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Abstract

The economic and clinical significance of apicomplexan parasites drives interest in their many 

evolutionary novelties. Distinctive intracellular organelles play key roles in parasite motility, 

invasion, metabolism, and replication, and understanding their relationship with the organelles of 

better-studied eukaryotic systems suggests potential targets for therapeutic intervention. Recent 

work has demonstrated divergent aspects of canonical eukaryotic components in the apicomplexa, 

including Golgi bodies and mitochondria. The apicoplast is a relict plastid of secondary 

endosymbiotic origin, harboring metabolic pathways distinct from those of host species. The inner 

membrane complex is derived from the cortical alveoli defining the superphylum Alveolata, but in 

apicomplexans functions in parasite motility and replication. Micronemes and rhoptries are 

associated with establishment of the intracellular niche, and define the apical complex for which 

the phylum is named. Morphological, cell biological and molecular evidence strongly suggest that 

these organelles are derived from the endocytic pathway.

Introduction

The apicomplexan lineage includes some of the world’s most abundant – and most 

devastating – protozoan parasites. Toxoplasma infects ~30% of the global human population 

[1], and while usually asymptomatic in otherwise healthy adults, acute disease can produce 

severe neurological disease or death during fetal infection and in immunocompromised 

patients [2]. Cryptosporidium is a prominent source of severe diarrhea in both cattle and 

human infants [3], and Eimeria, Neospora, Babesia and Theileria cause agricultural diseases 

of poultry and/or livestock (Cryptosporidium and Babesia are also opportunistic pathogens 

in humans). Plasmodium is responsible for at least 200 million cases of malaria, resulting in 
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>660,000 deaths each year (http://www.who.int/malaria/publications/

world_malaria_report_2012/en/) [2]. Most therapeutic development has focused on parasite-

specific biochemical targets, but cell biological features of these microbial eukaryotes are 

perhaps their most distinctive attributes (Figure 1). Comparison with other eukaryotic 

systems provides insight into the origin and diversity of eukaryotic organelles, including 

distinctive cell biological aspects of the Apicomplexa that suggest novel targets for 

therapeutic intervention.

Some organellar homologs are obvious, including the nucleus, ER and plasma membrane. 

Others display clear homology to ubiquitous eukaryotic organelles, including the Golgi and 

mitochondria, but have accrued unique biological traits. For others, homology was initially 

unclear, but recent studies have unmasked the apicoplast as a secondary endosymbiotic 

plastid, and the Inner Membrane Complex (IMC) as a homolog of ciliate alveoli, enhancing 

our understanding of apicomplexan cell biology, evolution and pathogenicity. The origin of 

other structures, including invasion organelles of the apical complex (micronemes, 

rhoptries) remains unresolved. This report briefly summarizes the divergent paths taken by 

the mitochondria and Golgi, and highlights recent work on the cell biology and evolutionary 

history of the apicoplast and IMC. It concludes with the idea that we now have sufficient 

evidence to say with some certainty that the apical complex organelles have an 

endolysosomal origin, although the precise nature of this homology remains an interesting 

point of enquiry.

Outgroups, ingroups and unambiguous organellar homologs

Studies on the supergroup Opisthokonta (animals and fungi; Fig 2) provide a wealth of cell 

biological knowledge, but porting this knowledge to the apicomplexans requires a map, with 

organismal sign-posts for reference. Fortunately, advances in eukaryotic molecular 

taxonomy now makes such mapping possible [4]. The ‘SAR’ supergroup includes 

Stramenopiles (diatoms, brown algae, oomycetes), Rhizaria, and Alveolates; the latter is 

comprised of three major lineages: the Ciliates, Dinoflagellates, and Apicomplexa. Recent 

environmental sampling [5] reveals a wealth of uncharacterized apicomplexans, as well as 

other groups such as the colpodellids, whose diversity is just beginning to be explored. 

Among those, the newly discovered basal apicomplexans Chromera velia and Vitrella 

brassicaformis [6,7] are free-living/symbiotic and photosynthetic organisms, and hold great 

promise for comparative studies on exclusively parasitic Apicomplexa.

Toxoplasma gondii displays the least divergent set of organelles among well-studied and 

experimentally-tractable apicomplexans, providing a model for apicomplexan cell biology 

[8]. The stacked cisternae of the single T. gondii Golgi are closely associated with the 

endoplasmic reticulum at the apical end of the nucleus, providing a textbook example of this 

organelle, including trafficking via COP-I, COP-II and clathrin-coated vesicles [9]. The 

Golgi of Plasmodium (and many other apicomplexans) is more highly reduced (often just a 

single cisterna), and harbors divergent, lineage-specific trafficking factors [10,11]. As the 

central nexus of vesicular transport, the Golgi mediates targeting to both intracellular 

locations and the exterior. A better understanding of the apicomplexan Golgi is likely to 
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provide useful insights into the biology and pathogenesis mediated by these parasites’ 

distinctive endomembrane organelles.

The Apicomplexa also harbor a mitochondrion (Figure 1) displaying several unusual 

features. The majority of apicomplexan mitochondrial genomes (including that of Vitrella) 

are very small (6–11 kb), and encode just three protein-coding genes (cox1, cox3, cob), 

along with extensively fragmented rRNA genes [12]. The genome organization varies 

according to species and is either monomeric linear (e.g. Theileria) or concatemeric (e.g. 

Plasmodium) [12]. Although the precise arrangement of genes may differ, no genome is 

greater than 11kb [12]. The exceptions are Cryptosporidium, which has entirely lost its 

mitochondrial genome and Chromera, which possesses an even more reduced mitochondrial 

genome than many apicomplexans, resembling the fragmented dinoflagellate mitochondrial 

genome [13]. Most mitochondrial proteins are imported via a greatly reduced import 

apparatus (Figure 3); the Cryptosporidium import system contains just seven proteins, 

representing one of the most reduced systems yet defined [14]. Apicomplexan mitochondria 

also display reduced metabolic capacity [15], including an unusual partitioning of heme 

biosynthesis also observed in chromerids [16]. Apicomplexan mitochondria also lack 

pyruvate dehydrogenase, generally supposed to be the entry point for energy metabolism, 

and conserved in other aerobic mitochondria. This absence is shared with dinoflagellates 

[17], suggesting loss prior to their divergence, and some members of both lineages contain 

pyruvate:ferridoxin oxidoreductase instead [15,18]. These genomic and metabolic 

differences highlight extreme divergence between parasite and host biology, providing 

exciting areas for further investigation.

A relict chloroplast

Comparison with other eukaryotes has also been instrumental in characterizing the 

apicomplexan plastid (apicoplast; Figure 1) [19–21], a secondary endosymbiotic organelle 

surrounded by four membranes acquired when an ancestral alveolate engulfed a eukaryotic 

alga, and retained the algal plastid. Chromera [6] contains a descendent of this organelle 

retaining photosynthetic function, providing considerable insight into apicoplast origins [22–

24]; careful phylogenetic analysis now strongly supports a red algal ancestry [22].

The majority of apicoplast genes are encoded in the nucleus [21]. Some proteins target the 

apicoplast using a tyrosine-based motif [25], but most exploit a classical secretory signal 

sequence mediating cotranslational translocation across the endoplasmic reticulum; 

vesicular fusion then mediates traversal of the first apicoplast membrane [21,26]. 

Phylogenetic and cell biological analyses have shown that the apicoplast has repurposed 

proteins from the ERAD system (normally used to remove misfolded proteins from the ER) 

as an apicoplast translocon [27,28]. Finally, a greatly reduced conventional chloroplast 

import apparatus (Fig 3) is exploited to cross the inner two (original plastid) membranes (see 

Deponte 2012 [28]for a more detailed review.)

Little is known about transcription and translation in the apicoplast, which encodes its own 

RNA polymerase, ribosomal RNAs, and many ribosomal proteins (others are encoded in the 

nucleus and imported, as above). Although plants and algal plastids also exploit a nuclear-
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encoded phage-type RNA polymerase, the only phage-type RNA polymerase reported in 

apicomplexa to date is presumed to be targeted to the mitochondrion [29]. Transcription in 

the apicoplast appears to be polycistronic [30] as observed in photosynthetic chloroplasts. 

Preliminary results (Dorrell, personal communication) suggest that both Chromera and 

Vitrella are able to distinguish between mRNA molecules encoding photosynthetic or 

nonphotosynthetic genes, by the addition of a polyU tail transcripts encoding proteins 

involved in photosynthesis. Such a mechanism provides an intriguing mechanism for the 

adaptation to parasitic lifestyle - the loss of the polyU polymerase would be sufficient to 

prevent photosynthesis.

Although no longer photosynthetic, the apicoplast carries out several biochemical processes 

including the synthesis of isoprenoids (via the xylulose pathway, rather than HMG CoA 

reductase used by humans and other opisthokonts), fatty acids (using a type II fatty acid 

synthase, rather than the type I FAS typical of opisthokonts), heme (partitioned unusually 

between the mitochondrion and apicoplast), and Fe-S cluster maturation (reviewed in [31]). 

The functional importance of these pathways has long been a mystery, however, particularly 

as Crypotosporidium has lost the apicoplast entirely, acquiring all relevant nutrients from its 

environment. A breakthrough article [32] recently demonstrated that the apicoplast can be 

eliminated from blood-stage Plasmodium, if the growth medium is supplemented with 

isopentenyl pyrophosphate. This implicates the isoprenoid synthesis as the sole essential 

apicoplast function in these parasites, although not necessarily implying the lack of other 

roles in other apicomplexans. Nonetheless, this strategy provides researchers with a 

powerful research tool for assessing drugs thought to target the apicoplast – an organelle 

with no counterpart in human or animal host species.

IMC: Homology with ciliate and dinoflagellate alveolae

Perhaps the most distinctive aspect of apicomplexan cell biology is their peculiar 

mechanism of replication, in which daughter parasites are assembled de novo, within the 

maternal cytoplasm, rather than dividing by binary fission [33,34]. This process, termed 

schizogony, involves an unusual membrane-cytoskeletal complex known as the Inner 

Membrane Complex. The IMC is derived from cortical alveolae [35,36] -- a morphological 

character defining the superphylum Alveolata, including apicomplexans, chromerids and 

colpodellids, ciliates, and dinoflagellates [7] (Fig 2).

Ciliate alveolae are specialized for storage and regulatory activities [35], while 

dinoflagellate alveolae have evolved into the armored plates characteristic of this phylum 

[36]. In the apicomplexa, the IMC forms a patchwork of Golgi-derived flattened membrane 

vesicles, closely apposed to the plasma membrane to yield a triple membrane [37,38]. The 

cytoplasmic face of the apicomplexan IMC associates with subpellicular cytoskeletal 

elements (microtubules and intermediate filament-like alveolins) [34,37,39]. The complex 

organization of this structure appears to be essential for the maintenance of cell shape and 

pellicle integrity [38,40,41]. In motile apicomplexan zoites, the IMC also serves to anchor 

the glideosome motility machinery [42].
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It is unclear how the alveoli were coopted for the purpose of division in the Apicomplexa, 

but the IMC provides a practical solution to several fundamental problems facing by many 

apicomplexan parasites, including the strict requirement to maintain polarity during 

replication, the need to rapidly assemble multiple daughter parasites prior to bursting out of 

the infected host cell, and the challenges posed by the lack of classical lysosomes: all 

maternal organelles packaged into daughter parasites are the result of a positive ‘decision’; 

waste material (including the indigestible hemozoin polymer produced by degradation of 

hemoglobin in malaria parasites) is simply left behind [33,38].

Rhoptries and micronemes: divergent endolysosomal homologues?

Elicidating organelle homology in Apicomplexa has clearly helped to uncover their unique 

aspects. And yet, despite their tremendous global impact, and the scientific effort applied, 

there remain apicomplexan organelles for which the homology remains incompletely 

understood. The Apicomplexa are named for the Apical complex, a characteristic set of 

apical invasion organelles (Figure 1). This includes the microtubular conoid and the single-

membrane bound rhoptries and micronemes. In mature cells, spherical or ellipsoidal 

micronemes localize to the apical end of the cell in close association with the conoid. The 

micronemes are first to discharge upon binding to the host cell. The club-shaped rhoptries, 

which occupy a large cellular area with the thinner neck portions (Figure 1) oriented toward 

the apical end of the cell [43], then discharge and mediate entry of the parasite to the host 

cell. The evolutionary origins of these organelles has been murky, but the most strongly 

supported hypothesis [36,44–46] is of a highly divergent endolysosomal origin.

This general idea is not new, with the first proposition almost a decade ago [47] that 

rhoptries are directly homologous to secretory lysosomes. A significant body of evidence, 

however, has now accumulated from diverse studies from morphology to trafficking to 

proteomics. pH-sensitive immunolocalization microscopy suggests that mature rhoptries are 

acidic, (pH 5 – 7), while pre-rhoptries are even more acidic (pH 3.5–5.5) [48]. Both 

rhoptries and micronemes are granular, and have dense staining areas under electron 

microscopy [49], similar to endosomes. Furthermore, early in their biogenesis, micronemes 

closely resemble multi-vesicular bodies or late endosomes. The key endosomal proteins 

AP-1 and Rab11A co-localize with rhoptries [50,51][35,36] and proteomic studies have 

identified various hydrolases in the rhoptry lumen, potentially similar to lysosomal 

hydrolases [52]. Likewise, the microneme appears to contain various endosomal membrane-

trafficking proteins including protein homologues of VAMP, syntaxin 13, clathrin, sortillin 

and Eps15R [53].

Trafficking to micronemes and rhoptries has been an area of intense research, but is still not 

fully understood. Microneme proteins traffic through the endosomal system via signals in N-

terminal prodomains which are cleaved en route via a Cathepsin L protease [54,55]. Rhoptry 

trafficking, though less-clearly characterized, also appears to rely on N-terminal 

prodomains, [56], or in the case of membrane proteins, specific residues within the N-

terminal region [57]. It is clear though that trafficking to both organelles relies on 

apicomplexan homologues of sortilin and dynamin [58,59], and may rely on transmembrane 

cargo adaptors [60]. Additionally, Rab5A and 5C are important for both microneme protein 
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trafficking and rhoptry biogenesis [45]. TgROP2 was initially reported to contain a YXXϕ 

motif in its cytoplasmic tail and traffic via AP-1 [51,61], although these results are 

contentious. Alternatively, the TgROP2 result may be explained by the notion that sortilin, 

in model eukaryotes, interacts with numerous trafficking factors including AP1 and AP2, 

clathrin, and components of the retromer complex [59].

Despite these similarities to endolysosomal organelles in model systems, it is clear that these 

apical organelles also possess unique aspects. Although proteomic studies identified 

endosomal membrane-trafficking machinery, they also showed a large proportion of 

organelle-specific proteins, eg. the MICs, ROPs, and more [53,62]. As well, Rab5 and Rab7, 

canonical markers for endosomes and lysosomes, localize to the late secretory pathway 

instead of the micronemes or rhoptries [45].

Though the evidence is strongly suggestive of homology between the apical complex 

invasion organelles (Rhoptries, micronemes) and the organelles of the endosomal system 

(early/recycling endosomes, secretory lysosomes), the nature of this homology is less clear. 

The presence of a dynamic vacuolar compartment in T. gondii similar to plant lytic vacuoles 

[63], and of the digestive vacuole in Plasmodium spp., further complicates any one-to-one 

assignment of homology. Furthermore, the variable presence of rhoptries and micronemes in 

early branching dinoflagellates such as perkinsids, colpedellids, and chromerids, and the 

presence of trichocysts in some ciliates and dinoflagellates, suggests not only that the 

invasion organelles of Apicomplexa pre-date the development of intracellular parasitism, but 

also that alveolates possess diverse modifications of their endocytic systems [7,36].

It is possible that these organelles are derived from an organellar expansion of either 

endosomes or lysosomes. It is also possible that there is a one to one correlation, possibly 

micronemes to endosomes, rhoptries to secretory lysosomes, and the apicomplexan system 

has diverged to such an extent that the homology has become difficult to assess. The 

apicomplexan endocytic membrane-trafficking machinery complement has certainly been 

modified via loss from a more complete canonical eukaryotic set. Key cargo adaptors (AP3), 

MVB machinery (ESCRTs I, II) and endocytic MTC complexes have been lost ([30,46], 

Klinger and Dacks unpublished) via a process that is best explained by lack of selection on 

the machinery associated with the endocytic functions of the endolysosomal organelles. This 

may also indicate a concurrent adaptive emphasis on their secretory functions.

Further work by molecular parasitology in apicomplexans is certainly warranted, but with 

the evidence now pointing to endolysosomal homology, the investigative path is, at least, 

somewhat clearer.

Conclusions

Whether from an organismal perspective (alveolates, colpodellids/chromerids, and between 

apicomplexans) or organelle by organelle, taking a comparative approach to apicomplexan 

cell biology has already produced important insight into pathogenesis on a cellular level. 

With new organelle homology hypotheses solidifying, and advances both in experimental 

tools and genome sequencing to explore alveolate diversity (notably in the colpodellids and 
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chromerids), further work from this evolutionary cell biological approach will help lead to a 

better understanding of apicomplexan parasites and a way forward to combating these 

threats to our global health and well-being.
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Highlights

• A apicomplexan mitochondrion is greatly reduced, lacking many significant 

enzymes.

• The ‘apicoplast’ is a non-photosynthetic secondary endosymbiotic plastid, and 

potentially vulnerable to therapeutic intervention.

• The ‘inner membrane complex’ is derived from cortical alveolae of the 

superphylum Alveolata, and central to these parasites’ distinctive replicative 

mechanism.

• Microneme and rhoptry components of the apicomplexan ‘apical complex’ 

invasion machinery may be derived from secretory endosomes.

• Understanding organellar origins provides context for functional studies.
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Figure 1. 
Organelle homology, highlighting potential relationships between a schematized 

apicomplexan and a hypothetical comparative alveolate cell. Endosymbiotic organelles are 

indicated in warm tones, while endomembrane organelles are shown in cool tones.

Klinger et al. Page 12

Curr Opin Microbiol. Author manuscript; available in PMC 2015 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Phylogenetic position of the apicomplexan relative to selected outgroups. Broken line 

indicates the large evolutionary distance between SAR and opisthokont taxa. Note that this 

cladogram displays relative position only, with no indication of evolutionary distance or 

rates.
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Figure 3. 
Import machinery for apicomplexan endosymbiotic organelles, highlighting conserved 

components in gray; white components are absent from at least some apicomplexa (based on 

bioinformatics searches; few of these proteins have been confirmed experimentally [14,28]). 

Left, mitochondrion (OM, outer membrane; IM, inner membrane; IMS, inter-membrane 

space). Complex names are indicated in italics; numbers indicate the protein identifier, i.e. 

22 = Tom22. Cryptosporidium displays the most highly reduced mitochondrial import. 

Plasmodium retains additional proteins, but has dispensed with Tom20 & Tom70. Right, 
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apicoplast (membranes numbered sequentially from exterior to interior; Plasmodium 

shown). Proteins likely cross the outer membrane by vesicle fusion [25], the second 

membrane using a translocon derived from the endoplasmic reticulum ERAD-system, and a 

reduced chloroplast import apparatus to cross the third and fourth membranes [27,28].
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