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Abstract

Nucleosome variability is essential for their functions in compacting the chromatin structure and 

regulation of transcription, replication and cell reprogramming. The DNA molecule in 

nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, 

H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability 

and binding properties by employing different sets of histone variants or by becoming post-

translationally modified. There are many variants of histones H2A and H2B. Specific H2A and 

H2B variants may preferentially associate with each other resulting in different combinations of 

variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the 

H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, 

can assemble independently and is stable during nucleosome unwinding. In this review we discuss 

how sequence and structural variations in H2A-H2B dimers may provide necessary complexity 

and confer the nucleosome functional variability.

Introduction

Chromatin packaging is tightly coupled to genome function and gene expression regulation. 

The basic unit of chromatin packing, the nucleosome, wraps ~145–147 bp of DNA in a ~1.7 

left-handed super helical turns around an octamer composed of four types of core histones 

(H3, H4, H2A, H2B – two copies of each)[1]. The histone octamer is known to form a 

tripartite modular protein assembly where the (H3-H4)2 tetramer is composed of two (H3-

H4) heterodimers and organizes the inner turn of DNA, while two (H2A-H2B) heterodimers 

dock on both sides of tetramer in order to further wrap remaining ~40 bp of DNA on each 

end (Figure 1a)[2]. Nucleosomes are located at certain distances from each other along the 

DNA molecule and nucleosome spacing is shown to be species and tissue dependent [3,4]. 
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Once thought to play merely structural role, nucleosomes now unravel their dual nature as 

key players in epigenetic regulation of transcription, replication and reprogramming. It is 

becoming more recognized that nucleosomes represent dynamic entities [5,6], namely, they 

may change their conformation, histone content, employ a set of different histone variants 

(see definition below), and become post-translationally modified upon certain conditions. 

Nucleosome variability is essential to adapt chromatin structure and function in order to 

respond to environmental stimuli and fulfill cellular function [7]. Some of the recent striking 

examples of nucleosome adaptability include: role of H2A.Z histone acetylation and 

deposition in memory formation [8,9], modulation of olfactory neurons life span by histone 

variant H2B.E [10], H2A.Z participation in embryonic stem cell differentiation [11] and its 

role in acclimatization of common carp [12]. The histone H2A and H2B families contain 

many sequence variants which can confer the nucleosome structural and functional 

variability. Moreover, the H2A-H2B dimer can be recognized and substituted by chaperones 

and remodelers as a distinct unit, it assembles independently before incorporation into 

nucleosomes and is stable during nucleosome unwinding (Figure 1B).

While many histone variants are known to be lineage specific, in this review we focus on a 

representative set of universal and mammalian specific H2A and H2B histone variants. We 

highlight recent advances in understanding of the sequence and structural variability of 

H2A-H2B dimers resulting in dynamical and functional changes in nucleosomes.

H2A-H2B dimer as a semi-independent unit in nucleosome dynamics

Nucleosomal dynamics is tightly coupled to genome markup and transcription. The 

unwrapping of DNA from the octamer surface is thought to be crucial for transcription 

factor (TF) binding in most cases [13]. Moreover, RNA Polymerase II (Pol II) pauses upon 

encountering the nucleosome and the DNA-octamer interactions may account for the 

nucleosomal barrier to Pol II and regulate the rate of transcription [14]. On moderately 

expressed genes, transcription by Pol II is accompanied by the displacement of one H2A-

H2B dimer while (H3-H4)2 tetramer remains intact, as a result a hexasome is formed (see 

Figure 1b). Hexasome survival is facilitated by electrostatic interactions between 

polymerase and histones [15,16]. Recent characterization of the hexasome structure by small 

angle X-ray scattering revealed that the removal of one H2A-H2B dimer did not cause large 

structural changes in the remaining part of the nucleosome core [17].

Substantial evidence points to the fact that simple unwrapping of DNA ends from the 

octamer surface is not the only event in nucleosome unwinding/disassembly (Figure 1b). 

Nucleosome unwinding experiments using optical tweezers recently revealed the existence 

of multiple unwound states suggesting the symmetrical split of the octamer through H3-H3 

interface under tension at specific conditions [18]. At the same time, equilibrium FRET 

experiments suggest an open intermediate state of the nucleosome, where the interface 

between (H3–H4)2 tetramer and H2A–H2B dimer may be reversibly opened under 

physiological conditions [19]. The balance between these alternative nucleosome 

conformations should depend on sequence and structural variations within the H2A-H2B 

dimer and might have profound functional implications. The dynamical opening of 

Shaytan et al. Page 2

Curr Opin Struct Biol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleosome structure can expose interfaces, which are otherwise inaccessible and not 

observed in static X-ray structures.

H2A-H2B dimers can be recognized, actively exchanged and deposited by different histone 

chaperones and nucleosome remodelers, however the details of these processes still remain 

elusive and not well studied. Recent advancements in this field include the structural 

characterization of ATP-dependent SWR1-complex, which is able to recognize nucleosomes 

with canonical H2A-H2B dimers and substitute it with an H2A.Z-H2B dimer [20]. In 

addition, recent insights into structure and function of histone chaperon FACT showed that 

its Spt16M domain binds H2A-H2B dimer via the H2B α1-helix region [21], suggesting that 

FACT can block the interactions of H2B with DNA in nucleosome favoring unwound DNA 

conformation.

H2A and H2B histone variants and their functions

The four main types of core histones (H3, H4, H2A, H2B) are all structurally very similar 

within the histone-fold region, while sharing less than 25% sequence identity [22]. Every 

histone type is usually encoded by several different genes giving rise to histone variants 

(which may also arise due to the alternative splicing). Histone variants may be either 

universal to eukaryotes or species specific. The difference between variants and canonical 

histones can range from several amino acids up to the level marking the variance between 

different types of canonical histones (see Tables 1 and 2). Histones are usually subdivided 

into canonical replication-dependent (their expression coincides with the S-phase of cell 

cycle) and replication-independent histone variants, constitutively expressed during cell 

cycle [23,24] (referred to as “variants” thereafter). In metazoans canonical genes are 

typically located within multigene clusters and use specific type of regulation at the RNA 

level with a stem loop structure instead of polyA tail [25]. Genes encoding the histone 

variants (sometimes called “orphan genes”) are typically located outside of these clusters 

and are regulated similar to normal genes [25]. A few known exceptions in mammals 

include testis-specific histones TS H2A.1 and TS H2B.1 [26,27] and H2B.E in mice [10], 

which are all located in gene clusters but can be expressed outside of the DNA replication 

phase. Interestingly, the number of histone variants tends to increase with the complexity of 

organism providing structural and functional diversification needed for genome functioning. 

The nomenclature for growing family of histone variants was recently suggested in [28], and 

we follow this nomenclature in the current review.

Histone H2A has the highest number of known variants, while H2B is thought to be less 

variable. Tables 1 and S1 show the list of variants and summary of their known functions 

and localizations. The variants for H2A include widely studied universal variants H2A.Z 

and H2A.X, vertebrate specific mH2A, mammal specific H2A.B, as well as less studied 

testis-specific variants in mammals TS H2A.1, H2A.L. The H2B variants in mammals 

include testis-specific TS H2B.1, H2B.W, subH2B, and newly characterized variant H2B.E, 

shown to regulate olfactory neuron function in mice [10]. Despite considerable progress in 

understanding the functions of histone variants, the complete picture remains elusive. 

Variants are associated with various functions such as up and down regulation of gene 

expression (H2A.Z, mH2A, H2A.B), DNA damage response (H2A.X, H2A.Z), epigenetic 
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reprogramming (TS H2A.1, TS H2B.1), splicing (H2A.B), pericentric and telomere 

chromatin organization (H2B.W, H2A.Z, H2A.X), etc. All this suggests that the role of 

histone variants is often multi-functional and context dependent. With time, novel histones 

variants or new splice isoforms may be discovered. For example, an alternatively spliced 

isoform of H2A.Z.2 (H2A.Z.2.s2) has been recently identified in human brain tissues [29]. 

Despite high sequence similarity, the splice isoforms have been shown to function 

differently during DNA damage repair [30].

Sequence variation and evolution of H2A and H2B histones

H2A variants H2A.Z, H2A.B and mH2A are known to have monophyletic origins with 

H2A.Z originating early in eukaryotic evolution [23], whereas H2A.X variants have 

diverged repeatedly [24]. While canonical histones (and ancient variants, like H2A.Z) are 

among the most conserved proteins across different species [31], certain variants do not 

follow this trend. For example, H2A.B and some testis-specific histones are considered 

quickly evolving hypervariable mammalian histones [32].

Histone variants may differ only by several amino acids. For example, only four or five 

amino acids are changed between H2B and H2B.E variants [10] while two subvariants of 

H2A.Z (H2A.Z.1 and H2A.Z.2) in vertebrates vary by only three amino acids. The same is 

true of H2A.X, which mainly differs from the canonical H2A by a functionally important C-

terminal phosphorylation motif Ser-Gln-(Glu/Asp)-Φ, where Φ represents a hydrophobic 

residue. Variant specific phosphorylation of serine in this motif can occur upon the 

formation of DNA double-strand breaks [33] and, may be important in engaging and 

retention of various chromatin remodeling factors in order to promote the double-strand 

break repair. On the other hand, major variants H2A.Z, mH2A, H2A.B show much lower 

sequence identity to canonical histones (about 40–60%) whereas members of H2A.L family 

(which is rather diverse and still awaits further investigation), like mouse H2A.L.3, show 

even lower sequence identity of 24% with canonical H2A.

The histone fold regions (Figure 2) are well aligned based on sequence and structural 

comparisons and conserved between variants, with the exception of L1 and L2-loop regions 

of H2A and histone tails which are more divergent in terms of their sequences and lengths 

(Figures 2 and 3). A notable feature of H2A.Z with respect to H2A alignment is an amino 

acid insertion in α1-helix and one deletion in the docking domain (Figure 2). Previous 

studies of evolution of protein complexes showed that such insertions and deletions can 

mediate specific and preclude undesired interactions [34]. Moreover, certain variants differ 

in their amino acid composition, especially in their lysine to arginine ratio: there is only one 

lysine in human H2A.B compared to 14 lysines in a canonical H2A [32]. At the same time, 

the N-terminus of H2A histone has systematically acquired arginine amino acids as genomes 

expanded [35]. In the next section we discuss how sequence differences in histone dimers 

are coupled with their structural variation.

Structure and stability of H2A and H2B variant nucleosomes

The atomic-resolution X-ray structures of variant nucleosomes are available for H2A.Z 

[36,37] and mH2A (histone domain) [38,39] variants, their structural superposition with 
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canonical histones shows very similar conformations with the exception of the L1-loop 

regions of H2A (Figure 3a). In fact, this is the only region where the two H2A-H2B dimers 

interact. These structural differences can be explained by sequence variations as the 

evolutionary plasticity (the degree of structural change per unit of sequence change) is 

usually greater for loop regions compared to the protein core [40]. Indeed, the L1-loop 

region exhibits considerable sequence variation among different H2A variants, and is likely 

involved in conferring stability and functional specificity of variant nucleosomes. For 

example, a four amino acid difference between mH2A and H2A in the L1-loop was shown 

to be responsible for the increased salt-dependent stability of the variant histone octamer 

[39]. As to other variant subtypes, H2A.Z.1 and H2A.Z.2 histones differ by only S38T 

substitution within the histone fold. This substitution is located at the end of α1-helix, which 

precedes the L1-loop. X-ray structures revealed polymorphisms within L1-loop 

conformations between these subtypes, while in vivo mutagenesis experiments showed that 

S38T substitution might alter the mobility of different H2A.Z variants in cells [37].

Stability of nucleosomes depends on many variables and factors, such as histone sequences 

and structures, salt concentration, post-translational modifications and DNA sequence. 

There is an apparent controversy regarding the stability of some variant nucleosomes and its 

relation to their function. For certain variants, such as H2A.Z, no clear conclusion about 

their stability can be drawn due to the discrepancies between in vivo and in vitro studies 

[41]. However, certain sequence and structural features of histone variants (including the 

charge of the histone core [42]) might be responsible for a changed stability and have been 

confirmed by different experimental studies. For example, the conformation of H2A.B-

variant nucleosome was recently characterized by small angle neutron scattering, which 

revealed that the DNA ends were detached from the histone core surface and flexibly 

expanded toward the solvent. At the same time, the histone tails seem to be more compact in 

this variant compared to tails in canonical nucleosomes [18]. H2A.B-containing 

nucleosomes are destabilized relative to canonical nucleosomes in a way similar to that seen 

in hyperacetylated histones [32], and associate with only 118 to 130 bp of DNA [43,44] 

(Figure 3d). Similarly it was shown that when the H2A.L variant is incorporated, only ~130 

base pairs of DNA are wrapped around the nucleosome with subsequent nucleosome 

destabilization [45]. Such partial wrapping and destabilization of H2A.B and H2A.L 

containing nucleosomes can be the result of a shorter C-terminal docking domain. In 

addition, H2A.Z.2.2 splice variant may form severely destabilized nucleosomes due to its 

truncated C-terminal tail [29].

Nucleosomes may interact with the neighboring nucleosomes or other nuclear proteins 

through the acidic patch, a region on the nucleosome surface formed mainly by the acidic 

residues of H2A [2,46] (Figure 3b), and characterized by an increased counter ion density in 

its vicinity [47]. These interactions are largely responsible for chromatin compaction. 

Different variants show the variability in the acidic patches conferring various degrees of 

chromatin compaction and, consequently, may cause changes in regulation of transcription 

and replication. For instance, H2A.Z variants usually have an additional negatively charged 

residue (DEELD vs DEELN motif in the docking domain) that causes nucleosome arrays to 

be more compact [48], while the H2A.B variant lacks residues involved in the acidic patch 
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resulting in a decreased tendency of chromatin fiber folding [49]. On the other hand, the 

mouse homolog of H2A.B (named H2A.Lap1) is known to have one additional negative 

residue in the acidic patch compared to human H2A.B, which increases its propensity to 

compact nucleosomal arrays [50].

Importantly, certain H2A-H2B variants have been shown to preferentially associate with 

each other and it might well be that a combinatorial complexity based on H2A-H2B variant 

combinations might exist and be functionally relevant in nucleosomes. For instance, some 

H2A.L histones display a strong preference for dimerization with TS H2B.1 rather than with 

the canonical H2B (Figure 3c). Furthermore, canonical H2A forms dimers with TS H2B.1 

less efficiently than with canonical H2B [51]. The TS H2A.1-TS H2B.1 dimer was found to 

be more stable than other combinations of canonical histones [26]. Another layer of 

combinatorial complexity can arise from incorporation of two different types of H2A-H2B 

dimers in one nucleosome. These, so-called heterotypic nucleosomes, may perform specific 

functions. The H2A.Z/H2A heterotypic nucleosomes, for example, were found in vivo in 

mouse trophoblast cells. These nucleosomes mark transcription start sites during the G1 

phase [52]. There are some other H2A and H2B variants, like mH2A variant, known to 

participate in X-chromosome inactivation, which tend to form heterotypic nucleosomes with 

canonical histones in vitro [39]. Furthermore, certain histone variants such as H2A.L and 

subH2B [51,53] were shown to be involved in the formation of protein assemblies in 

spermatids, which are distinct from nucleosomes, and whose exact structure is still unclear.

Finally it should be noted that in vivo chromatin remodeling via histone variants goes hand 

in hand with histone post-translational modifications, which, together with the variants, may 

affect nucleosome stability and structure. Depletion of histone variants in a cell sometimes 

may be rescued by specific post-translational modifications of canonical histones (e.g. 

shown for TS H2B.1 in spermatogenic cells [54]).

Concluding remarks and future challenges

Emerging experimental evidence highlights a delicate regulation of cellular functions 

through the growing number of known histone variants, which can be either universal to 

eukaryotes or species, tissue or cell cycle specific. H2A and H2B histones are the most 

sequence and structurally variable among all histones giving rise to additional variability 

and complexity upon H2A-H2B dimer and octamer formations. While data for H2B variants 

started to accumulate fairly recently, these variants have now been shown to regulate 

processes such as spermatogenesis, inheritance, genome reprogramming, enhancement of 

reprogramming in induced pluripotent stem cells, and the regulation of neuronal lifespan. It 

was shown that functional specificity of H2A and H2B variants might be coupled with their 

structure, sequence and distinct variant-specific post-translational modification patterns. In 

addition, the substitution of canonical histones by variants may alter nucleosome structure 

and stability and thus affect transcription factor binding and transcription kinetics. Given the 

growing appreciation of nucleosome as a dynamic entity, the ultimate goal is to understand 

the relation between sequence, structural variability and dynamics in nucleosomes, this in 

turn would shed light on their specific function.
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Highlights

• Substitution of canonical histones with variants is crucial for nucleosome 

function.

• Variant H2A-H2B dimers are recognized and substituted as a distinct unit.

• H2A/H2B variants may preferentially associate with each other.

• L1/L2 loops within H2A histone fold have increased sequence and structural 

variability.

• Variant nucleosomes have altered structural and interaction properties.
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Figure 1. Nucleosome structure and dynamics with focus on H2A-H2B dimer
(a). Nucleosome core particle, histone octamer and H2A-H2B dimer structures are shown in 

various orientations (PDB: 1AOI [2]) the unstructured histone tails are schematically shown 

as extensions protruding away from the core. Individual histones form two types of 

topologically similar heterodimers H3-H4 and H2A-H2B via a stable “hand-shake” motif 

interaction between interdigitating helices of histone-folds (α1, α2 and α3) connected by 

two loops (L1, L2) (see also Figure 2). The dimers can then interact with each other via 

four-helical bundle motifs (4HB). Two H3-H4 dimers associate via a strong H3-H3 4HB 

interaction forming a tetramer. Two H2A-H2B dimers can further associate with a tetramer 

on each side upon DNA binding via a weaker H4-H2B 4HB interaction, supplemented by 

the interactions of the H2A docking domain with corresponding H3-H4 interface. Main 

histone-DNA binding sites are formed by the L1-L2 loop regions and α1 helical regions and 

usually have characteristic arginine side chains protruding into the minor groove of kinked 

DNA[70].

(b). Alternative conformational states of nucleosome may occur due to thermal fluctuations, 

active biochemical processes (such as transcription), histone variant substitution or post-

translational modifications. These alternative conformational states include DNA 

unwrapping (the octamer is intact); hexasome formation when a loss of one H2A-H2B dimer 

leads to the DNA unwrapping from one end; opening of H2A-H2B/(H3-H4)2 interface 

accompanied by changes in DNA conformations while the H2A-H2B dimer still remains 

bound to DNA.
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Figure 2. Multiple alignments of representative sequences of H2A (a) and H2B (b) histone 
variants from human and mouse
(organism is specified next to the variant name as (h)-human, (m)-mouse).

Variability along the sequence is highlighted in different shades of blue with dark blue 

corresponding to more conserved sites. The structural elements of each histone are annotated 

on top of the alignments. Dots beneath the alignment mark residues, which interact with 

residues in other histone chains, as reported by IBIS server [71] for PDB: 1AOI. The color 

of the dot specifies the interacting histone H3 - blue, H4 - green, H2A - yellow, H2B – red. 

Acidic patch residues are shaded in pink. The arginines penetrating into minor groove of 

DNA are shown with green frames. Variant specific features are highlighted in green and 

include: insertions and deletions in H2A.Z, arginine rich N-tail of H2A.B and characteristic 

phosphorylation motif in H2A.X. Multiple sequence alignments were visualized via 

TEXshade package [72].
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Figure 3. Structural features of variant nucleosomes
(a) Structural and sequence variation of H2A-H2B dimers in nucleosomes. Interacting H2A-

H2B dimers from several variant nucleosome structures mH2A, H2A.Z.1 and H2A.Z.2 and 

canonical H2A (PDB IDs: 1KX5, 1U35, 3WA9, 3WAA), were structurally superimposed 

using UCSF Chimera [73]. The H2B histones are depicted in red, the H2A histones are 

colored in shades of blue according to site conservation between variants (blue – highly 

conserved, white – non-conserved). The L1 region of H2A histones shows considerable 

structural and sequence variation.

(b). Differences in the surface charge and acidic patch configurations of histone octamers in 

variant nucleosomes. The molecular surface of the histone octamer is colored according to 

amino acid types (negatively charged – red, positively charged – blue, others – light blue). 

The acidic patch regions are highlighted with green frames. H2A and H2A.Z nucleosomes 

are taken from PDB 1AOI and 1F66; for H2A.B nucleosome a homology model was built 

using Modeller [74].

(c). Diagram of known preferential binding partners between various H2A and H2B 

variants.
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(d). Illustration of DNA opening in certain variant nucleosomes.
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