Skip to main content
. 2015 Jul 23;10(7):e0130851. doi: 10.1371/journal.pone.0130851

Table 6. Classification results of three classifiers using the acceleration sensor placed on the dominant ankle.

KNN (K = 3) Rotation Forest Neural Network
Activity Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure
A1 0.986 0.935 0.960 0.995 0.958 0.976 0.981 0.935 0.957
A2 0.870 0.821 0.845 0.963 0.883 0.921 0.786 0.734 0.759
A3 0.777 0.533 0.632 0.838 0.822 0.830 0.635 0.628 0.631
A4 0.895 0.071 0.132 0.968 0.958 0.963 0.925 0.829 0.875
A5 0.103 0.978 0.187 0.981 0.957 0.969 0.985 0.957 0.971
A6 0.962 0.216 0.353 0.949 0.981 0.965 0.887 0.932 0.909
A7 0.976 0.073 0.136 0.962 0.946 0.954 0.800 0.896 0.846
A8 0.967 0.820 0.887 0.951 0.918 0.934 0.950 0.909 0.929
A9 0.975 0.729 0.834 0.965 0.874 0.917 0.962 0.804 0.876
A10 0.867 0.586 0.699 0.853 0.921 0.885 0.778 0.843 0.809
A11 0.815 0.605 0.694 0.787 0.899 0.839 0.719 0.821 0.767
A12 1.000 0.162 0.279 1.000 0.937 0.967 0.978 0.923 0.949
Average 0.865 0.525 0.558 0.925 0.921 0.922 0.846 0.840 0.841