Table 2. Classification results of three classifiers using the acceleration sensor placed at dominant wrist.
KNN (K = 3) | Rotation Forest | Neural Network | |||||||
---|---|---|---|---|---|---|---|---|---|
Activity | Precision | Recall | F-measure | Precision | Recall | F-measure | Precision | Recall | F-measure |
A1 | 0.927 | 0.933 | 0.930 | 0.974 | 0.940 | 0.957 | 0.890 | 0.898 | 0.894 |
A2 | 0.910 | 0.834 | 0.870 | 0.922 | 0.895 | 0.908 | 0.857 | 0.804 | 0.830 |
A3 | 0.892 | 0.809 | 0.848 | 0.855 | 0.924 | 0.888 | 0.756 | 0.862 | 0.806 |
A4 | 0.875 | 0.088 | 0.160 | 0.984 | 0.954 | 0.969 | 0.957 | 0.897 | 0.926 |
A5 | 0.154 | 0.971 | 0.266 | 0.996 | 0.957 | 0.976 | 0.964 | 0.953 | 0.958 |
A6 | 0.984 | 0.888 | 0.933 | 0.987 | 0.983 | 0.985 | 0.991 | 0.966 | 0.979 |
A7 | 0.994 | 0.317 | 0.480 | 0.989 | 0.977 | 0.983 | 0.987 | 0.979 | 0.983 |
A8 | 0.904 | 0.864 | 0.884 | 0.907 | 0.896 | 0.902 | 0.786 | 0.855 | 0.819 |
A9 | 0.945 | 0.820 | 0.878 | 0.954 | 0.852 | 0.900 | 0.961 | 0.703 | 0.812 |
A10 | 0.983 | 0.828 | 0.899 | 0.961 | 0.939 | 0.950 | 0.937 | 0.929 | 0.933 |
A11 | 0.898 | 0.811 | 0.852 | 0.845 | 0.962 | 0.900 | 0.830 | 0.928 | 0.876 |
A12 | 0.931 | 0.190 | 0.316 | 0.963 | 0.915 | 0.939 | 0.903 | 0.915 | 0.909 |
Average | 0.890 | 0.688 | 0.708 | 0.941 | 0.939 | 0.939 | 0.900 | 0.895 | 0.896 |