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Background. This paper presents the study concerning hot-spot selection in the assessment of whole slide images of tissue sections
collected frommeningioma patients.The samples were immunohistochemically stained to determine theKi-67/MIB-1 proliferation
index used for prognosis and treatment planning. Objective. The observer performance was examined by comparing results of the
proposed method of automatic hot-spot selection in whole slide images, results of traditional scoring under a microscope, and
results of a pathologist’s manual hot-spot selection. Methods. The results of scoring the Ki-67 index using optical scoring under a
microscope, software for Ki-67 index quantification based on hot spots selected by two pathologists (resp., once and three times),
and the same software but on hot spots selected by proposed automatic methods were compared using Kendall’s tau-b statistics.
Results. Results show intra- and interobserver agreement. The agreement between Ki-67 scoring with manual and automatic hot-
spot selection is high, while agreement between Ki-67 index scoring results in whole slide images and traditional microscopic
examination is lower. Conclusions. The agreement observed for the three scoring methods shows that automation of area selection
is an effective tool in supporting physicians and in increasing the reliability of Ki-67 scoring in meningioma.

1. Introduction

Immunohistochemistry (IHC) has become an important
technique to both diagnostic pathology and clinical research,
as it can help in the process of diagnosis, prognosis, and
grading [1]. Furthermore, during a personalized cancer
treatment various molecular markers coupled with specific
antibodies allow the pattern of the growth of certain tumors
and their response to the particular treatment to be pre-
dicted. For example, the proliferation marker Ki-67 is used
in meningiomas to differentiate cancer into meningothelial
(WHO I), atypical (WHO II), and anaplastic (WHO III)
and correlates with tumor recurrences [1–5]. This is because

the immunopositive signal expression is a surrogate measure
of Ki-67 expression inside cells’ nuclei. According to the
World Health Organization (WHO) rules, the quantitative
evaluation of the proliferation index is performed on a set
of high power areas of hot spots selected in various places
inside a whole specimen observed under a microscope. For
each chosen area of selection, the number of immunopositive
and immunonegative cell nuclei is counted to establish the
Ki-67 index as the ratio of immunopositive cell nuclei to the
whole number of cell nuclei.This routine practice lacks repro-
ducibility from observer to observer because this definition is
highly flexible. By definition, selected areas should represent
fields of high Ki-67 index in different tumor localizations.
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The significant variability of possible selection leads to inter-
and intraobserver variability in quantitative results which
should be investigated in observer based assessment [6–16].

There have been many attempts to help histopathologists
in Ki-67 index quantification involving computers and digital
versions of the glass slide, called the whole slide image (WSI).
A review of papers concerning this subject published both
in the days when only small images could be handled by
computers [17–24] and nowadays when WSIs are available
and computers or clusters of computers have the necessary
computing power to manipulate them [25–34] shows that
investigators propose the use of computers on at least 3 levels
of the process of proliferation index quantification: (1) in
region selection, (2) in immunopositive and immunonegative
cell nuclei selection, and (3) in proliferation and other index
counting. While the third level is obvious and the second is
widely explored, the first level is still poorly represented in the
literature. There are methods of region selection concerning
Hematoxylin and Eosin staining [35–37], while for Ki-67
stained with DAB and counterstained by Hematoxylin there
are the studies published by Potts [34] and coworkers, Lu and
coworkers [35], and Gavrielides and coworkers [7, 8]. The
third group of investigators performed a pooling study and
concluded that “. . . for validation study should be focused
on specific pathology tasks to eliminate sources of variability
that might dilute findings.” So, a validation study of a specific
use of Digital Pathology, that is, in the quantification of the
proliferation index based on Ki-67 used in meningiomas, is
presented in this paper.

2. Materials and Methods

2.1. Glass Slide Preparation. The glass slides used in this
study came from meningioma patients diagnosed or graded
at theDepartment of Pathomorphology, theMilitary Institute
of Medicine in Warsaw, Poland. They were divided into
two sets of data according to two methods of preparation.
In set A there were twenty-three glass slides (57%, 13
patients, in grade I; 30%, 7 patients, in grade II; and 13%,
3 patients, in grade III according to WHO scores) prepared
from paraffin blocks which had been randomly chosen with
respect to quality from the hospital archives.The Ki-67/MIB-
1 immunohistochemical stained procedure was performed
using a Dako Autostainer Link and the following chemical:
FLEXMonoclonal Mouse Anti-Human Ki-67 Antigen Clone
MIB-1 Ready-to-Use (Link) reference number IR626 from
Dako. The staining was visualized using EnVision FLEX Tar-
get Retrieval Solution from Dako according to the procedure
described in the user manual. All manual and mechanical
activities were performed very carefully, because the samples
were supposed to bemodel quality in comparison to the slides
from set B.

In set B twenty-seven glass slides (70%, 19 patients, in
grade I and 30%, 8 patients, in grade II) from routine hospital
prognoses and grading using Ki-67/MIB were chosen to be
involved in the study. All these slides had been prepared
between 2011 and 2014 with or without Autostainer Link
in a manual procedure using various chemicals purchased
from Dako. Set B contained inhomogeneousWSI in terms of

both the manner of preparation and the chemicals used. The
overall quality of glass slides from set B was worse than that
of glass slides from set A.

2.2. Microscope and Monitor Review of the Digitalized Glass
Slides. The sets of glass slides were both scored by an expe-
rienced pathologist, henceforth known as expert, using an
Olympus BX40 optical microscope with PlanApo objective.
Then, the slides were digitalized using an Aperio ScanScope
scanner for set A and a 3DHISTECH Panoramic II for set
B. These were then reviewed on a calibrated EIZO FlexS-
can 22-inch monitor. The WSIs were acquired under 400x
magnification with a resolution of 0.279 𝜇m and 0.38895 𝜇m
per pixel for sets A and B, respectively. Digital images were
reviewed using dedicated software prepared according to
project requirements which allowed panning around with a
mouse/trackball to view the WSI in various magnifications
and to mark fields of quantification. This software was
prepared in MATLAB using library Open Slide [38] to read
WSI files.

To ensure comparability of an area examined by an
expert under a microscope as one field of view and area
of quantification chosen from digital WSI, the size of the
rectangle which covered the same area as the microscopic
circular field of view was determined. It was assumed that
themicroscopic field of view at 400xmagnification represents
around 0.12mm2 of a tissue; the size of the digitized field of
view was 1424 × 1064 pixels in set A and 1024 × 766 pixels in
set B.

2.3. Observer Training and Environmental Adjustments. Two
pathologists with 7 and 3 years of practice in meningioma
sections quantification were asked to support this study. To
minimize sources of variability, both observers were trained
on the software they were to use and their environments were
controlled: they used the same computer, monitor, and light
in the room in order to eliminate environmental influences
on the pathologists work.

The pathologists had an introductory session to become
familiar with all the controls and interfaces which were
necessary in the selection of hot spots and proper size areas
for quantification by automatic software. Pathologists had
been instructed the following:

(i) The interpretation of Ki-67 does not include the
classification of the intensity of staining but the
percentage of tumor cells with positive staining.

(ii) They should find 20 areas of the size mentioned
above with high populations of brown objects in
comparison to the nearest neighborhoods, but these
areas should be distributed among all hot spots which
could be found in WSI.

(iii) Each area should be at least 80% covered by tumor
lesion and without any artifacts.

Cases where even one of pathologists was unable to score
(because of a lack or inadequacy of the region of a hot
spot) were removed from the analysis. During the area
selection the leader of the project assisted the pathologists by
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offering hardware and software support but did not make any
suggestions as to how to gather information about hot spots
or how to choose areas for quantification.

2.4. Textural FeaturesApplied in the ProposedMethod. Tofind
hot-spot localizations, a texture analysis was performed on
WSI. The normalized probabilities ̂

𝑃

𝑠
(𝑖) and ̂

𝑃

𝑑
(𝑖) of the 𝑖th

intensity on the basis of histograms of the sum and difference
images [37] were used. These images were formed from the
original image by applying the relative translation (𝑑1, 𝑑2). Let
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by
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where 𝑁 is the total number of pixels in the image. We
used the modified formulas of Unser features [37] which are
presented in Table 1.They were applied over a given regionΩ

associated with each pixel of the image. In our notation, 𝑁
Ω

represents the total number of pixels in Ω region, and 𝑠(x)
and 𝑑(x) represent the pixel values of the sum and difference
images.

The determination of the image resolution and Ω radius,
which allow the best characterization of the local structures
in images, was achieved.

The texture analysis was performed in the following steps.
The sum and difference images on the basis of the original
image and the original image translated by 3 pixels were
calculated for each of the RGB channels.Then, the diskmasks
with a radius of 10 pixels selected the set of the neighborhood
region masks for each pixel location. For a neighborhood
of size of 5, 8, 10, 12, 15, and 20 pixels the radius size of 10
pixels appears to be the best and this was used in further
experiments.

For the texture features defined in Table 1, the com-
putation complexity problems were obvious. These were
associated with the traveling location of the central pixel and
its neighboring region Ω. This was solved by applying the
array operations. The process of adding the pixel values in
sum and difference images was realized quickly by applying
the average filtering of the image (embedded imfilter function
in MATLAB). Thereby, the mean mask for the whole image
could be calculated in only one analysis. The (𝑘, 𝑙)th coor-
dinate of this mask represented the region center located in
this point. To efficiently implement this method of feature
calculation, the array form of operations was applied. For
example, the variance feature (the second row in Table 1)

Table 1: Modified definitions of Unser features.

Name Modified computational formula

Mean 𝑓1 =

∑x∈Ω 𝑠 (x)
2𝑁
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could be computed according to the following (modified)
expression:
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The first term of this relation was calculated by applying
the filtering of the array-squared sum image (the Hadamard
product) and the second by array-fashion multiplication of
themean of the image and the filtered sum image. In the same
way, the other terms were calculated. Thereby, the texture
feature computation time has been significantly decreased.

2.5. Automatic Hot Spot and Area of Quantification Selec-
tion. The proposed method for the hot-spot localization
and area of quantification selection based on mathematical
morphology, texture classification, and controlled dispersion
was described in this section.

An analysis of the information contained in WSI after a
resolution decrease on various scales showed that the texture
in the original image is redundant and the resolution can be
decreased. To localize hot spots, information about the ratio
of brown (red) to blue pixels as a basic feature and some other
features described below were needed. All features were also
visible in images with the resolution decreased by up to 8x,
while at a 16x decrease they were not visible.This is presented
in Figure 1.

It appears that an eightfold reduction of the resolution
does not disturb the required further textural features (size
of object-cell nuclei is decreased from 128 ± 51 for brown
and 102 ± 73 for blue in original image to 18 ± 9 and 10 ±

6 for the selected 8x decreased resolution, resp.) and enables
the evaluation to be performed by a computer and by a
pathologist with a direct visual examination.
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1x 2x 4x 8x 16x

Figure 1: Fragments of WSI in original and decreased resolution: 2x, 4x, 8x, and 16x.

The proposed method of analysis of WSI in decreased
resolutions uses the following steps: (1) the specimen map is
established, (2) the texture quantification and classification
are done to eliminate hemorrhage areas from the specimen
map, (3) the hot spots are detected, and finally, (4) based
on the proposed penalty function, selection of the area of
quantification inside selected hot spots is performed. The
general schema of the algorithm for steps 1–3 is presented in
Figure 2.

In the first step, a map of the specimen was created using
the thresholding procedure and morphological filtering [39–
42]. To do this, a whole slide image was used to produce a
supported image by the morphological operation of opening
and brightness equalization. This was performed using a
structuring element shaped like a disk with a large radius
(100 pixels). The operation of the division of each RGB color
component of the image by its version after morphological
opening was performed independently for each channel.
Afterwards, components from channels B and R were pro-
cessed with the Otsu thresholdingmethod [43]. Additionally,
morphological operations, such as erosion, dilatation, and
hole filling, were performed to filter the specimen map.

The next step, which eliminates hemorrhage areas from
the specimen map, was performed by differentiating the
tumor area from hemorrhage areas using texture analysis and
classification. The local textural descriptors came from the
Unser features [33, 40] and were applied independently for
RGB and CMYK color channels and also for the combined u
(from CIE Luv) and C (form CMYK) representation. A set
of 64 textures was created as 8 features defined in Table 1
by 8 color channels or sums of channels as presented in

Table 2. Next, based on Fisher’s linear discriminant, the most
significant 25were selected on a teaching phase and then used
in the classification phases (see Table 2).

Finally, the Support Vector Machine (SVM) with Gaus-
sian kernel function [41–46] was applied as a classifier to
recognize the hemorrhage areas and to eliminate them from
the specimen map.

The third step of the algorithmwas an estimate of the local
density of immunopositive cells using the reduced resolution
WSI. The local maxima of the immunopositive cell densities
are hot spots. To select these, the mathematical morphology
and proportion of the color components were used. It was
found that u of the CIE Luv representation of colors is strictly
associated with the red color and can be used to differentiate
the immunopositive cells from the remainder of the image.
The extended regional minima transformation is applied to
evaluate the spatial relation of the stained brown objects to
their neighboring environment.The densitymapwas created,
based on the isolatedmarks representing the immunoreactive
tumor cells.

The fourth and final step of the proposedmethod focused
on the fields of quantification selection based on an artificial
model of field spatial dispersion. To prevent all fields of
quantification being chosen, the penalty functionwas defined
from one large dominant hot spot with a high Ki-67 index by
the following formula:

penalty = 1−𝜌∑

𝑖

1

(

√

(𝑥 − 𝑥

𝑖
)

2
+ (𝑦 − 𝑦

𝑖
)

2
)

0.5 (4)
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Figure 2: The schema of the algorithm for hot-spot localization.

which was based on information about the distance between
the designated areas and the position of another candidate for
hot spot.

An increase in the 𝜌 value shows an increase in the scat-
tering of the areas of quantification selection.The 𝜌 value had
been chosen experimentally (see Section 3). The proposed
function combined selection of fields of quantification from
different localization in the specimen according to a gradual
reduction of the concentration of immunopositive cells.
However, when hot-spot areas other than the dominant one
show a significantly lower density of immunopositive nuclei,
the candidates from dominant region will still be selected
first.The final analysis of theKi-67 index in all chosen areas of
quantification was performed on full resolution images with
the method published earlier and described in [45].

2.6. Evaluation of the Concordance of Selected Hot-Spot Fields.
To evaluate the concordance of hot-spot field localization
between the experts’ and automatic results the localization
concordance measure (LCM) was proposed. This measure
assumed that (1) those fields at a shorter distance should
have a reduced impact on the LCM and (2) the significance
of fields should relate to their Ki-67 index. The localization

concordancemeasure was calculated according to the follow-
ing formula:

LCM

= ∑
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)) ,

where: 𝑤
𝑖
=

𝐿

𝐸𝑖

𝐿

𝐸

(5)

in which 𝐿

𝐸
is the level of the Ki-67 index for the expert

and FOVsize is a one field of view size. A low value of
the LCM shows a similarity in the areas of quantification
selection by algorithm and expert. This means that the
expert’s selected fields of quantification are represented or
near the fields selected by the proposed method; for example,
they represent the same tumor area. If expert and algorithm
select fields of view from different virtual slide areas, the
localization measure LCM is high. The proposed measure
allows both the evaluation of the similarity of choice of hot-
spot fields and the identification of the best penalty factor.
The proposedmeasure can be used in cases of both inter- and
intraobservation variability.
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2.7. Study Design. Both the proposed automated method
of area of quantification selection and the two pathologists
were used to review all the samples (A and B sets) using
digital representation of glass slides with an 8x reduced
WSI resolution while expert quantification was done in
full resolution and for 10 areas of unknown location. The
outcomes were then averaged to give the final result.

Each of the pathologists chose 20 fields of quantification
for eachWSI. One pathologist had two additional sessions for
theWSI from set A to estimate interobserver variability. Each
additional session was performed with at least a one-month
delay between sessions.The order of samples was randomized
for each session.

Then, automated hot-spot selection software was used to
select 20 fields of quantification as an area which fulfill two
criteria:

(i) Biggest number of immunopositive nuclei in compar-
ison to the others.

(ii) That distances between new and previously found
areas are large enough tomeet the requirements of the
above defined penalty function, that is, (4).

The scores of the Ki-67 index from the areas of quantifi-
cation chosen by the pathologists and the automatic method
were produced using software which segments nuclei in
subimages from WSI in full resolution and then classifies
them into immunopositive and immunonegative classes and
estimates the Ki-67 index. This software was published in
2009 [45] by the principal investigator of the project who is
coauthor of this paper.The ratio of immunopositive nuclei to
the number of all cells in each area of quantification and the
mean of these ratios for each WSI were sent for computer-
enabled statistical analysis.

2.8. Statistical Analysis. The scores from the expert micro-
scopic examination and all automatic scores from areas
chosen by both pathologists and scores from the proposed
automatic method of area of quantification selection were
analyzed using agreement analysis, since IHC interpretation
is a subjective process of evaluation. For this process, a true
score is not available. Besides, agreement between digital and
optical scores was not the primary objective of the study, but
rather this is considered the reference value, while agreement
between the automatic and pathologists’ hot spots and area of
quantification selection in IHC assessment was the main aim
of the study.

The primary objective of the investigationwas to find pat-
terns of agreement between manual human and automated
selection of the area of quantification inWSI.The commonly
used concordance measure, Kendall’s tau-b, was used as in
Gavrielides and coworkers [7, 8]. The test was calculated
separately for setsA andB in pooled and categorized/grouped
versions in both pairwise and cumulated versions.

Kendall’s tau-b is a rank-based correlation metric which
calculates the difference between the rate of concordance
and discordance [46–48]. The range of Kendall’s tau-b is −1
to 1, where 1 indicates perfect agreement, −1 indicates data
are inverted (perfect agreement inversion), and 0 indicates

no relationship. Kendall’s tau-b was computed according to
Balboacă and Jäntschi [48] using dedicated software prepared
in MATLAB.

Kendall’s tau-b values were utilized to quantify interob-
server and intraobserver agreements. The interobserver agree-
ment was estimated between all pairs: (1) between patholo-
gists themselves, ((2) and (3)) between each pathologist and
classical expert microscopic reviewing, ((4) and (5)) between
each pathologist and the proposed automated method and
additionally in a grouped version between (6) the mean of
pathologist and classical expert microscopic reviewing and
(7) the mean of the pathologist and proposed automated
method applied to WSI and (8) between classical expert
microscopic reviewing and proposed automated method
applied to WSI. The intraobserver agreement (agreement
between the scores of the same observer in various sessions
of area selection) was estimated between all pairs of three
independent scorings from one pathologist: (1) the first and
the second scores, (2) the second and the third scores, and
(3) the first and the third scores, both in pooled data and in
categorized data. Because of the small number of WSIs from
patients in grade III, the results relate to only two categories:
grade I and grade II in diagnosed meningioma patients.
Confidence intervals for the overall agreement measures
were calculated applying bootstrap analysis using a procedure
described in detail in the study by Gavrielides et al. [7].

Software for bootstrap was implemented using MATLAB
(MathWorks, Natick, MA, USA) functions.

3. Results

First, the influence of the 𝜌 value on the penalty factor
was examined. A subset of twelve WSIs from set A was
chosen for this analysis. The hot-spot localization and areas
of quantification selections performed by pathologists and
the automated proposed method were compared using the
LCM measure. The results of Ki-67 index estimations and
LCM measures for 𝜌 from 0.1 to 0.5 with an increment of
0.05 are presented in Figure 3.The best concordance between
the automatically selected areas of quantification and those
selected by pathologists is for a 𝜌 value equal to 0.2. For this 𝜌
value, LCM is minimal for a relatively high value of the Ki-67
index.

The dispersion of areas of quantification chosen by
the proposed automatic method and pathologists can be
observed in Figures 4 and 5.

Figure 4 presents the distribution of the areas of quan-
tification selected in hot spots found for two WSIs by
two pathologists (red and yellow rectangles) and by the
proposed automatic method (black rectangles). In the top
line (Figures 4(a) and 4(b)) it can be observed that there
is no agreement between both pathologists and that the
distribution of regions is different and inhomogeneous, so the
measure of concordance, LCM, is 9. The distance between
the proposed automatic method and the mean measure
for both pathologists is 8.6. The bottom line (Figures 4(c)
and 4(d)) shows good agreement in areas of quantification
distribution. Their measure of concordance, LCM, is 2.9
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Figure 3: Examination of Ki-67 index and LCM in respect to the 𝜌

factor of the penalty function.

between pathologists while between the proposed automatic
method and the mean measure for both pathologists it is 3.4.

Figure 5 presents results of three repetitions of the selec-
tions of the areas of quantification from one pathologist
(Figures 5(a), 5(b), and 5(c), blind trial) and from automated
method (Figure 5(d)) using one of the WSIs from set A. It is
visible that this one person chose a region of quantification
in various parts of specimen. The third trial is significantly
different from the previous two rather similar trials, but the
Ki-67 indexes for each of them are similar (10.7%, 10.6%, and
11.9% for pathologist and 13.2% for automated method).

As the selected fields of quantification were previously
quantified by the software, the Ki-67 index for each area and
for each specimen becomes the data for statistical analysis.

In Figure 6, where all results for Ki-67 quantification
using all early interdicted methods of its estimation (man-
ually experts, by means of two pathologists’ semiauto-
matic approach and fully automatic approach) are shown,
the general tendency for a relationship between them can
be observed. Quantification with the manual microscopic
method produces the lowest Ki-67 proliferation index values,
while the automatic methods produce the highest values of
this index. This pattern is biased by one specimen from set
A and for 3 specimens from set B. In the first case, the
lower result for the pathologists is caused by an undervalued
score from one pathologist. In the other cases from set B,
the pattern is reversed and the highest values for this index
appear for the manual microscopic method. Exposé control
of WSI shows that there are very small hot spots in each of
these three specimens. It seems that when hot spots do not
cover the whole area of quantification (although they fulfill
the criterion that about 80% of the area of quantification
should be covered by a hot spot) it causes various results
from the pathologists and automatic method. In such cases,
an expert performing microscopic scoring used to deal with
part of field of quantification restricted to hot spots, while the
automatic method diluted the score by counting the number
of cells from the whole area of the rectangle.

The results of inter- and intraobserver variability mea-
surements are presented in Tables 3, 4, and 5.

Table 3 presents the results of pairwise agreement using
Kendall’s tau-b analysis for interobserver variability as a
coefficient of concordance along with confidence intervals
(95% confidence level) constructed using bootstrap analysis
of the samples (100 order changes). It can be observed that all
concordance between all pairs calculated for set A is bigger
than the analogous values for set B. This can be explained by
the fact that WSIs in set A were prepared using autostainer
and the same set of new chemicals while WSIs in set B were
regular glass slides prepared earlier, some with and some
without autostainer, and using the chemicals available at the
time. Visual examination shows that glasses in set A are of
really good quality and homogenous in performance, while
the glasses from set B are not. This inhomogeneity among
glasses from set B led to differing interpretations by the two
pathologists which is seen as a decrease in agreement between
them (from 0.92 to 0.86) and between each of them and
the automated method (from 0.82 and 0.81 to 0.78 and 0.76,
resp.).

Both parts of Table 3, A and B, show an overall tendency
for the highest correlation to be between both pathologists
and the lowest agreement to be between a classical micro-
scopic expert scoring and the proposed automated method
employed on WSI. The concordance between both pathol-
ogists and the other two methods of scoring are between
these two extremes, but the concordance is greater between
the pathologist and the proposed automated method than
between the pathologists and the classical microscopic score.

Table 4 presents the results of pooled expert agreement in
two categories, grade I and grade II (WHO categorization of
meningioma), usingKendall’s tau-b analysis for interobserver
variability. The coefficient of concordance is presented with
confidence intervals (95% confidence level) calculated using
bootstrap analysis of the samples (100 order changes). It can
be observed that concordance is higher in category grade II
than in grade I in both subsets: A and B. This fact can be
explained as the reason that grade I patients’ scores are usually
lower (up to 8%; see Figure 4) than grade II patients’ scores
(up to 20%; see Figure 4). This means that the hot spots are
more intensive and visible in comparison to the surrounding
space in those specimens from patients diagnosed as grade
II. This visibility is more important for the pathologists
than for the automated method. So, coincidence between
pathologists’ digital scoring and the proposed automated
method is very high (0.86 for set A and 0.8 for set B) if
grade II patients’ sections are analyzed, while for grade I
patients’ sections the coincidence is lower (0.79 and 0.78),
but it still shows coincidence. For the coincidence between
experts’ digital scoring and the manual microscopic expert
scoring the results show similar patterns, but the numbers are
lower (0.87, 0.43 and 0.6, and 0.3, resp.).

The coincidence between the results of the proposed
automatic method and manual microscopic expert scoring is
ambiguous.This coincidence is rather low, except for grade II
of set A.

Table 5 presents the results of pairwise agreement analysis
for uncategorized and categorized data using Kendall’s tau-b
for intraobserver variability. One of the pathologists repeated
the scoring procedure 3 times, with a delay long enough
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3.72% 1.65%

1.76% 1.47%
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9.90%
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Figure 4: TwoWSIs with an area of quantification inside a hot spot marked by two experts ((a) and (c): red and yellow rectangles) and chosen
by the proposed automatic method ((b) and (d): black rectangles) with examples of 3 areas of quantification for each method and for both
WSIs with large and small variation in Ki-67 index value calculated as percentage of immunopositive nuclei to the whole number of nuclei
in presented area.
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Figure 5:The results of hot spot and area of quantification selections by one pathologist ((a), (b), and (c)) and by proposed automatedmethod
(d) with examples of 3 areas of quantification chosen approximately in the same region (hot spot) for each selection. The Ki-67 index value
calculated as percentage of immunopositive nuclei to the whole number of nuclei in presented area differs slightly.

Table 3:The results of the pairwise agreement analysis of data, without taking into account categorical information produced using Kendall’s
tau-b analysis for interobserver variability on the WSI from sets A and B separately: TM means classical expert microscopic review, P1 and
P2 mean pathologists, and AU means proposed automatic method.

TM P1 P2 AU
A

TM 0.85281 (0.78355 : 0.87879) 0.79221 (0.71429 : 0.82684) 0.68831 (0.60173 : 0.68831)
P1 0.85281 (0.78355 : 0.87619) 0.92208 (0.88745 : 0.93074) 0.81818 (0.76623 : 0.81818)
P2 0.79221 (0.71429 : 0.82684) 0.92208 (0.88745 : 0.93074) 0.80952 (0.75758 : 0.80952)
AU 0.68831 (0.60173 : 0.68831) 0.81818 (0.76623 : 0.81818) 0.80952 (0.75758 : 0.80952)

B
TM 0.67687 (0.65 : 0.70017) 0.58503 (0.55629 : 0.60697) 0.54762 (0.51888 : 0.56871)
P1 0.67687 (0.64966 : 0.70034) 0.86735 (0.85782 : 0.87398) 0.78231 (0.77262 : 0.78912)
P2 0.58503 (0.55629 : 0.60714) 0.86735 (0.85748 : 0.87381) 0.7551 (0.75 : 0.76531)
AU 0.54762 (0.51871 : 0.56871) 0.78231 (0.77228 : 0.78912) 0.7551 (0.75 : 0.76531)
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Figure 6:Themean and standard deviation of the scoringKi-67 index for all 50 examined glass slides and theirWSI derived frommeningioma
patients. Data are grouped according to the types of measurements, grade of malignance (grade I, grade II, and grade III), and type of sample
preparation method (sets A and B). In each of the three bars the first, blue bar shows the result for the manual microscopic expert score and
the second, red bar shows the result for the mean of the pathologists’ quantifications usingWSI, while the third, green bar presents results for
the proposed automated method.

Table 4:The results of pooled (for all experts) agreement analysis of categorized data usingKendall’s tau-b analysis for interobserver variability
on the WSI from sets A and B separately. The data are grouped in categories, grade I and grade II, while grade III was excluded from the
analysis because of the small number of WSIs (3) in this category. TMmeans classical expert microscopic review, Human means the mean of
the pathologists, and AU means the proposed automatic method.

Human TM AU
A—grade I

Human 0.60606 (0.54545 : 0.69697) 0.78788 (0.66667 : 0.78788)
TM 0.60606 (0.54545 : 0.69697) 0.39394 (0.27273 : 0.42424)
AU 0.78788 (0.66667 : 0.78788) 0.39394 (0.27273 : 0.42424)

A—grade II
Human 0.86667 (0.46667 : 0.86667) 0.86667 (0.46667 : 0.86667)
TM 0.86667 (0.46667 : 0.86667) 1 (0.46667 : 1)
AU 0.86667 (0.46667 : 0.86667) 1 (0.46667 : 1)

B—grade I
Human 0.33333 (0.28105 : 0.39608) 0.77778 (0.75163 : 0.80392)
TM 0.33333 (0.28105 : 0.39869) 0.32026 (0.26797 : 0.35948)
AU 0.77778 (0.75163 : 0.80392) 0.32026 (0.26928 : 0.35948)

B—grade II
Human 0.42857 (0.2381 : 0.52381) 0.80952 (0.71429 : 0.90476)
TM 0.42857 (0.2381 : 0.52381) 0.2381 (0.047619 : 0.33333)
AU 0.80952 (0.71429 : 0.90476) 0.2381 (0.047619 : 0.33333)



12 Analytical Cellular Pathology

 Ki-67

 M
on

th
s

0

20

40

60

80

0 6 12 18 24 30

Regression 95% confid.

Ki-67 versus months
Months = 58.024 − 2.061 ∗ Ki-67

Correlation: r = −0.6592

(a)

 M
on

th
s

0

20

40

60

80

 Ki-67
0 4 8 12 16 20 24

Regression 95% confid.

Ki-67 versus months

Correlation: r =
Months = 51.848 − 2.588 ∗ Ki-67

−0.6233

(b)

Regression 95% confid.

 M
on

th
s

0

20

40

60

80

 Ki-67
0 6 12 18 24

Ki-67 versus months

Correlation: r =
Months = 57.186 − 2.388 ∗ Ki-67

−0.7014

(c)

Figure 7:The regression function estimated for the number ofmonths between recurrences ofmeningioma related to the value of Ki-67 index
calculated based on (i) fully automatic method (a), (ii) traditional microscopic assessment (b), and (iii) semiautomatic human-computer
hybrid approach (c).

to forget the samples. The results presented coefficients of
concordance supportedwith confidence intervals (95% confi-
dence level) calculated using bootstrap analysis of the samples
(100 order changes). This shows very good agreement for
all combinations of three scores performed by one observer
(all coefficients are between 0.85 and 0.9 for data without
categorization and between 0.7 and 0.85 for those categorized
in grade I and between 0.73 and 1 for those categorized in
grade II). Intraobserver variability is significantly smaller
than analogous interobserver analysis results presented in
Table 4.

4. Discussion and Conclusions

The Ki-67 index, obtained for each patient WSI, deter-
mines the downstream clinical decision which concerns
patients’ treatment and, in consequence, patients’ recovery,
recurrences of the disease, or patient death. To compare

the Ki-67 index obtained using three methods, that is,
traditional microscopic, human-computer hybrid method,
and the fully automatic method proposed in this paper in
the context of the final results of the therapy for the patients,
there is a need to know full patients’ case histories which are
not available in the Polish Healthcare System. What appears
to be available after exposé documentation review is data on
the recurrence of meningioma in those patients who have
been rehospitalized in the same hospital. Among 50 patients
whose samples or glasses were used in these investigations,
only 10 patients have currently returned to the same hospital
with a recurrence of meningioma. So, the prediction of the
probability of themeningioma recurrence based on the Ki-67
index for all three methods of estimation has been estimated.
The regression functions calculated for the number ofmonths
between the cancer surgical treatment and its recurrence in
relation to the value of the Ki-67 index calculated based on 10
patients’ information are presented in Figure 7.
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Table 5:The results of intraobserver agreement examinations using Kendall’s tau-b analysis calculated based on pairwise analysis performed
in uncategorized (top part) and categorized schemas. The results show coincidence between Ki-67 indexes based on 3 selections of fields of
quantification by the same pathologist.

P1 (1) P1 (2) P1 (3)
All

P1 (1) 0.85004 (0.8355 : 0.88658) 0.9032 (0.88398 : 0.91775)
P1 (2) 0.85948 (0.8329 : 0.88745) 0.88216 (0.85541 : 0.90649)
P1 (3) 0.86165 (0.83203 : 0.8961) 0.89835 (0.87965 : 0.92554)

Grade I
P1 (1) 0.69697 (0.66667 : 0.72727) 0.84848 (0.72727 : 0.87879)
P1 (2) 0.69697 (0.66667 : 0.72727) 0.78788 (0.75758 : 0.84848)
P1 (3) 0.84848 (0.72727 : 0.87879) 0.78788 (0.75758 : 0.84848)

Grade II
P1 (1) 0.73333 (0.73333 : 0.73333) 0.73333 (0.73333 : 0.73333)
P1 (2) 0.73333 (0.73333 : 0.73333) 1 (0.86667 : 1)
P1 (3) 0.73333 (0.73333 : 0.73333) 1 (0.86667 : 1)

Comparing all three regression function parameters (𝑎𝑥+
𝑏) and the value of the correlation, there is no significant
difference between them.

In summary, the results of both the above analysis and
the analysis described in the previous section show that there
is no evidence that either hybrid human-computer aided
or fully automatic selection of the area of quantification is
superior for quantifying the Ki-67 index in meningioma
patient samples.The results of the study showclose agreement
in terms of their correlations with tumor recurrences and
a relatively high overall agreement for quantification using
both methods presented in the paper, while the results for
each of the methods and traditional macroscopic estimation
by an expert are not so high.

In this study, the time constraints were not examined but
without any doubt the automatic area selection followed by
automatic analyses would lead to time saving for pathologists.

The agreement observed for the three scoring methods,
that is, traditional optical microscope and the method based
on digital modalities used by pathologists to select the region
of quantification, together with a fully automatic computer
aided version of this selection, shows that automation of area
selection inWSI is an effective tool in helping physicians and
in increasing the reliability of diagnosis based on immunohis-
tochemically stained tissue sections. Furthermore, discussion
of the standardization of meningioma Ki-67 quantification is
welcomed.
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