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Abstract

Background

Atrial fibrillation (AF) is the most common arrhythmias among old people. It causes serious

long-term health problems affecting the quality of life. It has been suggested that the auto-

nomic nervous system is involved in the onset and maintenance of AF in human. However,

investigation of its pathogenesis and potential treatment has been hampered by the lack of

suitable AF models in experimental animals.

Objectives

Our aim was to establish a long-lasting AF model in mice. We also investigated the role of

adrenergic receptor (AR) subtypes, which may be involved in the onset and duration of AF.

Methods and Results

Trans-esophageal atrial burst pacing in mice could induce AF, as previously shown, but

with only a short duration (29.0±8.1 sec). We found that adrenergic activation by intraperito-

neal norepinephrine (NE) injection strikingly increased the AF duration. It increased the

duration to more than 10 minutes, i.e., by more than 20-fold (656.2±104.8 sec; P<0.001). In

this model, a prior injection of a specific β1-AR blocker metoprolol and an α1-AR blocker

prazosin both significantly attenuated NE-induced elongation of AF. To further explore the

mechanisms underlying these receptors’ effects on AF, we assessed the SR Ca2+ leak, a

major trigger of AF, and consequent spontaneous SR Ca2+ release (SCR) in atrial myo-

cytes. Consistent with the results of our in-vivo experiments, both metoprolol and prazosin
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significantly inhibited the NE-induced SR Ca2+ leak and SCR. These findings suggest that

both β1-AR　and α1-AR may play important roles in the development of AF.

Conclusions

We have established a long-lasting AF model in mice induced by adrenergic activation,

which will be valuable in future AF study using experimental animals, such as transgenic

mice. We also revealed the important role of β1- and α1-AR-mediated signaling in the devel-

opment of AF through in-vivo and in-vitro experiments.

Introduction
Atrial fibrillation (AF) is the most common arrhythmias, especially among elderly people, and
causes harmful effects to the patients [1,2]. The lifetime risk of AF for middle-aged people has
been estimated to be greater than 20% [3,4], and the prevalence of AF is reported to be increas-
ing in developed countries [5]. In addition to uncomfortable chest symptoms and reduction of
cardiac function, AF patients may face a strikingly increased risk of stroke, due to thrombus
formation in left atrium. It is thus recommended that such patients should take anti-coagulant
medication. However, the adverse complication of the anticoagulant therapy, such as bleeding,
is a major clinical problem. All of these issues significantly affect patients’ quality of life. There
have been many animal and human studies aimed at reducing the risk of AF to minimize its
harmful consequences as suggested in clinical guide lines [6]. However, animal studies of AF,
in particular, have been hampered by the lack of suitable AF model because the known AF
model has only a short AF duration of seconds [7], not of minutes. Thus it is difficult to evalu-
ate the effect of drug in detail with such a short duration.

Numerous studies have demonstrated that activity of the autonomic nervous system is
closely involved in the onset and maintenance of AF [8]. However, the molecular mechanism
of autonomic activation-induced AF has not yet been fully elucidated, as the autonomic ner-
vous system regulates the function of cardiomyocytes in a highly complex manner. In addition,
research has been hindered by the absence of useful animal models for autonomic activation-
induced AF. In this study, we have established a long-lasting AF in mice by the use of trans-
esophageal pacing. We will demonstrate that intraperitoneal NE injection strikingly and reli-
ably elongated the duration of atrial burst pacing-induced AF in mice. We have also deter-
mined the role of AR subtypes involved in adrenergic activation-induced AF in our model.
Because NE activates both α- and β-adrenergic receptors, either or both may play an important
role. To further explore the mechanisms by which abovementioned receptors-mediated signal-
ing affect the duration of AF, we assessed the sarcoplasmic reticulum (SR) Ca2+ leak, which is
known to be a major trigger for AF, and the consequent spontaneous SR Ca2+ release (SCR) in
mouse atrial myocytes. Our results have indicated that not only β1-AR but also α1-AR-medi-
ated signaling are involved in the NE-induced SR Ca2+ leak and SCR as well as maintenance of
AF.

Materials and Methods

Animals
Male C57BL/6 mice aged 11–12 weeks were purchased from Japan SLC (Shizuoka, Japan).
Standard food and water were provided ad libitum to mice. Twelve- to 14-week-old male mice
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were used for the experiments performed in this study. All animal experiments were approved
by the Animal Care and Use Committee of Yokohama City University School of Medicine.

Induction of atrial fibrillation
Simple and minimally invasive AF models have been established in small animals such as rats
and mice. We induced AF using rapid transesophageal atrial pacing according to previously
reported methods with some modifications [7]. Briefly, mice were anesthetized by means of
isoflurane inhalation (1.5–2.0% for maintenance). A 1.1 French octapolar catheter with eight
0.5-mm circular electrodes and an interelectrode distance of 1 mm (EPR800; Millar Instru-
ments, Houston, TX, USA) was carefully advanced through the esophagus of each mouse. The
catheter was placed at the site with the lowest threshold for atrial capture [9]. To ensure the
correct position of the pacing catheter, atrial capture with 1:1 atrioventricular conduction was
documented prior to the burst pacing period [10]. Transesophageal atrial burst pacing was
then conducted for 10 seconds at a stimulation amplitude of 1.5 mA with 10 msec cycle lengths
and a pulse width of 3 mA.

Drug treatment
All the reagents used in this study were purchased from Sigma Aldrich (St. Louis, MO, USA)
unless described otherwise. For sympathetic activation, norepinephrine (NE) bitartrate dis-
solved in natural saline (Otsuka Pharmaceutical, Tokyo, Japan) was intraperitoneally injected
10 minutes before the induction of AF. For the selective blockade of adrenergic receptor (AR),
mice were intraperitoneally injected with either 2 mg/kg of metoprolol (a β1-AR-selective
antagonist), 1 mg/kg of prazosin (an α1-AR selective antagonist), or natural saline 45 minutes
before NE administration.

Isolation of atrial myocytes
Atrial myocytes were prepared from adult mice as previously described with some modifica-
tions [11,12]. Briefly, C57BL/6 mice at 12–14 weeks of age were anesthetized by intraperitoneal
injection of pentobarbital (2.3 mg per mouse) with heparin (150 units per mouse). The heart
was excised, and the aorta was cannulated and perfused with 2 mL of modified Joklik’s minimal
essential medium (JMEM) (Life Technologies, Carlsbad, CA, USA) consisting of 113 mM
NaCl, 4.7 mM KCl, 0.6 mM KH2PO4, 0.6 mM Na2HPO4, 1.2 mMMgSO4, 12 mMNaHCO3,
20 mMD-glucose, 10 mMHEPES, 30 mM taurine, 2 mM creatinine, 2 mM carnitine and 5
mM butanedione monoxime (pH 7.4). The atria were cut into several small pieces and incu-
bated in JMEM containing 0.02 mg/mL Liberase TH (Roche, Indianapolis, IN, USA) with occa-
sional agitation for 60 minutes followed by gentle trituration for 5 minutes at 37°C. The same
volume of JMEM with 1% (w/v) BSA was added and the suspension was filtered through a
100 μmmesh (BD, Franklin Lakes, NJ, USA). Cells were precipitated by centrifugation for 2
minutes at 40 x g and the pellet was gently resuspended in JMEM with 1% (w/v) BSA. Ca2+

reproduction was gradually performed to a concentration of 1.25 mM. Myocytes were precipi-
tated again and resuspended in attaching media consisting of Medium 199 (Life Technologies)
with 4% (v/v) FBS and 1% (v/v) penicillin/streptomycin (Wako). The cells were then plated
onto laminin-coated glass cover-slips and incubated at 37°C in humidified air with 5% CO2 for
1 hour. Finally, attaching media was exchanged for maintaining media (Medium 199 contain-
ing 1% BSA and 1% penicillin/streptomycin). The prepared myocytes were bathed in maintain-
ing media at 37°C before Ca2+ transient was measured.
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Measurement of Ca2+ transient
The measurement of Ca2+ transient was performed according to previously reported protocols
with several modifications [11,13]. All experiments were performed at room temperature.
Myocytes were loaded with 5 μM fluo-4 AM (Dojindo, Kumamoto, Japan) in normal Tyrode
solution (140 mMNaCl, 5 mM KCl, 1 mMMgCl2, 10 mM glucose and 10 mMHEPES, pH 7.4
adjusted with NaOH) containing 1.8 mM Ca2+ for 15 minutes. Cells were washed twice with
normal Tyrode solution and transferred to a chamber equipped with platinum electrodes. The
chamber was placed on a Ti2000 confocal microscope system (Nikon, Tokyo, Japan) in a dark
room. To detect SCRs, the external solution was rapidly switched from normal Tyrode to
0Na+/0Ca2+ Tyrode (140 mM LiCl, 5 mM KCl, 1 mMMgCl2, 10 mM glucose, 1 mM EGTA,
and 10 mMHEPES adjusted pH to 7.4 with LiOH). Myocytes were bathed for 30 seconds in
0Na+/0Ca2+ Tyrode solution, and SCRs were counted during this period. After SCR measure-
ment, diastolic Ca2+ leak from the SR was estimated by a quick treatment with tetracaine. The
ryanodine receptor (RYR) was rapidly and reversibly blocked by 1 mM tetracaine, causing
Ca2+ uptake from the cytosol into the SR. The tetracaine-dependent shift of Ca2+ from the
cytosol to the SR was considered to be proportional to the SR Ca2+ leak [14]. Finally, 10 mM
caffeine was rapidly applied for the estimation of SR Ca2+ content.

For drug-treated samples, myocytes were pre-incubated with 1 μM of AR antagonist (prazo-
sin or metoprolol) and 1 μM of NE for 5 minutes prior to the measurement of Ca2+ transient.
The protocol described above for the measurement of SCR and Ca2+ leak was repeated using
normal Tyrode or 0Na+/0Ca2+ Tyrode solution supplemented with AR antagonist (1 μM) and
NE (1 μM).

Statistical analysis
All values were represented as mean±SEM. All statistical analyses were performed by Student’s
t test (two-tailed) or one-way ANOVA followed by the Tukey-Kramer post-hoc study for mul-
tiple comparisons. P value<0.05 was considered to indicate statistical significance in this
study.

Results

Norepinephrine strikingly elongates the duration of AF
AF was inducible by trans-esophageal pacing, as previously reported [10]. AF was defined as
an irregular heart rhythm with loss of P-waves lasting at least 2 sec before spontaneous conver-
sion into normal sinus rhythm (Fig 1A and 1B) [15,16]. During pacing-induced arrhythmic
events, however, there occurred not only AF, but also intermittent regular atrial activities (Fig
1C and 1D), which is most likely atrial flutter (Afl). We thus measured the time from the end
of burst pacing to spontaneous conversion into normal sinus rhythm (NSR), which indeed
included both AF and Afl. Further, such duration was not always identical among different
pacings. We thus performed three series of burst pacing over a 3-minute interval for each
mouse, and the duration of the longest AF was used as index in this study (Fig 2A).

With the above-mentioned method, AF was reliably induced, but with a short duration, as
pointed out in previous studies [7,17]. The duration was only a few to tens of seconds (Figs 1
and 2B). With such a short duration, we thought that it will be difficult to convincingly exam-
ine the effect of pharmacological stimulation.

Because it has been suggested, in human, that autonomic imbalance may trigger the onset
and duration of AF, we investigated the effect of adrenergic activation by intra-peritoneal NE
injection. We found that NE administration strikingly and stably elongated the duration of AF
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Fig 1. Induction of AF by transesophageal atrial burst pacing in mice.Representative lead II body
surface electrocardiogram (ECG) recordings (A). Simultaneous recordings of Lead II body surface ECG
(upper) and esophageal ECG (lower) (B-D). (A) AF was induced by transesophageal atrial burst pacing (BP).
An AF lasted about 32 seconds before spontaneous conversion into normal sinus rhythm (NSR). (B)
Spontaneous conversion from AF to NSR. (C) Representative example of AF episode with disorganized
fibrillatory atrial activities and irregular ventricular responses. (D) Conversion from AF to Afl with 4:1
atrioventricular-nodal conduction. Asterisks, arrows and circles indicate P-waves, atrial- and ventricular-
electrograms, respectively. All R-R intervals are expressed in milliseconds.

doi:10.1371/journal.pone.0133664.g001
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in a dose-dependent manner (Fig 2B). The AF duration was less than 30 seconds (29.0±8.1 sec)
in the absence of NE, but increased to 35.7±9.4 sec with NE (2 μg/kg), 51.8±8.3 sec (500 μg/kg),
308.3±86.2 sec (1 mg/kg), and 656.2±104.8 sec (1.5 mg/kg). Thus, the duration was increased
by more than 20-fold, to more than 10 minutes.

Fig 2. Norepinephrine strikingly elongates the duration of AF. (A) Schematic diagrams of experimental
protocol to induce AF after sympathetic activation in mice. Mice were treated with 1.5 mg/kg of norepinephrine
(NE) by intraperitoneal injection followed by transesophageal atrial burst pacing to induce AF. The rectangle
represents the period from the start of burst pacing to the termination of AF. Note that, for each individual
animal, the longest duration among 10 trials was taken to be the duration of AF after NE administration. (B) The
duration of AF was strikingly increased after NE administration in a dose-dependent manner. NEwas
intraperitoneally injected into eachmouse at one of several doses as indicated below, and was followed by
transesophageal atrial burst pacing (n = 6–8, *P<0.05 vs CTRL, †P<0.05 vs 2 μg/kg, ‡P<0.05 vs 500 μg/kg)
(n = 6–8, ***P<0.001 vs CTRL, †††P<0.001 vs 2 μg/kg, ‡‡‡P<0.001 vs 500 μg/kg, §§P<0.01 vs 1000 μg/kg).

doi:10.1371/journal.pone.0133664.g002
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Norepinephrine elongates AF duration through β1- and α1- adrenergic
receptor-mediated signaling
To determine which types of AR-mediated signaling play important roles in the NE-induced
elongation of AF, we examined the effects of prazosin and metoprolol on the duration of AF in
our model. The doses of metoprolol and prazosin were determined based on previous reports
[18,19]. The heart rate (HR) just before the AF induction by burst pacing was significantly
lower in metoprolol treated group compared with the control group (control 490.6±11.0 sec vs
metoprolol 421.4±30.4 sec, P<0.05). On the other hand, no significant difference was observed
in the HR between prazosin treated group and control group (control 504.4±11.3 sec vs prazo-
sin 481.9±8.7 sec, not significant). The duration of the AF was significantly shortened by both
metoprolol (control 696.6±232.8 sec vs metoprolol 69.1±47.6 sec, P<0.05) (Fig 3A) and prazo-
sin (control 569.7±101.1 sec vs prazosin 285.2±69.6 sec, P<0.05) (Fig 3B), indicating that both
β1-AR and α1-AR signaling pathways play important roles in the NE-induced elongation of
AF.

Norepinephrine induces SR Ca2+ leak and spontaneous Ca2+ releases
via β1- and α1-AR-mediated signaling in atrial myocytes
To elucidate the mechanism underlying the adrenergic activation-induced elongation of AF,
we next examined the effect of NE on the SR Ca2+ leak and SCR in isolated atrial myocytes.
The magnitude of the diastolic Ca2+ leak from SR was expressed as a value relative to the caf-
feine-releasable SR Ca2+ content [20]. The adrenergic activation by NE increased the SR Ca2+

leak (~1.4-fold compared to control, P<0.05) and the rate of SCR (~2.1-fold, P<0.01) (Fig 4A
and 4B). Consistent with the findings of our in-vivo study (Fig 3), treatment with 1 μMmeto-
prolol significantly suppressed the NE-induced increase in the SR Ca2+ leak (~31% lower than
that seen in untreated myocytes, P<0.05) and SCR (~54% lower, P<0.01) in a dose-dependent
manner. In addition, prazosin treatment also significantly attenuated the SR Ca2+ leak (~30%
lower, P<0.05) and SCR (~55% lower, P<0.001) (Fig 5A and 5B). These results suggest that

Fig 3. Norepinephrine elongates AF duration through β1- and α1-adrenergic receptor-mediated signaling. (A) 2 mg/kg of metoprolol, (B) 1 mg/kg of
prazosin or natural saline (CTRL) was intraperitoneally injected into conscious mice 45 min before the administration of NE (1.5 mg/kg). Both metoprolol and
prazosin treatment significantly shortened the NE-elongated AF. (n = 10–13, *P<0.05, #P<0.1 vs CTRL) (n = 10–15, *P<0.05).

doi:10.1371/journal.pone.0133664.g003

The role of β1- and α1-AR-Mediated Signaling in the Development of AF

PLOSONE | DOI:10.1371/journal.pone.0133664 July 23, 2015 7 / 13



not only β1-AR but also α1-AR-mediated signaling are involved in the NE-induced SR Ca2+

leak and SCR in atrial myocytes.

Discussion
In this study, we established an adrenergic activation-induced long-lasting AF model in mice.
NE injection significantly elongated transesophageal burst pacing-induced AF from around 30
seconds [7] to 10 minutes. By this method we were able to stably induce, what is to our knowl-
edge, the longest AF ever reported in genetically-unmodified mice. The development of AF has
been demonstrated by genetic overexpression of several molecules that are involved in β-AR or
α-AR mediated signaling [21], such as cAMP-response element modulator [22], Gαq [23], or
Rho A [24]. However, it has been desired to induce AF in genetically-unmodified normal mice.
In this regard, the short duration of AF in genetically-unmodified animal models has been a
major problem in investigating the mechanisms of AF. Long-term observation of AF episodes
in our model will enable us to examine in greater detail the mechanisms involved in AF main-
tenance, such as AF-induced atrial remodeling [25]. In addition, it will provide researchers
with time to inject potentially useful drugs after the onset of AF, in order to evaluate the

Fig 4. Measurement of Ca2+ transient in atrial myocytes. Representative Ca2+ traces of atrial myocytes in the absence (A) or presence (B) of 1 μMNE.
Fluo-4 loaded myocytes were electrically paced at 1 Hz for 15 seconds followed by a rapid switch of the extracellular solution from normal Tyrode to 0Na+/
0Ca2+ Tyrode. The spontaneous Ca2+ release (SCR) was counted for 30 seconds. The diastolic Ca2+ leak from sarcoplasmic reticulum (SR), SR Ca2+ leak,
was estimated by measuring the downward shift in fluorescence after 1 mM tetracaine treatment. Finally, 10 mM caffeine was administered rapidly to
estimate the SR Ca2+ content.

doi:10.1371/journal.pone.0133664.g004
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efficiency of such a drug for defibrillation of AF. Furthermore, this is a minimally invasive
model, requiring no surgical procedure e.g. intravascular catheterization [26]. Thus, we can
repetitively examine susceptibility to AF over a long observation period. Additionally, the
applicability of this model to genetically-modified mice will enable us to obtain more solid evi-
dence of the importance of specific molecules in AF development.

Using the model, we next investigated which AR subtype was more prominently involved in
AF maintenance. The sympathetic and parasympathetic nervous systems play pivotal roles in
the development of AF [8]. Consistently, activation of the sympathetic and parasympathetic
systems is observed before the onset of AF [27]. In addition, autonomic nervous system func-
tion is thought to be involved in the arrhythmogenic mechanisms of several risk factors under-
lying AF including hyperthyroidism, exercise and ischemic heart disease [28–30]. Moreover,
atrial tachyarrhythmias can be induced by activating the mediastinal nerves, which causes acti-
vation of the sympathetic and parasympathetic systems in the heart [31]. Based on these find-
ings, the inhibition of inappropriate autonomic nervous system activation has been adopted to
prevent development of AF. As expected, the usefulness of β1-AR blockers [32,33] and auto-
nomic denervation [34] have been demonstrated in several human studies. Yet the efficacy of
those treatments is limited, at least in part because of our incomplete understanding of the
mechanisms underlying autonomic activation-induced atrial arrhythmogenesis. Thus the iden-
tification of the signaling pathway that is predominantly involved in catecholamine-induced
arrhythmogenesis is an important step toward developing more effective strategies for AF pre-
vention. Consistent with previous reports [35], a β1-AR-specific blocker was effective at pre-
venting NE-induced elongation of AF in our mouse model. In addition, an α1-AR-specific
blocker also shortened the NE-induced elongation of AF. These findings support the recently
proposed concept that both α-AR and β-AR play important roles in the development of AF.

Fig 5. Norepinephrine induces SR Ca2+ leak and spontaneous Ca2+ releases via β1- and α1-ARmediated signaling.Quantification of spontaneous
Ca2+ release (A) and SR Ca2+ leak (B). Atrial myocytes were incubated with metoprolol or prazosin in the absence (-) or presence (+) of 1 μMNE. Metoprolol
and prazosin significantly reversed the NE-enhanced SCR (n = 14–22, **P<0.01, ***P<0.001) and SR Ca2+ leak (n = 14–22, *P<0.05). The magnitude of
SR Ca2+ leak is expressed as a relative value to SR Ca2+ content. Values under the graph represent the concentrations of adrenergic receptor antagonists
(μM).

doi:10.1371/journal.pone.0133664.g005
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To further investigate the mechanism by which both types of receptor-mediated signaling
contribute to maintaining AF, we assessed the SR Ca2+ leak and the consequent spontaneous
SR Ca2+ release in cultured atrial cardiomyocytes. Catecholamine-induced phosphorylation of
RYR by protein kinase A or Ca2+/calmodulin-dependent protein kinase II (CaMKII) is
reported to cause diastolic SR Ca2+ leak, leading to delayed afterdepolarization (DAD), which
is recognized as a major source of ectopic activity [8,36]. Ectopic activity is accepted as one of
the major mechanisms responsible for the onset and maintenance of AF [8]. β-AR activation
has been reported to induce SR Ca2+ leak and spontaneous SR Ca2+ release [37]. Consistently,
the β1-AR-specific blocker metoprolol attenuated the NE-induced SR Ca2+ leak and the spon-
taneous SR Ca2+ release. In keeping with the results of our in-vivo study, the α1-AR-specific
blocker prazosin had a similar effect.

Recent reports have documented an important role of α1-AR-mediated signaling including
Gq, phospholipase C, inositol triphosphate receptor (IP3R), protein kinase C, and CaMKII in
the regulation of Ca2+ transient in cardiomyocytes [38–40]. In addition, endothelin, which also
elicits IP3R, Ca2+, and CaMKII-mediated signaling, has been reported to induce elevation of
intracellular Ca2+ concentration through SR Ca2+ release from IP3R, leading to spontaneous
Ca2+ release from RYR in atrial myocytes [41]. Thus the α1-AR activation-induced SR Ca2+

leak that was observed in the present study may have been caused by a similar mechanism.
On the other hand, it has been reported that α-AR signaling induces the activation of car-

diac neurons [42,43]. In addition, α-adrenergic activation can inhibit inwardly rectifying K+

current, thereby enhancing automaticity [44]. These factors can be also considered among the
candidate mechanisms that may be responsible for α1 AR activation-induced AF.

These findings imply that consideration of α1-AR-mediated signaling may also be impor-
tant in the management of AF. Along the same lines, a recent report showed that the α, β-
blocker carvedilol is more useful than the β1 selective blocker metoprolol in preventing AF
after cardiac surgery [45].

A possible limitation of this study is that we measured Ca2+ transient at room temperature
following the method of previous reports [13,14]. The temperature might have affected the
response of cardiomyocytes.

In conclusion, we established an adrenergic activation-induced long-lasting AF model in
mice. Using the model, we demonstrated the important role of β1- and α1-AR-mediated sig-
naling in the maintenance of AF. In addition, we showed that not only β1-AR but also α1-AR
activation are involved in the SR Ca2+ leak in atrial cardiomyocytes. This model and the knowl-
edge we have obtained through its use will be useful in establishing novel therapeutic targets
and agents for the treatment of AF.
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