Table 4. Classification results of three classifiers using the acceleration sensor placed on the chest.
KNN (K = 3) | Rotation Forest | Neural Network | |||||||
---|---|---|---|---|---|---|---|---|---|
Activity | Precision | Recall | F-measure | Precision | Recall | F-measure | Precision | Recall | F-measure |
A1 | 0.988 | 0.930 | 0.958 | 0.985 | 0.977 | 0.981 | 0.976 | 0.938 | 0.956 |
A2 | 0.873 | 0.802 | 0.836 | 0.917 | 0.893 | 0.905 | 0.699 | 0.791 | 0.742 |
A3 | 0.839 | 0.758 | 0.796 | 0.838 | 0.930 | 0.882 | 0.729 | 0.665 | 0.696 |
A4 | 0.916 | 0.476 | 0.626 | 0.952 | 0.966 | 0.959 | 0.855 | 0.913 | 0.883 |
A5 | 0.221 | 0.968 | 0.359 | 0.996 | 0.957 | 0.976 | 0.974 | 0.957 | 0.965 |
A6 | 0.981 | 0.860 | 0.916 | 0.958 | 0.972 | 0.965 | 0.979 | 0.871 | 0.922 |
A7 | 0.979 | 0.658 | 0.787 | 0.974 | 0.925 | 0.949 | 0.886 | 0.807 | 0.845 |
A8 | 0.943 | 0.883 | 0.912 | 0.942 | 0.927 | 0.935 | 0.829 | 0.874 | 0.851 |
A9 | 0.985 | 0.833 | 0.903 | 0.976 | 0.883 | 0.927 | 0.950 | 0.845 | 0.895 |
A10 | 0.893 | 0.822 | 0.856 | 0.928 | 0.923 | 0.925 | 0.858 | 0.900 | 0.878 |
A11 | 0.881 | 0.798 | 0.838 | 0.902 | 0.938 | 0.920 | 0.824 | 0.904 | 0.862 |
A12 | 1.000 | 0.613 | 0.760 | 0.993 | 0.944 | 0.968 | 0.977 | 0.894 | 0.934 |
Average | 0.891 | 0.771 | 0.805 | 0.940 | 0.938 | 0.939 | 0.864 | 0.860 | 0.861 |