In this case, each SNP will have two z statistics
calculated, one for the SNP column of additive effects and the
other for the heterozygous indicator. The correlation matrix
also needs the correlations with these heterozygous indicators.

In the above proof, we assumed that the SNP matrix X is
scaled to have variance 1 for each SNP. This is not assumed
in the BIMBAM article (Servin and Stephens 2007; Guan
and Stephens 2008). In the following we consider the im-
pact of scaling. As noted in Guan and Stephens (2011),
scaling to variance 1 corresponds to a prior assumption that
SNPs with lower minor allele frequency have larger effect
size. Specifically, suppose ~X is the original centered SNP
matrix, but not scaled, with the model

y ¼ ~Xg þ e;

where g � Nð0;wð1=tÞÞ: Then the scaled SNP matrix
X ¼ ~Xs2ð1=2Þ; where s is the diagonal matrix with the variance
of each SNP on the diagonal. From Xb ¼ ~Xs2ð1=2Þb ¼ ~Xg and
b � Nð0; vð1=tÞÞ; we have the correspondence that vi ¼ siwi;

subscript i denotes the ith diagonal elements. If we assume
a common prior vi ¼ s2

a for all SNPs in the scaled SNP matrix
X, then wi ¼ s2

a=si; which is proportional to the inverse of the
SNP i’s variance in the original ~X: On the other hand, if we
assume a common prior wi ¼ s2

a in the original ~X; then
vi ¼ sis2

a; which has a smaller value if the minor allele fre-
quency is low. Since there is no strong reason to prefer one to
the other, in our software we provide the option to set the
weight si for each SNP in the implementation of CAVIARBF.
To get results similar to those of BIMBAM, we just need to set
the weight si to the variance of the corresponding SNPs.

PAINTOR (Kichaev et al. 2014) is a recently proposed
method to prioritize causal variants that can optionally
include additional function data. Without function data,
PAINTOR is similar to CAVIAR. Both use marginal test statis-
tics and SNP correlations and leverage the multivariate nor-
mal distribution. However, PAINTOR does not model the
uncertainty of the effect size (or noncentrality parameter) as
in CAVIAR. Instead, it uses the observed test statistic as the
true underlying effect size if the observed test statistic is larger
than a threshold. This may result in a decrease in performance
when the observed data deviate largely from the true values.

Model space, Bayes factors, and posterior inference

To compute the probabilities of SNPs being causal, we need
to consider the set of possible models to evaluate and their
related Bayes factors. Suppose the total number of SNPs in

a candidate region is p. Let c ¼ ðc1; c2;⋯; cpÞ with each com-
ponent being either 0 or 1, indicating whether the corre-
sponding SNP is in a causal model. The total number of
possible causal models is 2p: It is usually prohibitive to enu-
merate all models when p is relatively large, e.g., for p . 20.
Similarly as in Hormozdiari et al. (2014), we set a limit on
the number of causal variants in the model, denoted by l;
e.g., l = 5. This reduces the total number of models to

evaluate in the model space M to
Pl

i¼0

�
p
i

�
; where

�
p
i

�
denotes the number of i combinations from p elements.
For any causal model Mc in the model space M, we can
calculate the posterior probability as

pðMcjDÞ ¼ pðMc;DÞ
pðDÞ ¼ pðDjMcÞpðMcÞP

Mt2MpðDjMtÞpðMtÞ;

where D denotes the data. For example, for BIMBAM, D ¼
ð y;XfullÞ; where Xfull represents all SNP data. For CAVIAR/
CAVIARBF, D ¼ ðzfull;SfullÞ; where now the marginal test
statistics and the correlation matrix represent the data.
The prior probabilities of Mc and Mt are pðMcÞ and pðMtÞ;
respectively. Denote by M0 the null model where no SNP
is included; i.e., c ¼ ð0; 0;⋯; 0Þ: Define the Bayes factor
comparing model Mc with the null model by BFðMc : M0Þ ¼
pðDjMcÞ=pðDjM0Þ: The posterior probability of each model
can be calculated as

pðMcjDÞ ¼ BFðMc : M0ÞpðMcÞP
Mt2MBFðMt : M0ÞpðMtÞ: (4)

The posterior probability of the global alternative Mg that at
least one SNP is causal in the region can be calculated as

pðMgjDÞ ¼
P

Mt2Mg
BFðMt : M0ÞpðMtÞP

Mt2MBFðMt : M0ÞpðMtÞ :

We can also use Bayes factors to compare the global alterna-
tive Mg with the null model M0 (Wilson et al. 2010), which
can be calculated as

BFðMg : M0Þ ¼
P

Mt2Mg
BFðMt : M0ÞpðMtÞP
Mt2Mg

pðMtÞ :

As advocated in Servin and Stephens (2007; Stephens and
Balding 2009; Wilson et al. 2010), the Bayesian method
provides a natural way to answer both the association ques-
tion (Which regions are most likely associated with the phe-
notype?) and the fine-mapping question (If a region shows
evidence of association, which are the potential causal SNPs
in the region?). In the following we focus on the fine-mapping
question.

Marginal PIP

The probability of including a SNP as causal in a model is
commonly used to prioritize SNPs (Stephens and Balding
2009). The marginal PIP for each SNP j is defined as
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pðcj ¼ 1jDÞ ¼
X

Mc2M; cj¼1

p
�
Mc
��D�:

Here we provide a justification of using marginal posterior
probability to rank SNPs. Suppose we want to select k SNPs
from p SNPs, and our objective is to maximize the number
of causal SNPs among these k SNPs. Denote the indexes of
the selected k SNPs by Ik: The objective value is then
q ¼Pj2Ik cj: Because each cj is a random variable, it is natu-
ral to use the expectation EðqjDÞ as the objective function. It
turns out that EðqjDÞ is the sum of marginal PIPs of the
selected k SNPs as follows:

EðqjDÞ ¼ E

 X
j2Ik

cj
��D
!

¼
X
j2Ik

Eðcj
��DÞ ¼X

j2Ik
pðcj ¼ 1jDÞ:

To maximize EðqjDÞ; we need only to sort all p SNPs based
on their marginal PIPs and choose the top k SNPs. In other
words, prioritizing SNPs based on marginal PIPs maximizes
the expected number of causal SNPs for a fixed number of
SNPs selected. There are two implications from this result.
First, when selecting SNPs from multiple loci, we need to
pool all of the SNPs in these loci together and choose the
top k SNPs. This is also the better way as demonstrated in
Kichaev et al. (2014). Second, we can use the sum of the
marginal PIPs as a measure of our expected number of
causal SNPs. This could be used to decide the number of
SNPs to be followed in subsequent functional studies. For
example, choose the number that maximizes an objective
function that considers both the cost and benefits of finding
a causal SNP as in Kichaev et al. (2014).

r-Level confidence set

The r-level confidence set (or r confidence set) was pro-
posed in Hormozdiari et al. (2014), where r is the probabil-
ity that all causal SNPs are included in a selected SNP set.
Specifically, for a SNP set with indexes Ik; the probability r is
defined as

r ¼
X

Mc2M; cj¼0 for "j;Ik;

p
�
Mc
��D�:

Different from the definition in Hormozdiari et al. (2014),
we do not include the null model M0 in the above summa-
tion. When all SNPs are included in the set, the probability r
is the posterior probability that there is at least 1 causal SNP
in the region. Because direct maximization of r by selecting
k SNPs from p SNPs is computationally prohibitive, we fol-
low the same stepwise selection as in Hormozdiari et al.
(2014). For each step, the SNP that increases r the most
is selected. In Results, we compare the performance of pri-
oritizing SNPs based on r and that based on PIP.

Priors

Choosing a reasonable prior is important for a Bayesian
model (Stephens and Balding 2009). There are different
ways to set the model priors. For example, we can use a bi-

nomial prior for the number of causal SNPs, which assumes
that the probability of each SNP being causal is independent
and equal (Guan and Stephens 2011; Hormozdiari et al.
2014). Denote the probability of each SNP being causal by
p; then pðMcÞ ¼ pjMcjð12pÞp2jMcj; where jMcj is the model
size, i.e., the number of SNPs in the model. BIMBAM (Servin
and Stephens 2007; Guan and Stephens 2008) uses another
way to specify the priors. Specifically, for any model Mc with
jMcj$ 1; pðMcÞ ¼ ð1=2ÞjMc j=#ð���Mc

���Þ; where #ðjMcjÞ is the
total number of models with model size jMcj: We can also
use a Beta-binomial distribution to introduce uncertainty on
p; as discussed in Scott and Berger (2010). Different impli-
cations between the binomial prior and the Beta-binomial
prior were also discussed and summarized in table 2 of
Wilson et al. (2010). For all the comparisons in this study
we used the binomial prior and assumed the average num-
ber of causal SNPs is 1; i.e., p ¼ 1=p:

The value of sa reflects the distribution of the effect size.
Using a “large” value places almost all the mass on large
effect sizes (Servin and Stephens 2007). There are different
ways to set it, for example, based on a mixture of 0.1, 0.2, and
0.4 (Guan and Stephens 2008) or based on the proportion of
variation in phenotype explained (Guan and Stephens 2011).
For simplicity, we use 0:1 for sa in all comparisons. We found
that the performance is quite robust; see Results.

Implementation details

The implementation of fine mapping consists of two compo-
nents. The first component is the computation of Bayes factors.
The output format of the Bayes factors from CAVIARBF is the
same as that from BIMBAM. The second component is model
search, which can compute PIPs and the r-level confidence set
based on the computed Bayes factors and the specified model
priors. The second component can also be used to process the
Bayes factors output from BIMBAM. We also note that CAVIAR
(Hormozdiari et al. 2014) uses the r-level confidence set to
prioritize variants, in contrast to PAINTOR (Kichaev et al.
2014) that uses PIPs. When pairing CAVIARBF with the r-level
confidence set, in principle it is the same as CAVIAR. However,
our implementation is much faster than CAVIAR. One reason is
that in our implementation the Bayes factors for each model
are calculated once and stored, but the CAVIAR implementa-
tion recomputes the likelihoods of different models when it
tries to find the best next SNPs to include.

Methods for comparison and settings

It has been shown that assuming only 1 causal SNP results
in suboptimal performance in prioritizing causal variants
(Hormozdiari et al. 2014; Kichaev et al. 2014). A compre-
hensive evaluation was done in Kichaev et al. (2014), where
PAINTOR has shown better performance than many other
methods compared. Therefore we decided to compare only
the following methods in this study.

CAVIARBF and BIMBAM: We assume the prior normal
distribution of the effect size is on the original scale with
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SNPs coded as 0, 1, and 2 with respect to the count of the
alternate allele. This makes CAVIARBF and BIMBAM compa-
rable because BIMBAM uses only the original scale of SNPs.
For both CAVIARBF and BIMBAM, the maximal number of
causal SNPs is set to 5. The option “-a” is used for BIMBAM
because only the additive model is considered in this study.
Once the Bayes factors were calculated, PIPs were calculated
and used to prioritize SNPs. For BIMBAM with binary traits,
we use the “-cc” option, which uses the Laplace approxima-
tion in calculating Bayes factors. BIMBAM version 1.0 was
used. CAVIAR was not compared here because the implemen-
tation is very slow and the method is essentially equivalent to
CAVIARBF. Because often only the marginal test statistics for
individual SNPs are available, the true correlation matrix
among SNPs needs to be estimated from existing reference
populations. Therefore we also evaluated the performance of
CAVIARBF with the estimated correlation matrix, denoted by
CAVIARBF(ref), using the Utah Residents (CEPH) with North-
ern and Western European Ancestry (CEU) population panel
of the 1000 Genomes Project that was also the reference
panel used in the simulated data set.

PAINTOR: Since we do not consider functional annotations
in this study, we assigned the same baseline annotation value
of 1 to all SNPs in the data. We used the default iteration
number 10. We set the maximal number of causal SNPs to 3.
We also tried to set it to 5. However, the performance based
on the proportion of causal SNPs included was not as good as
that using 3. PAINTOR version 1.1 was used.

LASSO and elastic net: LASSO (Tibshirani 1996) and elastic
net (ENET) (Zou and Hastie 2005) are two widely used pe-
nalized methods for variable selection. LASSO uses the norm-1
penalization for coefficients in the model with a penalty
parameter l. When the penalty parameter l varies, the model
size (nonzero coefficients) can change from 0 to p (assuming n
is larger than p), resulting in a series of models. Elastic net
combines both norm-1 and norm-2 penalizationswith amixing
parameter a and the penalty parameter l. For quantitative
traits, R package lars (v1.2) and elasticnet (v1.1) were used
for LASSO and elastic net, respectively, due to a slightly better
performance than using the R package glmnet. For binary
traits, R package glmnet (v1.9-8) was used for LASSO (fixing
the parameter a to 1) and elastic net. For elastic net, we first
did a grid search for both a and l with 10-fold cross-validation
and chose the pair with the minimum cross-validation error.
Then we fixed the mixing parameter a and varied the penalty
parameter l to generate a series of models. Even though
LASSO and ENET output a series of models, the size (number
of variables included in the model) difference between two
neighboring models may not be exactly 1, e.g., more than one
SNP may be added in the next model. To make sure the in-
crease of model size is 1 so that it can be compared with other
methods for each number of selected SNPs, we interpolated
the intermediate models if the model size difference between
two neighboring models was .1. Specifically, if the current

model is a subset of the next model, we randomly choose the
order of those to-add SNPs to form the intermediate models. If
the current model is not a subset of the next model, which was
not common, we removed the SNPs in the current but not in the
next model and then did the interpolation. Finally, we started
with the last model (the largest model) and worked backward
to pick models with each model size. Once a model was chosen,
other models with the same size would not be selected.

For CAVIARBF and PAINTOR, the inputs are marginal test
statistics for each SNP and the pairwise correlation among
SNPs. For quantitative traits the marginal test statistic is the
t-statistic from the linear regression model. For binary traits, it is
the Armitage trend test statistic with additive coding (Armitage
1955). For other methods, the inputs are the genotypes and
phenotypes.

Data simulation and evaluation

We used HAPGEN (Su et al. 2011) to simulate genotypes,
using the CEU population from the 1000 Genomes Project
(Abecasis et al. 2012) as the reference panel. For each simu-
lated data set, we randomly selected a region of 35 common
SNPs (minor allele frequency .0.05) on chromosome 8 and
simulated 2000 individuals (1000 cases and 1000 controls for
binary traits). We simulated data sets with the number of
causal SNPs ranging from 1 to 5. The causal SNPs were se-
lected randomly. In assigning the effect size to each causal
SNP, we made sure the power of detecting each causal SNP
using the individual SNP-based test was in a certain range,
e.g., power no less than 0.5. The underlying logic is that true
causal SNPs should be replicated in other independent stud-
ies and thus the power of detecting the true causal SNPs
should not be too small. Specifically, we randomly sampled
the effect size b for each causal SNP from a normal distribu-
tion, with mean 0 and standard deviation 1 for quantitative
traits and mean 0 and standard deviation 0.5 for binary traits.
Then we accepted only those combinations where the non-
centrality parameters of the marginal test statistics for causal
SNPs fell in the range of (30.457, 61.856). Using an approx-
imate x2

1 distribution, this corresponds to the power range of
(0.527, 0.992) when using the marginal test statistics with
significance level 53 1028. The formulas of the noncentrality
parameters of marginal test statistics with multiple causal
SNPs are given in Supporting Information, File S1. Another
requirement for each data set is that there is at least one SNP
with a P-value ,5 3 1028. We simulated 100 data sets for
each number of causal SNPs. To compare different methods,
we calculated the proportion of causal SNPs included among
100 data sets by selecting k SNPs, k ¼ 1⋯35:

One distinguishing characteristic of sequence data is that
many SNPs are exactly the same; i.e., the correlation coefficient
is 1 or 21. This will create some ambiguity on the number of
causal variants. For example, five causal SNPs, which are iden-
tical, with the same effect size e will influence the phenotype in
the same way as one of these five SNPs being causal with the
effect size 5e. Therefore there can be some data sets overlap-
ping for different numbers of causal SNPs.
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Results

Marginal PIPs vs. P-values

First we demonstrate the advantage of marginal PIPs over
P-values in identifying candidate causal SNPs. Figure 1 shows
the result of fine mapping on a simulated data set with 3
causal SNPs. PIPs were computed based on Bayes factors
calculated from CAVIARBF. Circles represent the individual
SNP-based P-value levels and lines represent the PIPs. The
gold color indicates the true causal SNPs. The noncausal var-
iant SNP23 had the smallest P-value, but this is purely due to
high LD with the causal variant SNP17 and statistical fluctu-
ation. The causal variant SNP25 did not achieve the smallest
P-value, but it was correctly captured by the highest PIP. It
seems that the causal variant SNP17 was ranked higher by
P-values than by PIPs. However, from the perspective of the
number of causal variants identified, ranking by P-values will
include the first causal variant (SNP17) when 8 SNPs are
selected, and ranking by PIPs will include on average 1 +
4/7 causal variants (SNP25 and SNP11) when 7 SNPs are
selected (due to the same PIPs among SNP1, -2, -4, -6, -7, -8,
and -11). If the correlation among SNPs is 1 or 21, for ex-
ample between the causal variant SNP11 and SNP1, -2, -4, -6,
-7, -8, and -11, these SNPs will have the same P-values and
PIPs. To further distinguish them, extra information, such as
functional annotation, may be helpful.

Proportion of causal SNPs included by
different methods

Figure 2 shows the proportion of causal SNPs included for
different numbers of selected SNPs in 100 simulated data
sets with quantitative traits. CAVIARBF, BIMBAM, and
PAINTOR all use PIPs to rank SNPs and select the top SNPs.
CAVIARBF and BIMBAM had similar performance as ex-
pected. Note that this similar performance does not require
a very large sample size, e.g., 2000 here. Similar perfor-
mance between CAVIARBF and BIMBAM was also observed
when the sample size was 200 (data not shown). When
there was only 1 causal SNP, CAVIARBF, BIMBAM, and
PAINTOR had similar performance. However, when there
was .1 causal SNP, CAVIARBF and BIMBAM showed better
performance than PAINTOR. One reason may be that PAIN-
TOR uses the observed test statistics as the true underlying
effect size, and therefore it does not account for the uncer-
tainty of the effect size. On the other hand, CAVIARBF and
BIMBAM incorporate the uncertainty by averaging (integrat-
ing) over the prior distributions of effect sizes. ENET had
better performance than LASSO, but worse performance
than CAVIARBF, BIMBAM, or PAINTOR. One reason for
the worst performance of LASSO is that when a causal var-
iant has correlation 1 or 21 with other noncausal variants,
LASSO will pick only one and ignore the rest. If the causal
variant is not picked, it will not have the chance to be picked
again as the model size increases. As expected, CAVIARBF
had better performance than CAVIARBF(ref) because of us-
ing the true correlation matrix. However, CAVIARBF(ref)

still had good performance, and in general it was the third
best method among all compared, following CAVIARBF and
BIMBAM. The differences among methods were small when
only few SNPs were selected, but the differences became
larger in the middle, i.e., around half of the total number
of SNPs, and were small again when almost all SNPs were
selected. In each plot, if we fix the proportion of causal SNPs
included (the y-axis), we can compare the number of SNPs
needed to reach that proportion, which is linearly interpo-
lated based on the discrete numbers on the x-axis. Table 1
shows the average number of SNPs needed to include 50%
or 90% of the causal SNPs among 100 simulated data sets.
For example, when there were 3 causal SNPs, to include
90% of the causal SNPs, the average numbers of SNPs
needed were 19.80 for CAVIARBF and BIMBAM, 25.25 for
PAINTOR, 29.00 for ENET, and 22.00 for CAVIARBF(ref).
The results were similar for binary traits, which are shown in
Figure S1 and Table S1.

Choices and robustness of sa

For both CAVIARBF and BIMBAM, we needed to specify sa:

We found that the results were robust with different values of
sa: Figure 3 shows the result of CAVIARBF on quantitative
traits by setting sa to 0.1 and 0.4, which are common values
used from BIMBAM’s manual. The results were similar except
for the case of five causal SNPs where setting sa to 0.4 showed
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Figure 1 P-values and posterior inclusion probabilities (PIPs). Circles rep-
resent the individual SNP-based P-values on the left y-axis and lines rep-
resent the PIPs on the right y-axis. The gold color indicates the true causal
SNPs. The color-coded LD pattern is shown below. The noncausal variant
(SNP23) has the smallest P-values, but is purely due to high LD with the
causal variant (SNP17) and statistical fluctuation. The causal variant
(SNP25) does not achieve the smallest P-values but is correctly captured
by the highest PIP.
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Figure 2 Comparison of different fine-mapping methods on quantitative traits. The y-axis is the proportion of causal SNPs included and the x-axis is the
number of selected SNPs. There are 35 SNPs in total. The proportions are calculated over 100 data sets. The proportion (y-value) is not calculated if .5
data sets do not reach the specified number of SNPs (x-value). This is why some proportions are not available for LASSO as the number of selected
candidate SNPs becomes large. Each plot corresponds to a different number of causal SNPs.
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a slightly better performance. Similar robustness was observed
for binary traits (see Figure S2). Another possible way to
choose sa is to try several values and choose the one that
maximizes the likelihood of the given data. This is similar to
the empirical Bayesian method. When computation time is
not an issue, this may result in a more robust and improved
performance.

r-Level confidence set vs. marginal PIP

Even though choosing SNPs with the top marginal PIPs
maximizes the expected number of causal SNPs, we want to
compare this criterion with the r-level confidence set, as
proposed in CAVIAR (Hormozdiari et al. 2014). Figure 4
and Figure S3 show the results for quantitative traits and
binary traits, respectively. In general, the results from the
two different selection criteria were very similar if the num-
ber of selected SNPs was not too small. Specifically, it seems
that selecting SNPs using marginal PIPs usually had better
performance than the r-level confidence set at the first few
steps. This is reasonable. Take the first step, for example. For
each candidate SNP, the r-level confidence set considers
only the causal model that is composed of the candidate
SNP. In contrast, the marginal PIP considers all models that
include the candidate SNP. The marginal PIP gives the likeli-
hood that a candidate SNP is causal among all possible
causal models, while the r-level confidence set gives the
likelihood that a candidate SNP is causal, assuming there
is only one causal SNP. Obviously, marginal PIP is what
we want when there are multiple causal SNPs. Interestingly,
when the number of selected SNPs was large enough, e.g.,
no less than five, the two methods showed similar results.
Given that the marginal PIP is much easier and faster to
compute and ranking by PIP maximizes the expected num-
ber of causal variants, we recommend using it first. In our
implementation, we still provide an option to calculate the
r-level confidence set if the user wants to have an estimate
of the probability that all causal SNPs have been included in
each selection step. The forward stepwise selection to con-
struct a r-level confidence set may have some advantages
when there are interactions among causal SNPs. There might
be more flexible stepwise procedures that allow previously
selected SNPs to be removed from the model or swapped
with others. These could be a topic for further study.

Estimated probability of r-level confidence set

In this section we estimate the probability of including all
causal SNPs. Figure 5 shows the estimated probability and
the distribution (boxplot) of the number of selected SNPs for
quantitative traits. The nominal r level was set to 0.9. For
CAVIARBF and BIMBAM, when the number of causal SNPs
was no more than three, the estimated probability was
larger than the nominal level, which means more SNPs than
needed were selected. When the number of causal SNPs was
five, the estimated probability was �0.7, lower than the
nominal level. This inaccurate r-level estimation was be-
cause we used a model that assumed the expected number
of causal SNPs in the data was one, much smaller than five.
Therefore in real data analysis, even though the estimated
probability r for each SNP set can usually give a rough in-
dication of the probability of including all causal SNPs, it
should be interpreted with some caution. For ENET and
LASSO, we first used cross-validation to select the best
parameters and then used the selected parameters to build
the best model, using the full data. It was obvious that both
ENET and LASSO cannot guarantee a high probability of
including all causal SNPs based on the best model built from
the data, even though the number of the selected SNPs was
much smaller than those from CAVIARBF and BIMBAM. For
binary traits, similar patterns were observed (see Figure S4).

The results show that CAVIARBF or BIMBAM selected
more SNPs than ENET or LASSO but achieved a higher
probability of including all causal SNPs. We questioned
whether this was due to the high correlation between SNPs
in the simulated data set or other factors. To answer this, we
simulated data sets with quantitative traits where SNPs
were independent from each other. Results are shown in
Figure S5. For data sets with less than five causal SNPs,
CAVIARBF and BIMBAM selected more SNPs than needed;
i.e., the reported level of confidence was conservative even
in the case of independent SNPs. We think that this is due to
the uncertainty on the number of causal SNPs. For example,
for the data set with only one causal SNP, allowing a maxi-
mum of five causal SNPs with CAVIARBF and BIMBAM
may also take into account other possible small effects,
resulting in more SNPs needed to reach a nominal level
than that assuming only one causal SNP. For data sets with
five causal SNPs, which was also the maximal number of

Table 1 Average number of SNPs needed to include 50% and 90% causal SNPs among 100 simulated data sets under different numbers of
causal SNPs for continuous traits

Methods

1a 2 3 4 5

50% 90% 50% 90% 50% 90% 50% 90% 50% 90%

CAVIARBF 1.69 10.00 2.95 16.00 4.53 19.80 5.47 20.80 7.42 26.18
BIMBAM 1.63 9.75 3.00 17.00 4.25 19.80 5.50 20.55 7.86 26.25
PAINTOR 2.00 11.50 3.75 20.33 5.36 25.25 6.50 25.67 8.77 26.83
ENET 2.00 27.00 4.00 26.20 7.80 29.00 6.41 29.00 8.39 30.33
LASSO NA NA NA NA NA NA 13.75 NA NA NA
CAVIARBF(ref) 1.73 12.00 3.17 15.00 4.76 22.00 5.88 23.17 7.82 26.77
a The number of causal SNPs in the data. The smallest number for each column is in boldface type. NA: data not available for the calculation. CAVIARBF(ref): CAVIARBF with
the correlation among SNPs estimated from the CEU population of the 1000 Genomes Project.
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Figure 3 Comparison of different prior values sa on quantitative traits. CAVIARBF is used to calculate the Bayes factors. The description of the x-axis
and y-axis is the same as in Figure 2.

728 W. Chen et al.



Figure 4 Comparison of different criteria to prioritize variants on quantitative traits. CAVIARBF is used to calculate the Bayes factors. The green dashed
line represents prioritizing SNPs using marginal posterior inclusion probabilities (PIPs). The red solid line represents prioritizing SNPs using the r-level
confidence set. The description of the x-axis and y-axis is the same as in Figure 2.
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Figure 5 Estimated probabilities of the r-level confidence set and boxplots of the number of selected SNPs. The phenotypes are quantitative traits. The bar
graph is plotted above the corresponding boxplot. The red dashed line shows the nominal level of the confidence set. The bars show the estimated proportion
where the selected SNPs include all causal SNPs among 100 data sets. For ENET and LASSO, the best model selected by cross-validation is used for each data set.
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causal SNPs allowed in the analysis, most of the time CAVIARBF
and BIMBAM selected exactly the five causal SNPs because
no extra small effects needed to be considered. This number
was also lower than that from ENET or LASSO. The single
r level of a candidate set provides limited information about
the selected SNPs; another informative way is to look at the
marginal PIPs, as shown in Figure S6. There were three causal
SNPs in the data set, which correspond to the marginal PIPs
close to 1 (gold lines). Compared to Figure 1, the pattern here
is much simpler and reflects the independence among SNPs.

Calibration of the PIPs

PIPs are more useful if they are well calibrated. To assess the
accuracy of estimated PIPs, following Guan and Stephens
(2011), we put SNPs into 10 bins according to their PIPs.
Each bin’s width was 0.1. We chose 10 bins instead of 20
due to the small number of counts in some bins. Then we
compared the proportion of causal SNPs in each bin with the
center PIP of that bin. Figure 6 shows the plots using quan-
titative traits. Except those bins with very large confidence
intervals, due to small total counts in the bins, in general the
points lie near the diagonal line. This indicates that the PIPs
are reasonably calibrated. Therefore PIPs can be used not
only to rank SNPs, but also as an indication of the expected
number of SNPs in the candidate set. Similar results for bi-
nary traits are shown in Figure S7.

Time cost

For CAVIARBF and BIMBAM, the time cost depends on the
total number of SNPs p and the maximal number of causal
SNPs allowed, l. The total number of causal models isPl
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exponentially with respect to l. If we fix l, it is bounded
above by a polynomial complexity of degree l. For a reason-
able running time, l is usually small, e.g., no more than 5.
The total number of SNPs p can be relatively larger. Figure 7
shows the actual time cost for quantitative traits with differ-
ent p when l = 3, 4, and 5. ENET was based on the R
package elastic net with 10-fold cross-validation and LASSO
was based on the R package lars. For PAINTOR, we set the
number of iterations to two because after that the likelihood
changed little. CAVIARBF takes about one-quarter to one-
fifth of the time of BIMBAM. For example for l= 3, when the
number of SNPs was 200, the time was �44 sec for CAVIARBF
and 229 sec for BIMBAM. CAVIARBF was slower than
PAINTOR when p , 200 but faster than PAINTOR when
p became larger. This is because PAINTOR always uses all
the SNPs in the computation of the likelihood for each
model while CAIVARBF uses only those SNPs included in
each model to calculate the likelihood.

Application of methods

To compare different methods on real data, we used two GWAS
cohorts designed to identity genetic variants associated with
variation in smallpox vaccine-induced immune responses. The
phenotype of interest is vaccinia virus-induced IFN-a pro-
duction detected in peripheral blood mononuclear cells
(PBMCs) from first-time recipients of smallpox vaccine. More
details about the study cohorts can be found in Ovsyannikova
et al. (2011, 2012, 2014) and Kennedy et al. (2012). The first
cohort, called the San Diego cohort, included 1076 recipients
of Dryvax, of which 488 were Caucasian and had the IFN-a
outcome available and genotypes measured by the Illumina
HumHap 550 platform. Genotypes were imputed using IM-
PUTE2 (Howie et al. 2009) with the reference panel from the
1000 Genomes Phase 1 haplotypes. The second cohort, called
the U.S. cohort, included 1058 recipients of ACAM2000, of
which 734 were Caucasian and 713 of them had the IFN-a
outcome available. The genotypes were measured by the
Omni 2.5S genome-wide SNP chip. For the U.S. cohort
(mainly Caucasian), the European (EUR) population was
used as the reference panel. For the San Diego cohort (a
mix of different race and ethnic groups), the EUR, East Asian
(ASN), African (AFR), and Admixed American (AMR) pop-
ulations were used as the reference panel. For both cohorts,
the analyses were restricted to Caucasians. For the U.S. cohort,
the phenotype was regressed on the following covariates:
gender, time from immunization to blood draw, vaccination
date, immune assay batch, and the first principal component
to adjust for potential population stratification. For the San
Diego cohort, the phenotype was regressed on the following
covariates: date of IFN-a assay, date of blood draw, shipping
temperature of the sample, site the sample was drawn from,
and the second principal component (the first is not in-
cluded because it is not significant). The residuals from
these regressions were used as the analysis phenotype. We
focused on a region of chromosome 5 where multiple SNPs
reached the genome-wide significance level of 5 3 1028 for
both cohorts. We chose the region based on a cluster of peak
signals and included �100 SNPs on both sides of the target
region. Furthermore, SNPs with minor allele frequency
(MAF),5% in each cohort were removed, leaving 167 SNPs
in the U.S. cohort and 200 SNPs in the San Diego cohort for
fine-mapping analysis. The mode of posterior probabilities
from IMPUTE2 for each SNP averaged over all individuals
was .0.8, and the overall average across all SNPs was
.0.97. We set the maximal number of causal SNPs to 3
and 4. Because they showed similar results, there was no
need to use a larger maximal number of causal SNPs. We
present the results corresponding to a maximum of 4 causal
SNPs. For BIMBAM and CAVIARBF, we set sa to 0.1 and
used the original SNP matrix (not scaled) in the model. The
prior probability of being causal for each SNP is set to 1/m,
where m is the number of SNPs.

The overall Bayes factor BFðMg : M0Þ measures the evi-
dence strength of at least one causal variant in the region.
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Figure 6 Calibration of the posterior inclusion probabilities (PIPs) on quantitative traits. CAVIARBF is used to calculate the Bayes factors. SNPs were put into
10 bins of width 0.1 according to their PIPs. In each bin, the proportion of causal SNPs was then calculated. The x-axis shows the center of each bin. The y-axis
is the proportion of causal SNPs. The blue points show the proportion of causal SNPs in each bin. The red bars show the 95%Wilson score confidence interval
of the proportion assuming a binomial distribution in each bin. One hundred data sets were used in each plot. Except those points with very large confidence
intervals due to small total counts in the bins, usually ,10, in general the points lie near the line y = x. This indicates that the PIPs are reasonably calibrated.
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For the U.S. cohort, it was 2.5 3 1013, which is very strong
evidence favoring the model that there is at least one causal
variant. For the San Diego cohort it was 8.1 3 107, which is
much smaller than the U.S. cohort but is still suggestive even
if we use a very conservative prior, say 1027. One obvious
reason for the smaller Bayes factor is the smaller sample size
in the San Diego cohort. The overall evidence of the region
also makes the prior assumption of 1 expected causal SNP
in the region reasonable. Figure 8 shows the PIPs from
CAVIARBF on the U.S. cohort. PIPs of many SNPs in the plot
are very small and can be excluded from the candidate
causal set. Some of these excluded SNPs have P-values

,10210; however, this is likely due to their being in close
LD with causal variants. PIPs from BIMBAM and PAINTOR
on the U.S. cohort are shown in Figure S8 and Figure S9,
respectively. As in the simulation results, CAVIARBF and
BIMBAM showed similar results. PAINTOR identified the
same top 3 SNPs as CAVIARBF and BIMBAM; however, the
pattern of the remaining SNPs was different. CAVIARBF and
BIMBAM still included other SNPs with relatively large PIPs,
while PAINTOR-selected SNPs had very small PIPs. This may
be due to treating a fixed or estimated noncentrality param-
eter (effect size) as the true value in PAINTOR, while in
CAVIARBF and BIMBAM a prior distribution of the effect
size is assumed. Similar patterns are shown on the San Diego
cohort (see Figure S10, Figure S11, and Figure S12). The
top 10 SNPs from each method on two cohorts are presented
in Table 2 and Table 3. For both cohorts, CAVIARBF and
BIMBAM identified the same top 10 SNPs and ranked
them identically. PIPs are similar between BIMBAM and
CAVIARBF. On the other hand, PAINTOR included some
different SNPs. Some of the top 10 SNPs selected by BIMBAM
and CAVIARBF were ranked .50 by PAINTOR. Next we ex-
amined the number of SNPs shared in the top 10 SNPs picked
by each method between two cohorts. These SNPs are indi-
cated in boldface type in Table 2 and Table 3. For BIMBAM
and CAVIARBF, 8 of 10 SNPs are shared while there are only
3 SNPs shared for PAINTOR. We also found that one of the
shared SNPs picked by PAINTOR seems counterintuitive.
This SNP (rs11744917) was ranked 10th with a P-value of
0.555 in the U.S. cohort, and ranked 4th with a P-value of
0.152 in the San Diego cohort. The same SNP was ranked 47

Figure 7 Time cost of different methods. Different maximal numbers of
causal SNPs are tested for CAVIARBF, BIMBAM, and PAINTOR. The y-axis is
on a log10 scale. The x-axis shows the total number of SNPs in the input data.
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Figure 8 P-values and posterior inclusion probabilities (PIPs) from
CAVIARBF on the U.S. cohort. Circles represent the individual SNP-based
P-values on the left y-axis and lines represent the PIPs on the right y-axis.
The color-coded LD pattern is shown below.

Fine Mapping with Marginal Test Statistics 733

http://www.genetics.org/content/suppl/2015/05/06/genetics.115.176107.DC1/FigureS8.pdf
http://www.genetics.org/content/suppl/2015/05/06/genetics.115.176107.DC1/FigureS9.pdf
http://www.genetics.org/content/suppl/2015/05/06/genetics.115.176107.DC1/FigureS10.pdf
http://www.genetics.org/content/suppl/2015/05/06/genetics.115.176107.DC1/FigureS11.pdf
http://www.genetics.org/content/suppl/2015/05/06/genetics.115.176107.DC1/FigureS12.pdf


by CAVIARBF and 48 by BIMBAM in the U.S. cohort and 49
by CAVIARBF and 57 by BIMBAM in the San Diego cohort.
Because no functional study has been performed yet to verify
the underlying causal variants, no conclusion can be made on
the performance of different methods. However, the PIP pat-
terns and the sharing of the top 10 SNPs may shed some light
on the characteristics of different methods. One advantage of
CAVIARBF is the use of summary statistics. We also tried to
use only the z test statistics and estimated LD pattern (the
correlation coefficient matrix among SNPs) from the 1000
Genomes Project, using EUR samples. Figure S13 shows the
PIPs and LD plots on the U.S. cohort. Compared to the result
from using the LD matrix calculated from the U.S. cohort,
even though there are some distortions, the general patterns
are similar. As the numbers of samples in the study and in the
reference panel increase, assuming a good match of ancestry
background, the estimation of the correlation matrix will be-
come more stable and accurate. Therefore, we anticipate the
PIPs from using only the z test statistic and correlations from
reference panels will become more accurate in studies with
large samples.

Discussion

By proving that BIMBAM and CAVIAR are approximately
equivalent, we provided a Bayesian framework of fine map-
ping using marginal test statistics and correlation coeffi-
cients among SNPs. We also provided a fast implementation,
CAVIARBF. Compared to CAVIAR, CAVIARBF has the follow-
ing main advantages: (1) it is much faster largely because it
uses only the SNPs in each causal model to calculate Bayes
factors; (2) it unifies the fine-mapping and association tests in
a consistent Bayesian framework; and (3) it is Bayes factor
centered, so the output Bayes factors can be used for other
analysis, e.g., calculating the evidence of at least 1 causal SNP
in the region. Our simulation showed that the performances
of BIMBAM and CAVIARBF are almost the same, as expected.
CAVIARBF had better performance than PAINTOR, which has
been shown to be a very competitive method to other fine-
mapping methods (Kichaev et al. 2014). Our implementation
is about four to five times as fast as BIMBAM. Application to

real data showed that BIMBAM and CAVIARBF identified the
same top 10 SNPs with the same ranking. PAINTOR identified
3 of the same top 10 SNPs (those with large PIPs) as BIMBAM
and CAVIARBF. BIMBAM and CAVIARBF may be more con-
sistent than PAINTOR in prioritizing causal SNPs because 8 of
the 10 top SNPs were shared between two cohorts on the
same phenotype.

The approximate equivalence between BIMBAM using
the full data ðy; XÞ and CAVIAR/CAVIARBF using only the
marginal test statistics and the correlation coefficient matrix
ðz;SxÞ can also be explained in terms of sufficient statistics.
For example, for quantitative traits, let D1 ¼ ðy; XÞ: If we
assume the variance of y is known, we can equivalently
write the input ðz; SxÞ as D2 ¼ ðXTy; XTXÞ: The likelihood
function lðy; XjbÞ ¼ pðXÞpðyjX;bÞ: The conditional proba-
bility pðyjX;bÞ depends only on ðy2XbÞTðy2XbÞ ¼ yTyþ
bTXTXb2 2bTXTy; where the part involving both param-
eter b and data is bTXTXb2 2bTXTy: Therefore D2 ¼
ðXTy; XTXÞ is the sufficient statistic for the model parameter
b. Then it can be shown that the Bayes factor depends only
on the sufficient statistics. More details of proving the equiv-
alence for binary traits are given in File S1.

The analytic Bayes factor is also derived in Wen (2014).
For example, Equation 3 can be derived from equation 9 in
Wen (2014), even though the marginal test statistics are
not used directly. In Wen (2014), it also proves the ap-
proximation when the error variance 1=t is unknown. Sim-
ilar derivations could be applied for the marginal test
statistics.

All derivations assume no covariates in the model. When
there are covariates, for quantitative traits, as suggested in
the manual of BIMBAM, we can regress the trait on all
covariates first and use the residual as the new trait. Because
CAVIARBF needs only the input of marginal test statistics,
a natural way is to calculate the test statistic for each SNP
adjusted for other covariates. This method can be applied to
both quantitative traits and binary traits. Further analysis is
needed to fully validate the effectiveness of this handling of
covariates.

For a well-powered GWAS, there are usually multiple loci
with potential causal variants for further fine mapping.

Table 2 Top 10 variants ranked by PIPs from different methods and the corresponding P-values on the U.S. cohort

BIMBAM CAVIARBF PAINTOR

SNP P-value PIP SNP P-value PIP SNP P-value PIP

rs13166214 1.32E-21 0.470 rs13166214 1.32E-21 0.496 rs13166214 1.32E-21 0.431
rs7447927 1.83E-21 0.354 rs7447927 1.83E-21 0.383 rs7447927 1.83E-21 0.305
rs7444313 3.21E-21 0.283 rs7444313 3.21E-21 0.295 rs7444313 3.21E-21 0.177
rs55792153 5.28E-20 0.226 rs55792153 5.28E-20 0.232 rs113451531 8.29E-05 0.064
rs10875554 2.88E-13 0.204 rs10875554 2.88E-13 0.163 rs1131769 4.94E-14 0.047
rs28419191 2.44E-13 0.099 rs28419191 2.44E-13 0.081 rs112269266 3.94E-05 0.038
rs1131769 4.94E-14 0.091 rs1131769 4.94E-14 0.074 rs7380272 3.59E-06 0.031
rs13153461 2.67E-19 0.072 rs13153461 2.67E-19 0.068 rs55792153 5.28E-20 0.019
rs9716069 2.36E-18 0.048 rs9716069 2.36E-18 0.044 rs10875554 2.88E-13 0.012
rs13181561 3.39E-18 0.035 rs13181561 3.39E-18 0.031 rs11744917 5.55E-01 0.011

The SNPs in boldface type are shared in the top 10 SNPs between two cohorts for each method.
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Usually these loci can be assumed to be independent of one
another. In this case we can first do fine mapping of each
locus and then pool all PIPs of the SNPs in these loci
together and choose the top k SNPs as recommended in
Kichaev et al. (2014).

We considered only common variants in this study. For
common variants, it might be practical to assume a maximal
number of causal variants in a locus, e.g., no more than five.
When the maximal number of causal SNPs in a model is lim-
ited, all possible models can be enumerated exhaustively in
a reasonable time if the number of SNPs in a locus is not too
large. This is different from typical Bayesian methods where
sampling methods, such as MCMC, are often used to sample
models from the model space (Wilson et al. 2010; Guan and
Stephens 2011). The sampling methods would be useful if
more than five causal variants are expected in a large region
with high LD among SNPs. On the other hand, if a large region
can be divided into multiple uncorrelated or weakly correlated
regions, we can perform fine mapping in each region, and
then combine the results together. For rare variants, there
may be many rare causal variants in a region, and therefore
sampling methods may be required to explore the model
space. Some Bayesian-based methods have been proposed
for rare variants, such as in Quintana et al. (2011, 2012).

Because the Bayesian framework can also answer the
association question, in principle the proposed method can be
used for genome-wide association scans. Because of the
consideration of multiple causal SNPs in a region, it may
achieve higher power to discover the association regions than
the traditional individual SNP-based test. This has already
been demonstrated in Wilson et al. (2010) and Guan and
Stephens (2011), using the true positive vs. false positives
plot. However, the time cost may be much larger compared
to that of individual SNP-based tests. Further reduction in
time cost will be helpful for this application.

We assumed the effects of multiple causal SNPs are
additive (for binary traits, additive on logit scale) and the
effect of each causal genotype is additive. We believe these
assumptions are reasonable for most cases. In principle, the
dominance effect of each SNP can be included by adding
an extra column indicating the genotype heterozygosity as

implemented in BIMBAM. How to include a nonadditive
combination of effects from multiple causal SNPs will be an
interesting topic of further study.

We assumed that functional annotations of SNPs are not
included in fine mapping. As pointed out in Kichaev et al.
(2014) and Pickrell (2014), a large amount of annotation
information of genomic elements has been generated, such
as the Encyclopedia of DNA Elements (ENCODE Project
Consortium 2012). Including informative functional annota-
tions into fine-mapping analysis will further increase the
chance to filter out the underlying causal variants (Quintana
and Conti 2013; Kichaev et al. 2014; Pickrell 2014). In princi-
ple, the same EM algorithm proposed in Kichaev et al. (2014)
can be applied to extend our method to handle functional
annotations. We leave this as a future direction to pursue.
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File S1 

Approximate equivalence between BIMBAM and CAVIAR for binary traits 

For binary traits, we use a logistic model as follows: 

𝑙𝑜𝑔
𝑝(𝑦𝑖=1)

𝑝(𝑦𝑖=0) 
= 𝛼 + ∑ 𝑋𝑖𝑗

𝑇 𝛽𝑗
𝑚
𝑗=1 , 𝑖 = 1, ⋯ , 𝑛                                                            (A1) 

where 𝑦𝑖 is the phenotype of individual i; 1 indicates a case and 0 indicates a control. 𝑋𝑖𝑗 is the same 

additively coded genotype of individual i and SNP j as for the above quantitative traits. The model 

parameters are 𝛼 and 𝛽 = (𝛽1, ⋯ , 𝛽𝑚)𝑇. The phenotype vector is 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 . Again we assume 

each column of X has mean 0 and variance 1, i.e., 
1

𝑛
∑ 𝑋𝑖𝑗

𝑛
𝑖=1 = 0,

1

𝑛
∑ 𝑋𝑖𝑗

2𝑛
𝑖=1 = 1, 𝑗 = 1, 2, … , 𝑛. Denote 

the number of cases and controls by 𝑛1 and 𝑛2, respectively. Let �̅� = (1𝑛×1, 𝑋), �̅� = (𝛼, 𝛽)𝑇 , where 

1𝑛×1means the 𝑛 × 1 vector of 1s. We assume a normal prior distribution for �̅�, i.e., �̅�~𝑁(0, �̅�), where �̅� 

is a diagonal matrix with positive diagonal entries. Denote the first diagonal entry for 𝛼 by 𝜎𝛼
2, the rest of 

the diagonal matrix by 𝑣, the variance of 𝛽. The null model is 𝛽 = 0𝑚×1, which is equivalent to setting 𝑣 

to 0𝑚×𝑚, where 0𝑚×1 is a 𝑚 × 1 vector of 0s, and 0𝑚×𝑚 is a 𝑚 × 𝑚 matrix of 0s. The Bayes factor 

comparing the full model with the null model is  

𝐵𝐹 =
𝑝(𝑦, �̅�|𝜎𝛼

2, 𝑣)

𝑝(𝑦, �̅�|𝜎𝛼
2, 𝑣 = 0𝑚×𝑚)

, 

where 𝑝(𝑦, �̅�|𝜎𝛼
2, 𝑣) = ∫ 𝑝(𝑦, �̅�|�̅�)𝑝(�̅�|𝜎𝛼

2, 𝑣)𝑑�̅�, an integral over the prior distribution of �̅�. BIMBAM 

approximates the integral using Laplace’s method. In the following, we approximate the integral using 

sufficient statistics and normal distributions. 

For canonical link functions of generalized linear models, (�̅�𝑇𝑦, �̅�) are the sufficient statistics for �̅� 

(AGRESTI 2013). We also consider �̅� as random. By the definition of sufficient statistics 

𝑝(𝑦, �̅�|�̅�) = 𝑝(�̅�𝑇𝑦 , �̅�|�̅�)𝑝(𝑦, �̅�|�̅�𝑇𝑦 , �̅�) = 𝑝(�̅�𝑇𝑦 |�̅�, �̅�)𝑝(�̅�|�̅�)𝑝(𝑦, �̅�|�̅�𝑇𝑦 , �̅�), 



where 𝑝(�̅�𝑇𝑦 , �̅�|�̅�) is the likelihood of (�̅�𝑇𝑦 , �̅�) given �̅�, 𝑝(𝑦, �̅�|�̅�𝑇𝑦 , �̅�) is the conditional probability 

of the data (𝑦, �̅�) given (�̅�𝑇𝑦 , �̅�), which does not depend on �̅�. Because �̅� does not depend on �̅�, we 

have  

𝑝(𝑦, �̅�|�̅�) = 𝑝(�̅�𝑇𝑦 |�̅�, �̅�)𝑝(�̅�)𝑝(𝑦, �̅�|�̅�𝑇𝑦 , �̅�). 

 Therefore the Bayes factor can be written as the ratio of two likelihoods 

𝐵𝐹 =
∫ 𝑝(�̅�𝑇𝑦 |�̅�, �̅�)𝑝(�̅�|𝜎𝛼

2, 𝑣)𝑑�̅�

∫ 𝑝(�̅�𝑇𝑦 |�̅�, �̅�)𝑝(�̅�|𝜎𝛼
2, 𝑣 = 0)𝑑�̅�

. 

Denote the numerator by 𝐿1 and the denominator by 𝐿0. They are the marginal likelihood of �̅�𝑇𝑦 given �̅� 

after integrating out �̅�. Now we approximate this marginal likelihood using normal distributions. From 

the Central Limit Theorem, �̅�𝑇𝑦 given  �̅� and �̅� has an approximate multivariate normal distribution with 

the following mean and variance 

𝐸(�̅�𝑇𝑦 |�̅�, �̅�) = �̅�𝑇𝐸(𝑦) = �̅�𝑇𝑃, 

𝑉𝑎𝑟(�̅�𝑇𝑦 |�̅�, �̅�) = �̅�𝑇𝑊�̅� 

where P is a vector with each element 𝑝𝑖(𝛼, 𝛽) = 𝑝(𝑦𝑖 = 1) = 1/ (1 + exp (−(𝛼 + ∑ 𝑋𝑖𝑗
𝑇 𝛽𝑗

𝑚
𝑗=1 ))), 𝑊 is a 

𝑛 × 𝑛 diagonal matrix with the ith diagonal entry 𝑝𝑖 × (1 − 𝑝𝑖). Because the effects 𝛽 are usually small in 

real data, we can approximate 𝑊 by 𝑊0, the estimated variance under the null hypothesis. Specifically, 

𝑊0 = �̃�𝑖(1 − �̃�𝑖)𝐼𝑛 = 𝑤0𝐼𝑛 , where 𝑤0 =
𝑛1𝑛2

𝑛2 . We can also linearize 𝑝𝑖, the mean of 𝑦𝑖, using the Taylor 

expansion at the MLE of the null hypothesis,  denoted by 𝛼0 and 𝛽0 = 0𝑚×1, where 𝑝𝑖(𝛼0, 𝛽0) = �̃�𝑖 =
𝑛1

𝑛
. 

Specifically,  



𝑝𝑖(𝛼, 𝛽) ≈ 𝑝𝑖(𝛼0, 𝛽0) + 𝑝𝑖(𝛼0, 𝛽0)(1 − 𝑝𝑖(𝛼0, 𝛽0)) ((𝛼 − 𝛼0) + ∑ 𝑋𝑖𝑗
𝑇 𝛽𝑗

𝑚

𝑗=1

)

=
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(−𝛼0) +

𝑛1𝑛2

𝑛2
∑(𝛼 + 𝑋𝑖𝑗

𝑇 𝛽𝑗)

𝑚

𝑗=1

. 

In the matrix form, 𝑃 = 𝑡11𝑛×1 + 𝑤0�̅��̅�, where 𝑡1 =
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(−𝛼0), 1𝑛×1 is a 𝑛 × 1 vector of 1s. In 

summary, we can write the approximate normal distribution of �̅�𝑇𝑦 given  �̅� and �̅� as follows: 

𝐸(�̅�𝑇𝑦 |�̅�, �̅�) ≈ 𝑡1�̅�𝑇1𝑛×1 + 𝑤0�̅�𝑇�̅��̅�, 

𝑉𝑎𝑟(�̅�𝑇𝑦 |�̅�, �̅�) ≈ 𝑤0�̅�𝑇�̅� 

Because �̅� follows a multivariate normal distribution �̅�~𝑁(0, �̅�), the marginal distribution of �̅�𝑇𝑦 given 

�̅� also has a multivariate normal distribution. Specifically, we have  

𝐸(�̅�𝑇𝑦 |�̅�) = 𝐸 (𝐸(�̅�𝑇𝑦 |�̅�, �̅�)) ≈ (
𝑛𝑡1

0𝑚×1
), 

𝑉𝑎𝑟(�̅�𝑇𝑦 |�̅�) = 𝐸 (𝑉𝑎𝑟(�̅�𝑇𝑦 |�̅�, �̅�)) + 𝑉𝑎𝑟 (𝐸(�̅�𝑇𝑦 |�̅�, �̅�)) 

≈ 𝑤0�̅�𝑇�̅� + 𝑤0
2�̅�𝑇�̅��̅��̅�𝑇�̅� = (

𝑛𝑤0 + 𝑛2𝑤0
2𝜎𝛼

2

𝑤0𝑋𝑇𝑋 + 𝑤0
2𝑋𝑇𝑋𝑣𝑋𝑇𝑋

) 

Therefore likelihood 𝐿1 can be approximated as  

�̂�1 = (2𝜋)−
𝑚+1

2 (|𝑛𝑤0 + 𝑛2𝑤0
2𝜎𝛼

2||𝑤0𝑋𝑇𝑋||𝐼𝑚 + 𝑤0𝑣𝑋𝑇𝑋|)
−

1
2 exp (−

1

2
𝐷1), 

where  

𝐷1 = (1𝑛𝑥1
𝑇 𝑦 − 𝑛𝑡1)𝑇(𝑛𝑤0 + 𝑛2𝑤0

2𝜎𝛼
2)−1(1𝑛𝑥1

𝑇 𝑦 − 𝑛𝑡1) + 

(𝑋𝑇𝑦)𝑇(𝑤0𝑋𝑇𝑋 + 𝑤0
2𝑋𝑇𝑋𝑣𝑋𝑇𝑋)−1(𝑋𝑇𝑦). 



By setting 𝑣 to 0𝑚×𝑚, we get the approximated 𝐿0 as  

�̂�0 = (2𝜋)−
𝑚+1

2 (|𝑛𝑤0 + 𝑛2𝑤0
2𝜎𝛼

2||𝑤0𝑋𝑇𝑋|)
−

1
2 exp (−

1

2
𝐷0), 

where 𝐷0 = (1𝑛𝑥1
𝑇 𝑦 − 𝑛𝑡1)𝑇(𝑛𝑤0 + 𝑛2𝑤0

2𝜎𝛼
2)−1(1𝑛𝑥1

𝑇 𝑦 − 𝑛𝑡1) + (𝑋𝑇𝑦)𝑇(𝑤0𝑋𝑇𝑋)−1(𝑋𝑇𝑦). From 

Woodbury matrix identity,  

(𝑤0𝑋𝑇𝑋 + 𝑤0
2𝑋𝑇𝑋𝑣𝑋𝑇𝑋)−1 = (𝑤0𝑋𝑇𝑋)−1 − (𝑣−1 + 𝑤0𝑋𝑇𝑋)−1. 

Therefore the approximate Bayes factor is  

𝐵�̂� = |𝐼𝑚 + 𝑤0𝑣𝑋𝑇𝑋|−
1
2 exp (

1

2
𝑦𝑇𝑋(𝑣−1 + 𝑤0𝑋𝑇𝑋)−1𝑋𝑇𝑦). 

By plugging in the Armitage trend test statistic 𝑧 = √
𝑛

𝑛1𝑛2
𝑋𝑇𝑦 (see the derivation from the following 

section about non-centrality parameters), Σ𝑥 =
𝑋𝑇𝑋

𝑛
 and 𝑤0 =

𝑛1𝑛2

𝑛2 ,  

𝐵�̂� = |𝐼𝑚 + 𝑛𝑤0𝑣Σ𝑥| exp (
1

2
𝑧𝑇((𝑛𝑤0𝑣)−1 + Σ𝑥)−1𝑧). 

This is the same as equation (3) except the coefficient 𝑤0, therefore completing the proof.  

We also note that here 𝑣 is the variance of 𝛽, while in the proof for quantitative traits, the variance of 𝛽 is 

𝑣
1

𝜏
. Let 𝑣 = 𝜎𝑎

2𝐼𝑚. The input for BIMBAM, denoted by 𝜎𝑎(𝐵𝐼𝑀𝐵𝐴𝑀), is 𝜎𝑎, while the input for 

CAVIARBF, denoted by 𝜎𝑎(𝐶𝐴𝑉𝐼𝐴𝑅𝐵𝐹), is √𝑤0𝜎𝑎. To get results similar to BIMBAM with the “-cc” 

option, in addition to setting the weights to the variances of SNPs as in quantitative traits, we also need to 

make sure that  

𝜎𝑎(𝐶𝐴𝑉𝐼𝐴𝑅𝐵𝐹) = √𝑤0𝜎𝑎(𝐵𝐼𝑀𝐵𝐴𝑀) = √
𝑛1𝑛2

𝑛2
 𝜎𝑎(𝐵𝐼𝑀𝐵𝐴𝑀). 

Non-centrality parameters of the marginal test statistics under multiple causal SNPs 



For quantitative traits, without loss of generality, we can assume the same model as in equation (1). We 

rewrite it here and use 𝜎2 instead of 
1

𝜏
: 

𝑦 = 𝑋𝛽 +  𝜀, 𝜀~𝑁(0, 𝜎2𝐼𝑛). 

Each column of X has mean 0 and variance 1, i.e., 
1

𝑛
∑ 𝑋𝑖𝑗

𝑛
𝑖=1 = 0,

1

𝑛
∑ 𝑋𝑖𝑗

2𝑛
𝑖=1 = 1, 𝑗 = 1, 2, … , 𝑛. Denote 

the column j of X by 𝑋𝑗, so that the marginal test statistic is 

𝑧𝑗 =
(𝑋𝑗

𝑇𝑋𝑗)
−1

𝑋𝑗
𝑇𝑦

�̂�𝑗(𝑋𝑗
𝑇𝑋𝑗)

−
1
2

=
(𝑋𝑗

𝑇𝑋𝑗)
−

1
2𝑋𝑗

𝑇𝑦

�̂�𝑗
=

𝑛−
1
2𝑋𝑗

𝑇𝑦

�̂�𝑗
. 

Assume �̂�𝑗 is a good approximation of 𝜎 when the sample size is large enough. This assumption is 

acceptable because the proportion of variation explained by X is usually small. Therefore the test statistic 

can be approximated by �̂�𝑗 =
𝑛

−
1
2𝑋𝑗

𝑇𝑦

𝜎
. Let �̂� = [�̂�1, �̂�2, ⋯ , �̂�𝑚]𝑇. In matrix form, we have 

�̂� =
𝑛−

1
2𝑋𝑇𝑦

𝜎
. 

Therefore, 

𝐸(�̂�) =
𝑛−

1
2𝑋𝑇𝑋𝛽

𝜎
=

𝑛
1
2Σ𝑥𝛽

𝜎
,  

𝑉𝑎𝑟(�̂�) =
1

𝑛𝜎2
𝑋𝑇𝑣𝑎𝑟(𝑦)𝑋 =

𝑋𝑇𝑋

𝑛
= Σ𝑥 , 

where Σ𝑥 =
𝑋𝑇𝑋

𝑛
. This also shows the approximate multivariate normal distribution for the marginal test 

statistics. The marginal non-centrality parameter for each SNP is the square of each element in 𝐸(�̂�). 

With the marginal non-centrality parameters, we can calculate the power for the causal SNPs. 



For binary traits, we use the model specified in equation A1. For simplicity, we first assume data are 

generated in a prospective logistic model. Following (SCHAID et al. 2002; SEAMAN and MULLER-

MYHSOK 2005), the score statistic vector for each SNP is 

𝑈𝛽 = (𝑈𝛽1
, ⋯ , 𝑈𝛽𝑚

)
𝑇

, 𝑈𝛽𝑗
= ∑(𝑦𝑖 − �̃�𝑖)𝑋𝑖𝑗

𝑛

𝑖=1

, 𝑗 = 1, ⋯ , 𝑚, 

where �̃�𝑖 is the fitted value for individual i, which is obtained under the null hypothesis, i.e., setting all 

𝛽𝑗, 𝑗 = 1, ⋯ , 𝑚 to 0, to obtain the maximum likelihood estimate �̂� of 𝛼 and then calculate the fitted �̃�𝑖. 

Under the null hypothesis that 𝛽 = 0, the variance of 𝑈𝛽 is  

𝑉𝛽 = �̃�(1 − �̃�)(𝑋𝑇𝑋 − 𝑛𝑥𝑚𝑥𝑚
𝑇 ), 

where �̃� = (�̃�1, ⋯ , �̃�𝑛)𝑇, 𝑥𝑚 is a column vector where each element is the mean of each column in matrix 

X. Under the null hypothesis, 𝑈𝛽 is asymptotically distributed multivariate normal, i.e., 𝑈𝛽~𝑁(0, 𝑉𝛽) or 

𝑈𝛽
𝑇𝑉𝛽

−1𝑈𝛽 has a chi-square distribution. Because there are no other covariates except the intercept and X 

is centered and scaled, we have �̃�𝑖 =
𝑛1

𝑛
, 𝑈𝛽 = 𝑋𝑇𝑦, and 𝑉𝛽 =

𝑛1𝑛2

𝑛2 𝑋𝑇𝑋 =
𝑛1𝑛2

𝑛
Σ𝑥, where Σ𝑥 =

𝑋𝑇𝑋

𝑛
. The 

marginal score test statistic for SNP j can be obtained by only keeping the jth column in X in the model. 

Specifically, the marginal score test statistic vector is 

𝑧 =
𝑈𝛽

√
𝑛1𝑛2

𝑛

= √
𝑛

𝑛1𝑛2
𝑋𝑇𝑦 =

𝑛−
1
2𝑋𝑇𝑦

�̂�
, 

where  �̂� = √
𝑛1𝑛2

𝑛2 = √�̃�𝑖(1 − �̃�𝑖), the estimated standard deviation of 𝑦. The test statistics have a similar 

form as that for quantitative traits. These are also Armitage’s trend tests (SASIENI 1997).  



To calculate the power, we need to know the distribution under the alternative hypothesis. When the 

sample size is large, based on the Central Limit Theorem, 𝑧 has a multivariate normal distribution. We 

have  

𝐸(𝑧) = √
𝑛

𝑛1𝑛2
𝑋𝑇𝐸(𝑦) = √

𝑛

𝑛1𝑛2
𝑋𝑇𝑃, 

𝑉𝑎𝑟(𝑧) =
𝑛

𝑛1𝑛2
𝑋𝑇𝑣𝑎𝑟(𝑦)𝑋 =

𝑛

𝑛1𝑛2
𝑋𝑇𝑊𝑋, 

where P is a vector with each element 𝑝𝑖(𝛼, 𝛽) = 𝑝(𝑦𝑖 = 1) = 1/ (1 + exp (−(𝛼 + ∑ 𝑋𝑖𝑗
𝑇 𝛽𝑗

𝑚
𝑗=1 ))), 𝑊 is a 

𝑛 × 𝑛 diagonal matrix with the ith diagonal entry 𝑝𝑖 × (1 − 𝑝𝑖). With known 𝛼 and 𝛽, the power of 

Armitage’s trend test can be calculated. For retrospective case control studies, we should change 𝛼 to 𝛼∗ 

to reflect the different sampling probabilities for cases and controls (AGRESTI 2013). Because the effects 

𝛽 are usually small in real data, we can approximate 𝑊 by 𝑊0, the estimated variance under the null 

hypothesis. Specifically, 𝑊0 = �̃�𝑖(1 − �̃�𝑖)𝐼𝑛. Therefore we have 

𝑉𝑎𝑟(𝑧) ≈
𝑋𝑇𝑋

𝑛
= Σ𝑥 . 

We can also linearize 𝑝𝑖, the mean of 𝑦𝑖, using the Taylor expansion at the MLE of the null hypothesis,  

denoted by 𝛼0 and 𝛽0 = 0𝑚×1, where 𝑝𝑖(𝛼0, 𝛽0) = �̃�𝑖 =
𝑛1

𝑛
. Therefore,  

𝑝𝑖(𝛼, 𝛽) ≈
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(𝛼 − 𝛼0) +

𝑛1𝑛2

𝑛2
∑ 𝑋𝑖𝑗

𝑇 𝛽𝑗

𝑚

𝑗=1

. 

In the matrix form, 𝑃 = 𝑡21𝑛×1 + �̂�2𝑋𝛽, where 𝑡2 =
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(𝛼 − 𝛼0). Therefore 

𝐸(𝑧) ≈ √
𝑛

𝑛1𝑛2
𝑋𝑇

𝑛1𝑛2

𝑛2
𝑋𝛽 = √

𝑛1𝑛2

𝑛
Σ𝑥𝛽 = 𝑛

1
2�̂�Σ𝑥𝛽. 



The marginal non-centrality parameter for each SNP is the square of each element in 𝐸(𝑧). In this 

approximation the non-centrality parameters do not require the specification of the intercept. This also 

proves the approximate multivariate normal distribution of the marginal test statistics under the logistic 

model. We can see that the approximate distributions of the marginal test statistics have a similar form as 

quantitative traits. 
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Table S1. Average number of SNPs needed to include 50% and 90% causal SNPs among 100 

simulated data sets under different number of causal SNPs for binary trait. 

  1a     2     3     4     5   

 

50% 90% 

 

50% 90% 

 

50% 90% 

 

50% 90% 

 

50% 90% 

CAVIARBF 1.53 12.00   4.00 17.00   4.83 19.33   7.50 23.67   9.11 24.00 

BIMBAM 1.50 12.00 

 
3.68 16.75 

 

4.92 20.00 

 

7.63 24.00 

 

9.16 25.00 

PAINTOR 1.50 10.67 

 

5.83 23.33 

 

7.11 26.50 

 

9.91 26.11 

 

11.92 28.80 

ENET 1.80 NA 

 

6.20 NA 

 

7.50 29.43 

 

10.88 NA 

 

13.50 NA 

LASSO 1.63 NA   5.50 NA   8.29 NA   13.67 NA   15.00 NA 

CAVIARBF(ref) 1.70 13.50  4.29 17.00  6.17 22.83  9.08 24.64  10.56 26.25 
a
The number of causal SNPs in the data. The smallest number for each column is in bold. NA: data not 

available for the calculation. CAVIARBF(ref): CAVIARBF with the correlation among SNPs estimated from the 

CEU population of  the 1000  Genomes Project. 
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Figure S1. Comparison of different fine mapping methods on binary traits. The y-axis is the 
proportion of causal SNPs included and x-axis is the number of selected SNPs. There are 35 
SNPs in total. The proportions are calculated over 100 data sets. The proportion (y-value) is not 
calculated if more than 5 data sets do not reach the specified number of SNPs (x-value). This is 
why some proportions are not available for LASSO and ENET as the number of selected 
candidate SNPs becomes large. Each plot corresponds to a different number of causal SNPs. 
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Figure S2.  Comparison of different prior values 𝜎𝜎𝑎𝑎 on binary traits. CAVIARBF is used to 
calculate the Bayes factors. The meaning of the x-axis and y-axis is the same as in Figure S1. 
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Figure S3. Comparison of different criteria to prioritize variants on binary traits. CAVIARBF is 
used to calculate the Bayes factors. The green dash line represents prioritizing SNPs using 
marginal posterior inclusion probabilities (PIPs). The red sold line represents prioritizing SNPs 
using ρ-level confidence set. The meaning of the x-axis and y-axis is the same as in Figure S1. 
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Figure S4. Estimated probabilities of ρ-level confidence set and boxplots of the number of 
selected SNPs. The phenotypes are binary traits. The bar graph is plotted above the 
corresponding boxplot. The red dash line shows the nominal level of the confidence set. The bars 
show the estimated proportion where the selected SNPs include all causal SNPs among 100 data 
sets. For ENET and LASSO, the best model selected by cross validation is used for each data set. 
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Figure S5. Estimated probabilities of ρ-level confidence set and boxplots of the number of 
selected SNPs for independent SNPs. The phenotypes are quantitative traits. The rest of the 
description is the same as Figure S4. 
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Figure S6. P-values and posterior inclusion probabilities (PIPs) for independent SNPs. Circles 
represent the p-values on the left y-axis and lines represent the PIPs on the right y-axis. The 
gold color indicates the true causal SNPs. The color coded LD pattern is shown below.
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Figure S7. Calibration of the posterior inclusion probabilities (PIPs) on binary traits. 
CAVIARBF is used to calculate the Bayes factors. SNPs were put into 10 bins of width 0.1 
according to their PIPs. In each bin, the proportion of causal SNPs was then calculated. The x-
axis shows the center of each bin. The y-axis is the proportion of causal SNPs. The blue points 
show the proportion of causal SNPs in each bin. The red bars show the 95% Wilson score 
confidence interval of the proportion assuming a binomial distribution in each bin. 100 data sets 
were used in each plot. Except those points with very large confidence intervals due to small 
total counts in the bins, usually less than 10, in general the points lie near the line y = x. This 
indicates that the PIPs are reasonably calibrated. 
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Figure S8. P-values and posterior inclusion probabilities (PIPs) from BIMBAM on U.S. cohort. 
Circles represent the individual-SNP-based p-values on the left y-axis and lines represent the 
PIPs on the right y-axis. The color coded LD pattern is shown below.
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Figure S9. P-values and posterior inclusion probabilities (PIPs) from PAINTOR on U.S. cohort. 
The rest of the description is the same as Figure S8.
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Figure S10. P-values and posterior inclusion probabilities (PIPs) from CAVIARBF on San Diego 
cohort. The rest of the description is the same as Figure S8.
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Figure S11. P-values and posterior inclusion probabilities (PIPs) from BIMBAM on San Diego 
cohort. The rest of the description is the same as Figure S8.
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Figure S12. P-values and posterior inclusion probabilities (PIPs) from PAINTOR on San Diego 
cohort. The rest of the description is the same as Figure S8.
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Figure S13. P-values and posterior inclusion probabilities (PIPs) from CAVIARBF on U.S. cohort 
using estimated correlation matrix from EUR population in the 1000 Genomes Project. The rest of 
the description is the same as Figure S8.


