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This study aims to investigate the therapeutic effect of calpain inhibitor E-64-d on SCI and to find a new approach to treat SCI.
When an SCI rat model was established, it was immediately administered with E-64-d. RT-PCR and Western blotting were used to
determine the protein and mRNA levels of calpain 1and 68-kD NFP. TUNEL staining and NeuN labeling were performed to analyze
neuronal apoptosis in the lesion. Immunohistochemistry assay was carried out to observe the expressions of calpain 1 and GFAP.
Cyclooxygenase-2 activity was measured to show the immune response status. Locomotor function was evaluated by inclined plane
test and Basso, Beattie, and Bresnahan locomotor rating scale. The results showed that calpain 1 was activated after SCI occurred.
Treatment with E-64-d decreased expressions of calpain 1 and GFAP, alleviated neuronal apoptosis, inhibited cyclooxygenase-2
activity, and resulted in the promoted locomotor function. Furthermore, combination of E-64-d and MP had better efficacy than
did E-64-d or MP alone. E-64-d is expected to be applied to treat SCI, and its alliance with MP may provide a valid strategy for SCI

therapy.

1. Introduction

Spinal cord injury (SCI) is the most serious complication
of spinal injury, which often leads to the severe dysfunction
of limbs and trunk below the damaged section, and it is a
common cause of permanent disability and death in both
children and adults [1, 2]. Acute spinal cord injury is due to
a traumatic injury that can result in a bruise (contusion), a
partial tear, or a complete tear (transection) in the spinal cord.
The secondary injury process initiated by primary injury to
the spinal cord includes the activation of various cysteine
proteases for degradation of cytoskeletal protein and other
crucial proteins for delayed death of neurons and glial cells
in the lesion and adjacent areas [3].

Calpains belong to the family of calcium-dependent,
nonlysosomal cysteine proteases expressed ubiquitously in
mammals. They are implicated in cellular key cytoskeleton
degradation and neurodegeneration at the site of SCI and its
penumbra [4]. Inhibiting calpain expression with the cell-
permeable, irreversible cysteine protease inhibitor E-64-d

can prevent apoptosis and restore transcription of proteolipid
protein and myelin basic protein genes, which indicates the
therapeutic efficacy of E-64-d for treatment of SCI [5, 6].
Methylprednisolone (MP), a synthetic glucocorticoid drug,
is typically used for its anti-inflammatory effects, and it is
also prescribed for SCI because it improves sensory and
locomotor recovery if given within 8h of the injury [7].
However, the controversy still exists in the use of MP in the
treatment of SCI due to the lack of controlled data about the
long-term effects of treatment [3, 8-10].

Previously, we focused our study on the effects of E-64-
d and MP on the spinal cord ischemia-reperfusion injury
[11-13] and found both E-64-d and MP could suppress the
expression of calpain 1 and protect the spinal cord tissue from
the secondary injury to different extents [13]. Although some
studies have already covered the effect of E-64-d on SCI in
some respects, we still wonder more sufficient knowledge
about the mechanism and what the outcome will be if it is
in alliance with MP.
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2. Materials and Methods

2.1. Experimental Animals and Grouping. Male Sprague Daw-
ley (SD) rats weighing 220 + 20g were purchased from
Shanghai Laboratory Animal Center, Chinese Academy of
Science, China. They were randomly divided into 5 groups:
(A) sham group, underwent laminectomy only; (B) SCI
group, spinal cord injured without any treatment; (C) E-
64-d treatment group, spinal cord injured and immediately
intravenously injected with E-64-d (1mg/kg, using 1.5%
DMSO as vehicle); (D) methylprednisolone (MP) treatment
group, spinal cord injured and immediately intravenously
injected with MP (165 mg/kg); (E) E-64-d + MP treatment
group, spinal cord injured and immediately treated with both
E-64-d (1 mg/kg) and MP (165 mg/kg). Every treatment group
was treated with the corresponding drug for 7 consecutive
days, and sham and SCI groups, which were, respectively,
intended as blank and negative controls, were treated with the
same amount of 1.5% DMSO. In each group, 3 rats were left
and continued receiving the aforesaid treatment for another
7 days, which were used for locomotor function tests.

2.2. Rat SCI Model. Spinal cord of each rat in group (B),
(C), (D), and (E) was injured using a modified Allen’s
weight-drop method as previously described [14-16]. In brief,
laminectomy was performed at T10 in anesthetized rats under
a dissecting microscope, and then the rats were fixed on a
stereotactic device. After the spinal column was immobilized,
0.3 cm diameter impounder was gently placed on the spinal
cord. To make the injury, a constant weight (5 g) from a height
of 8cm was dropped onto the impounder. After surgery,
penicillin (4 x 10* U once; twice per day) was intramuscularly
injected for 3 consecutive days to prevent postoperative infec-
tion. In the follow-up experiments, tramadol hydrochloride
(15mg/(kg - d)) was added to the drinking water provided for
the rats to relieve their pain. In addition, artificial auxiliary
urination was given when rats’ temporary urinary retention
occurred in the early postoperative phase until the rats started
automatic micturition.

2.3. Total RNA Extraction and RT-PCR. Total RNA was
extracted from the spinal cord tissue at T10 using Trizol
Reagent (Qiagen, Valencia, OH), and then RT-PCR analysis
was performed. In brief, cDNA of calpain 1 was synthesized
from 2 ug total RNA using High Capacity RNA to ¢cDNA
Kit (Applied Biosystems, CA, USA). TagMan Fast Advanced
Master Mix (Applied Biosystems, CA, USA) was used for
PCR. The primers used for quantitation of the cDNAs were
as follows.

Calpain 1 [4]

5-CACTTGAAGCGTGACTTCTTCCTGGCC-
AATGC-3' (forward primer),

5-GCACTCATGCTGCCCGACTTGTCCAGG-
TCAAACTT-3' (reverse primer).
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GAPDH
5'-TCTTGTGCAGTGCCAGCCTC-3' (forward pri-

mer),

5'-CACGCCACAGCTTTCCAGAG-3' (reverse pri-

mer).

The amplification conditions were as follows: 94°C for
3 min, followed by 35 cycles at 94°C for 20, 58°C for 20s,
and 72°C for 30s. The mRNA expression of calpain 1 was
calculated using the comparative threshold cycle (CT) and
normalized to that of GAPDH (DCT). The above procedures
were repeated thrice and all the samples were performed in
triplicate.

2.4. Mitochondria and Cytosol Isolation. A tissue mitochon-
dria isolation kit (Beyotime, China) was used for mito-
chondria and cytosol isolation according to its instructions.
Briefly, after the fresh spinal cord tissue at T10 was well
ground in an ice-bath, the homogenate was centrifuged at
1000 g and 4°C for 5min. The supernatant (cytosol) and
precipitate (mitochondria) were, respectively, collected. The
related protein AIF in cytosol and mitochondria was subse-
quently analyzed using Western blotting.

2.5. Western Blotting. Western blot analysis was performed
referring to the previous report [17]. In brief, the spinal
cord tissue at T10 section was collected and homogenized
in protein extraction reagent. After the homogenate was
centrifuged at 1,2000 rpm for 10 min at 4°C, the protein
concentration was quantified using a BCA Protein Assay Kit
(Pierce Chemical Company, Rockford, IL, USA) according to
the manufacturer’s protocol. Protein samples (80 pg for each)
were loaded onto SDS-polyacrylamide gel after denaturation
in boiling water for 5min. The samples were transferred
to the nitrocellulose membrane after electrophoresis. The
blots were firstly incubated with the primary IgG antibodies
(1:1000 dilutions) against calpain 1, 68-kD NFP, AIF, MAPIB,
VADC, and f3-actin, and then incubated with the goat-anti-
rabbit secondary antibody IgG antibody. The bands were
illuminated by an ECL system (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) and autoradiography assay. These
procedures were repeated three times. The ECL autoradio-
grams were imaged on a UMAX Powerlook scanner and band
intensities were determined densitometrically using Adobe
PhotoShop software (version CS5, Adobe Systems, San Jose,
CA, USA). The ratios of the density of the above proteins to
B-actin or VADC were calculated for each sample.

2.6. Terminal Deoxynucleotidyl Transferase-Mediated Deoxy-
uridine Triphosphate-Biotin Nick End Labeling (TUNEL) and
Neuronal Labeling. Referring to the literature [18], TUNEL
and neuronal labeling were successively performed. In brief,
serial 6 ym paraffin sections were dried at 62°C in an air
oven for 2h, after which the sections were dewaxed with
xylene, hydrated with ethyl alcohol, and washed thrice with
PBS for 3min (each time). The samples were incubated
with proteinase K at room temperature for 30 min and
then washed again with PBS as ditto. In order to inhibit
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EGPO (endogenous peroxidase), H,O, (3%) was added to the
samples and incubation at room temperature was performed
for 20 min. After washing with PBS 3 times, the sections
were incubated in equilibration buffer at room temperature
for 20 min. Bibulous paper was used to absorb most of
the equilibration buffer, and TdT (terminal deoxynucleotidyl
transferase) incubation buffer was added for the following
incubation at 37°C for 1 h. The sections were washed with PBS,
following which serum was added and incubation at 37°C
lasted for 30 min. Subsequently, incubation at 4°C overnight
after the addition of primary antibody (anti-NeuN, 1:300;
Abcam Plc, Cambridge, UK) and incubation at 37°C for
1h after the addition of secondary antibody (donkey anti-
mouse IgG H&L (DyLight 650), 1:200; Abcam, UK) were
successively performed. Besides, all cell nuclei were stained
with DAPI (4,6-diamidino-2-phenylindole; Biohao Biotec
Co., Ltd., Shanghai, China) for 20 min. After PBS washing,
the reagent (Beyotime Biological Technology Ltd., Shanghai,
China) that prevents fluorescence quenching was added. The
sections were mounted and reserved at —20°C.

Images of the fluorescent immunohistochemistry were
photographed at 200x magnification under a fluorescence
microscope (Olympus BX51, Olympus, Melville, NY, USA).
In each photo, the stained cells were manually counted
using AxioVision 4.2 software (Carl Zeiss, Thornwood, NY,
USA). The cells were counted by 3 researchers who had no
knowledge of the treatment status of each rat.

2.7. Measurement of Caspase-3 Activity. The enzyme activity
of caspase-3 in the fresh tissue was measured using a caspase-
3 colorimetric assay kit (Beyotime, China). According to
the protocols, every 3~10mg tissue was lysed by 100 uL
lysis buffer and ground in an ice-bath for 5min. After
centrifugation at 20,000 g and 4°C for 10 min, the supernatant
was transferred to precooled centrifuge tube for the imme-
diate activity detection of caspase-3. The enzyme reaction
was performed in a 96-well flat-bottomed microplate and
quantified using a microplate reader.

2.8. Immunohistochemical Analysis of Calpain 1 and GFAP.
The paraffin sections were dried in an air oven (58°C) for
2~4h. The tissues were dewaxed with xylene and hydrated
with alcohol. After the sections were washed with PBS,
antigen retrieval solution (0.0l mol/L sodium citrate, pH =
6.0) was added; then they were boiled at a constant temper-
ature of 95°C for 15min. When the sections were naturally
cooled down, PBS was used again to wash them. The tissues
were incubated with H,O, (3%) at room temperature for
10 min for the inhibition of EGPO. They were washed with
PBS, and 10% fetal calf serum was added. After 30 min of
the incubation, the sections were washed with PBS thrice.
Primary antibody (Abcam Plc, Cambridge, UK), namely,
anti-calpain 1 (1:400) or anti-GFAP (1:50), was added for
the following incubation at 4°C overnight. After secondary
antibodies (DAKO, Copenhagen, Denmark) were added,
incubation at 37°C was kept for 1.5h. Conventional DAB
development (3~5min) and hematoxylin counterstaining
(30s) were successively performed. After dehydration and

drying, the sections were mounted with resin. Images were
taken under 200x magnification using a Nikon Eclipse 50i
microscope (H550S) (Nikon Inc., Melville, NY, USA).

2.9. Determination of Cyclooxygenase-2 (COX-2) Activity.
Using a rat COX-2 ELISA kit (Shanghai Westang Bio-Tech
Co., Ltd., Shanghai, China), double-antibody sandwich ABC-
ELISA method was applied to detect the activity of rat’s COX-
2. According to the instructions, the ELISA plate was coated
with rat COX-2 monoclonal antibody, and then COX-2 in
the standards or samples was binding to the monoclonal
antibody. After biotinylated anti-COX-2 was added, immune
complex was formed on the plate. Then HRP (horse radish
peroxidase) labeled streptavidin was combined with biotin.
In the end, the substrate working solution was added to
make it blue and the reaction was terminated by sulfuric
acid. Absorption value was measured at 450 nm. COX-2
concentration was in direct proportion to the absorbance;
therefore the concentration of COX-2 in the samples could
be calculated based on the standard curve.

2.10. Locomotor Function Assessment

2.10.1. Rivlin’s Inclined Plane Test. According to the reports
[19, 20], we made a simple device containing a moveable
plate with an adjustable angle of 0-90°. At 3 and 7 days after
injection with different drugs, rat locomotor function was
tested using the modified Rivlin's method [20]. The rat’s head
was placed faced forward, and the longitudinal axis of its body
was put perpendicular to the longitudinal axis of the oblique
plate. The angle of inclination gradually increased until the
rats could maintain a constant position for just 5s. The angle
was considered to be the critical value and then recorded.
Each rat was tested at least three times.

2.10.2. Basso, Beattie, and Bresnahan Locomotor Rating Scale.
In accordance with the literature [21, 22], the rats’ behavior
was observed and BBB scores were recorded after 14 days of
different treatments. The scores were analyzed by repeated
measures ANOVA using Tukey’s multiple comparison test.

2.11. Statistical Analysis. All data were expressed as mean +
SD and statistically analyzed using one-way ANOVA fol-
lowed by Fisher’s post hoc test, and differences were consid-
ered significant at the p < 0.05 level.

3. Results

3.1. Calpain 1 Was Activated after SCI. After SCI was induced,
the protein level of calpain 1 in the lesion significantly (p <
0.05) increased at 6h and 1d, and the differences became
more significant (p < 0.01) during the following days
(Figure 1(a)). As a substrate of calpain 1, 68-kD NFP was
accordingly degraded (Figure 1(b)). Three and seven days
after SCI induction, the degradation of 68-kD NFP was found
significantly (p < 0.01) increased (Figure 1(a)).
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FIGURE L: Protein expressions of calpain 1 and its substrate 68-kD NFP (nandrolone furylpropionate) in the lesion detected by Western blotting
at Oh, 6h,1d, 3d, and 7d after SCI. (a) Semiquantitative results of Western blot analysis of calpain 1 and 68-kD NEFP. (b) A representative
result of Western blotting. *p < 0.05, and ** P < 0.01, compared with the protein levels at 0 h.
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FIGURE 2: MRNA and protein levels of calpain 1in the injured cord were measured with RT-PCR and Western blotting after SCI was differently
treated for 7 d. (a) Quantitative mRNA level and semiquantitative protein level of calpain 1. (b) A representative image of Western blotting.
*p<0.01, compared with SCI group; or E-64-d treatment versus E-64-d + MP treatment.

3.2. The Expression of Calpain 1 Was Decreased by E-64-d.
Calpain 1 mRNA and protein levels were both significantly
(p < 0.01) reduced after the treatment with calpain inhibitor
E-64-d or MP for 7 d (Figure 2(a)). In addition, the combined
utilization of E-64-d and MP resulted in the significantly (p <
0.01) lower calpain 1 mRNA and protein levels compared to
the treatment with only E-64-d.

3.3. Neuronal Apoptosis Was Reduced by E-64-d. Three days
after the SCI model rats had been subjected to E-64-d and

MP, NeuN and TUNEL staining (Figure 3(a)) showed that
the SCI rats treated with E-64-d or MP had significantly
(p < 0.01) less NeuN-TUNEL-positive cells in the lesion
than the rats in sham group had (Figure 3(b)). Compared
with E-64-d treatment group, the group treated with both E-
64-d and MP showed a significant (p < 0.05) decrease in
neuronal apoptosis (Figure 3(b)). Consistently, caspase-3 was
found activated in SCI group, compared with which E-64-d,
MP, and E-64-d + MP treatment groups showed significantly
(p < 0.01) lower activity of caspase-3 (Figure 3(c)).
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FIGURE 3: (a) Representative images of NeuN and TUNEL-stained sections of rats treated with different drugs for 3d. (b) Quantification
of NeuN and TUNEL double positive cells. (c) Activity of caspase-3 in injured spinal cord from each group. (d) Protein expressions of AIF
and MAPIB analyzed by Western blotting. (e) The relative densities of AIF and MAPIB (S-actin and VADC served as internal references).
P < 0.05, E-64-d treatment versus E-64-d + MP treatment; ** P < 0.01, compared with SCI group.

In order to preliminarily explore the mechanism of E-
64-d-induced neuronal apoptosis, we also measured AIF
released from mitochondria and a microtubule-associated
protein MAPIB, which is involved in an essential step in
neurogenesis-microtubule assembly. The results indicated
that cytosolic AIF released from mitochondria markedly
increased after SCI, but the increase was effectively (p <
0.01) suppressed by different treatments, in which treatment
with E-64-d alone or E-64-d associated with MP was found
to be much better than treatment with only MP (Figures
3(d) and 3(e)). Additionally, MAPIB in SCI lesion degraded
significantly (p < 0.01) 3 days after hit. But the treatments
could remarkably (p < 0.01) slow down the degradation
(Figures 3(d) and 3(e)). Notably, the combination of E-64-d
and MP had a significantly (p < 0.05) better inhibitory effect
on MAPIB degradation than E-64-d and MP used alone.

3.4. The Expressions of Calpain 1 and GFAP Were Reduced
by E-64-d. As shown in Figure 4, the tissue from SCI model
rats had evidently stronger staining, including both calpain
1- and GFAP-positive stains, than that from sham-operated
rats. But, in the groups treated with E-64-d and MP, the
expressions of calpain 1 and GFAP were remarkably less than
those in SCI group. These results suggested that E-64-d could
not only suppress calpain 1 expression but also somehow
reduce the glial scar following SCIL.

3.5. COX-2 Activity Was Inhibited by E-64-d. As shown in
Figure 5, after the spinal cord was injured, COX-2 activity

sharply increased and peaked at 24h. But the treatment
with E-64-d or MP significantly reduced the enzyme activity,
indicating that the inflammatory response in the spinal cord
caused by injury could be suppressed by E-64-d or MP. What
is more, the combination of E-64-d and MP had a better effect
on the decrease in activity of COX-2 than did E-64-d or MP
alone.

3.6. Locomotor Function Recovery of SCI Rats Was Promoted
by E-64-d. To determine whether E-64-d and its combina-
tion with MP can improve recovery of locomotor function
after T10 injury, locomotion was assessed using the inclined
plane test (the modified Rivlin's method) and the BBB
locomotor scale. SCI rats that were treated with E-64-d, MP,
or both E-64-d and MP for 2 weeks exhibited significantly
(p < 0.01) greater inclination and higher BBB locomotor
function scores compared with SCI negative control animals
(Figures 6(a) and 6(b)). Furthermore, we found that E-64-d +
MP treatment had a significantly (p < 0.05) stronger efficacy
than did E-64-d treatment.

4. Discussion

If the spinal cord is mechanically injured, a cascade of
pathophysiological processes rapidly follows and results in
secondary neuronal damage that will significantly exacerbate
the original injury [23, 24]. Secondary spinal cord damage
occurs within minutes and continues for days or even several
weeks, leading to further neurological deterioration [25].
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Calpain activation, cell apoptosis, inflammatory response,
and excessive cytokine release at the site of the initial
lesion are mainly responsible for the secondary spinal cord
pathology [23, 26, 27].

Calpains are a class of enzymes containing an active-
site cysteine residue that is important in protein degrada-
tion, which play the most prominent roles in causing both
necrotic and apoptotic death in SCI lesion and penumbra
[3, 28]. As mentioned above, cytoskeletal degradation and
neurodegeneration feature prominently in the commitment
of an injured neuron to a necrotic or apoptotic death [4, 29].
Additionally, they may induce apoptotic death by activating
some apoptosis proteins like caspase-3 via an apoptosis
pathway [28]. Therefore, prompt inhibition of calpains, if
undertaken early enough after injury, could significantly
spare lots of neurons. E-64-d is an inhibitor of cysteine

proteases, including calpains [6], and it prevents calpain-
mediated neuron apoptosis in the lesion and penumbra
following spinal cord injury [4, 17, 30, 31]. In this study, not
only was calpain 1 found to be gradually overexpressed after
the spinal cord was injured, but also its activity was raised
over time (Figure 1), which was proved by the degradation
of the cytoskeletal protein 68-kD NFP. But both its mRNA
and protein expression were inhibited by the immediate
intravenous injection of E-64-d (Figures 2 and 4). The results
of NeuN and TUNEL double staining showed a negative
correlation between neuron apoptosis and E-64-d (Figure 3),
indicating that inhibition of calpain 1 at least partly rescued
neurons from apoptosis in the lesion and may be therefore
beneficial to recovery of SCI. The underlying mechanism
involved here is probably associated with the proapoptotic
effect of activated calpain 1. It has been reported, in addition
to inducing caspase-3 activation, that activated calpain-1 in
neurons was also able to promote mitochondrial membrane
permeability and cause AIF release from mitochondria [32].
In our present study, we found that E-64-d hindered the
activation of caspase-3 and inhibited the release of AIF into
cytosol, which is probably because of the significant inhibi-
tion of calpain 1 by E-64-d. As a substrate of both calpain 1
and caspase-3 [33, 34], MAPIB degradation was suppressed
when the activation of calpain 1 and caspase-3 was directly or
indirectly inhibited (Figures 3(c), 3(d), and 3(e)). It is known
that MAPIB belongs to a type of neuron-specific proteins
and it is the earliest expressed microtubule-associated protein
during neurogenesis [35]. Normally, highly expressed MAP1B
not only is necessary for microtubule assembly and the
stability of microtubules but also means a lot for neural
growth and regeneration [35, 36]. So, the degradation of
MAPIB resulted from activated calpains and/or caspase-3
contributed significantly to the apoptosis of neurons as well,
which suggested that inhibition of calpain 1 might be an
effective method to attenuate SCI.

At the early stage of SCI, reactive astrocytes start to
synthesize abundant GFAP and release various cytokines
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like NGF (nerve growth factor), bFGF (basic fibroblast
growth factor), and IL (interleukin), which is in favor of
recovery of neuron damage [37]. However, the glial scar
resulted from excessive hyperplasia of astrocytes impedes
axonal regeneration and growth [38]. GFAP (glial fibrillary
acidic protein) can be used as a marker of astrocytes and
its level reflects the neurologic damage degree [39]. Here
we used immunohistochemical analysis to show that GFAP
expression was remarkably reduced by E-64-d (Figure 4),
suggesting that E-64-d may contribute to axonal regeneration
and growth through attenuating glial scar formation.

The inflammatory response plays an important role in
the development of secondary damage [40]. It is mediated
by multiple molecular mechanisms, in which the formation
of prostaglandins by COX-2 (prostaglandin H2 synthase) is
one of the most prominent [41]. For this reason, COX-2
inhibitors have attained widespread use as anti-inflammatory
agents, although potentially adverse side effects exist [41, 42].
COX-2 is an inducible immediate early gene that can be
highly induced by inflammatory stimuli including cytokines
evoked by spinal cord trauma [43, 44]. In addition, various
studies have proved that the neuronal expression of COX-2
is directly toxic to neurons [44, 45]. In our present study, we
found the sharp increase of COX-2 activity and expression
after SCI, which was consistent with the study previously
reported by other researchers [44, 46], and, therefore, the
inflammatory response might be effectively relieved by E-64-
d (Figure 5). According the related reports, E-64-d is able to
alleviate inflammation through significantly decreasing IL-
6 and IL-18 mRNA levels [47], and the calpain inhibitor
can reduce the levels of cyclooxygenase-2 (COX-2) at the
inflamed joints [48]. The molecular mechanism is probably
closely associated with NF-xB which can be activated by
calpain through the degradation of IxB [49], because COX-2
expression is induced by NF-«B [47, 50].

SCI usually results in a change, either temporary or
permanent, in normal locomotor, sensory, or autonomic
function of the cord. After SCI, patients’ locomotor function
below the level of the injury can be badly damaged or
even paralyzed [51]. The inclined plane test and 21-point
BBB open field locomotor score are widely accepted for
assessing locomotor recovery of the animals [52]. As shown
in Figure 6, both the above tests indicated a better result of
locomotor recovery in E-64-d treatment group than in SCI
group. These results proved that E-64-d not only improved
the microenvironment in the lesion but also, as a result,
macroscopically promoted the locomotor function recovery
of rats after SCI.

In addition, we combined the treatments of MP and E-
64-d in the study because the use of MP in the treatment
of SCI still remains highly controversial despite favorable
results in randomized, controlled trials, and we are trying
to explore a better strategy to successfully treat SCI for
functional neuroprotection and preservation of locomotor
function [3, 9]. As a whole, our present data showed that the
combination of MP and E-64-d had a promising effect on
SCI recovery, though some nonsignificant differences existed
between MP treatment group and E-64-d + MP treatment

group.

5. Conclusions

In conclusion, calpain activation is involved in rat SCI
induced by weight drop, and immediate treatment with the
selective calpain inhibitor E-64-d not only inhibited calpain
1 activation and COX-2 activity but also alleviated neuronal
apoptosis partly through reducing the activation of caspase-
3, AIF release, and degradation of MAPIB and decreased
excessive hyperplasia of astrocytes. As a result, locomotor
recovery after SCI was promoted. What is more, joint use
of E-64-d and MP may provide us with an effective strategy
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to take care of acute spinal cord injuries. However, further
investigations into more underlying detailed mechanisms
are still required, and the feasibility of the therapeutics for
substantial neuron-protection against SCI in humans still
needs to be elucidated.
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