Table 6. Classification results of three classifiers using the acceleration sensor placed on the dominant ankle.
KNN (K = 3) | Rotation Forest | Neural Network | |||||||
---|---|---|---|---|---|---|---|---|---|
Activity | Precision | Recall | F-measure | Precision | Recall | F-measure | Precision | Recall | F-measure |
A1 | 0.986 | 0.935 | 0.960 | 0.995 | 0.958 | 0.976 | 0.981 | 0.935 | 0.957 |
A2 | 0.870 | 0.821 | 0.845 | 0.963 | 0.883 | 0.921 | 0.786 | 0.734 | 0.759 |
A3 | 0.777 | 0.533 | 0.632 | 0.838 | 0.822 | 0.830 | 0.635 | 0.628 | 0.631 |
A4 | 0.895 | 0.071 | 0.132 | 0.968 | 0.958 | 0.963 | 0.925 | 0.829 | 0.875 |
A5 | 0.103 | 0.978 | 0.187 | 0.981 | 0.957 | 0.969 | 0.985 | 0.957 | 0.971 |
A6 | 0.962 | 0.216 | 0.353 | 0.949 | 0.981 | 0.965 | 0.887 | 0.932 | 0.909 |
A7 | 0.976 | 0.073 | 0.136 | 0.962 | 0.946 | 0.954 | 0.800 | 0.896 | 0.846 |
A8 | 0.967 | 0.820 | 0.887 | 0.951 | 0.918 | 0.934 | 0.950 | 0.909 | 0.929 |
A9 | 0.975 | 0.729 | 0.834 | 0.965 | 0.874 | 0.917 | 0.962 | 0.804 | 0.876 |
A10 | 0.867 | 0.586 | 0.699 | 0.853 | 0.921 | 0.885 | 0.778 | 0.843 | 0.809 |
A11 | 0.815 | 0.605 | 0.694 | 0.787 | 0.899 | 0.839 | 0.719 | 0.821 | 0.767 |
A12 | 1.000 | 0.162 | 0.279 | 1.000 | 0.937 | 0.967 | 0.978 | 0.923 | 0.949 |
Average | 0.865 | 0.525 | 0.558 | 0.925 | 0.921 | 0.922 | 0.846 | 0.840 | 0.841 |