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Background: The infectious salmon anemia virus (ISAV) fusion (F) protein displays pH-dependent host fusion activity.
Results: Thermal stability of ISAV F is inversely correlated with pH.
Conclusion: ISAV F exhibits class I viral fusion architecture that is stabilized at fusion pH by carboxyl-carboxylate electrostatics.
Significance: This analysis contributes new model principles to our understanding of the diversity of viral entry strategies.

Segment 5, ORF 1 of the infectious salmon anemia virus
(ISAV) genome, encodes for the ISAV F protein, which is
responsible for viral-host endosomal membrane fusion during a
productive ISAV infection. The entry machinery of ISAV is
composed of a complex of the ISAV F and ISAV hemagglutinin
esterase (HE) proteins in an unknown stoichiometry prior to
receptor engagement by ISAV HE. Following binding of the
receptor to ISAV HE, dissociation of the ISAV F protein from
HE, and subsequent endocytosis, the ISAV F protein resolves
into a fusion-competent oligomeric state. Here, we present a 2.1
Å crystal structure of the fusion core of the ISAV F protein
determined at low pH. This structure has allowed us to unam-
biguously demonstrate that the ISAV entry machinery exhibits
typical class I viral fusion protein architecture. Furthermore, we
have determined stabilizing factors that accommodate the
pH-dependent mode of ISAV transmission, and our structure
has allowed the identification of a central coil that is conserved
across numerous and varied post-fusion viral glycoprotein
structures. We then discuss a mechanistic model of ISAV fusion
that parallels the paramyxoviral class I fusion strategy wherein
attachment and fusion are relegated to separate proteins in a
similar fashion to ISAV fusion.

Infectious salmon anemia (ISA)3 was first identified in Nor-
way in 1984 (1) in farmed Atlantic salmon (Salmo salar). Since
then, outbreaks have spread to both sides of the North Ameri-
can continent, as well as in South America, resulting in the

culling of entire salmon stocks and causing considerable eco-
nomic losses. The disease appears as a systemic condition char-
acterized by severe anemia and hemorrhages in several organs
with an average mortality rate of 30%, ranging from 15 to 90%
over a period of several months.

In the mid-1990s, the causative agent of ISA was identified as
an orthomyxovirus. ISAV is a pleomorphic, negative-strand
enveloped virus of the Isavirus genus that primarily targets
endothelial and leukocytic cells of fish, such as salmon, rainbow
trout, brown trout, Atlantic herring, and Arctic char (2). The
genome of ISAV consists of eight single-stranded RNA seg-
ments (14.3 kb) that encode for at least 10 proteins (3). ISAV
targets endothelial, gill epithelial, and erythrocyte cells, and can
easily spread throughout fish populations through contami-
nated water or equipment, which makes ISAV difficult to con-
tain and eradicate. Contamination with ISAV requires the
immediate quarantine and destruction of infected fish, exten-
sive disinfection activities for the affected production facilities,
and a fallow period prior to restocking.

For most enveloped viruses, a single virus-encoded glycopro-
tein facilitates both host cell attachment and membrane fusion.
These viral fusion glycoproteins are classified into three cate-
gories (class I, II, and III) by their structural features (reviewed
in Ref. 4). Orthomyxoviruses, such as influenza A, B, and C
viruses, utilize a class I viral glycoprotein for entry, and as such,
the viral glycoprotein irreversibly catalyzes the fusion of viral
and host membrane through a series of conformational rear-
rangements. Following receptor-driven endocytosis and a sub-
sequent drop in pH, these rearrangements culminate in the
formation of an energetically stable bundle of anti-parallel hel-
ical hairpins that juxtapose the host membrane embedded
fusion peptide and the transmembrane domain of the viral
fusion protein, thereby catalyzing fusion of lipid bilayers.

ISAV entry is similar to other orthomyxoviruses, where
receptor binding to sialic acids initiates an internalization pro-
cess into endosomes, followed by low pH activation of the
fusion machinery (5). However, a major difference exists in the
functional organization of the key viral glycoproteins involved
in entry. ISAV segment 6, ORF 1, encodes for a viral hemagglu-
tinin esterase (HE) glycoprotein, which is required for initial
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host cell attachment and has additional receptor-destroying
activity that is required to prevent the virus from self-aggregat-
ing and to promote the release of viral progenies from the
infected cell (6). ISAV segment 5, ORF 1, encodes for a single-
chain (�50 kDa) type Ia transmembrane fusion (F) protein that
is necessary and nominally sufficient to catalyze the merger of
the viral and host endosomal membrane for entry (7). Both of
these viral proteins are targeted to the plasma membrane dur-
ing assembly and constitute the majority of the virus-encoded
components in the membrane of infectious particles (6). It is
unclear how receptor binding occurs and how this information
is transmitted to the F glycoprotein to initiate viral fusion. ISAV
is the only known member of the Orthomyxoviridae genera
with attachment and fusion activities on different proteins, and
understanding this process offers a unique opportunity to con-
tribute new model principles and to understand the diversity of
viral entry strategies.

Currently, most hypotheses regarding ISAV viral entry are
based on poor homology models with putative counterparts in
influenza viruses. Here we present a crystal structure of the
ISAV F core fusion protein at a resolution of 2.1 Å. This repre-
sents the first structure of any ISAV entry glycoprotein. Our
model clearly illustrates that the ISAV F protein fusion glyco-
protein adopts a traditional class I viral fusion architecture.
Extensive structural characterization and analyses of ortho-
myxoviral fusion proteins exemplify the exquisite regulatory
role that particular ionic residues play in viral fusion. Our struc-
ture has allowed us to identify electrostatic requirements for
the stability of the ISAV F protein at the pH of fusion and com-
ment on some of the unique features of this aquatic pathogen.
Comparisons between orthomyxoviral fusion proteins and the
ISAV F protein allow for more sophisticated hypotheses to be
generated regarding the unique mechanism of ISAV entry.

Experimental Procedures

In Silico Characterization of Orthomyxoviral Fusion Glyco-
proteins—Pairwise alignment of the ISAV (isolate Atlantic
salmon/Norway/810/9/99) F protein sequence (UniProt acces-
sion number: Q8V3T9) with influenza A virus (IAV) (strain
A/Brevig Mission/1/1918 H1N1 HA (UniProt accession num-
ber: Q9WFX3), influenza B virus (IBV) (strain B/Lee/1940) HA
(UniProt accession number: P03460), and influenza C virus
(ICV) (strain C/Johannesburg/1/1966) hemagglutinin esterase
fusion (HEF) (UniProt accession number: P07975) was per-
formed using the CLUSTAL� program (8). Following pri-
mary sequence alignment, secondary structure and location
or presence of the putative fusion peptide, transmembrane,
and coiled-coil domains were predicted using the NPS@
CONSENSUS (9), TMPRED (10), and COILS suite of pro-
grams (11), respectively.

Construct Design and Protein Production—DNA corre-
sponding to the full-length ISAV F (residues 1– 444) and IAV
HA (residues 382–519) were codon-optimized and commer-
cially synthesized. ISAV F294 – 404 and IAV HA382–519 were
subcloned into pET46 Ek/LIC. To avoid nonspecific intermo-
lecular disulfide-mediated aggregation, cysteine to serine
mutations (ISAV F, C382S,C388S,C390S; IAV HA, C481S)
were generated by site-directed mutagenesis.

ISAV F and IAV HA2 fusion glycoproteins were expressed in
BL21 (DE3) Escherichia coli cells. Cell cultures were grown to
A600 � 0.6 at 37 °C and induced with a final concentration of 0.5
mM isopropyl-1-thio-�-D-galactopyranoside for 20 h at 18 °C.
Cells were resuspended in 50 mM Tris-HCl, pH 8.0, 300 mM

NaCl, and 20 mM imidazole. E. coli cells were lysed using a
hydraulic cell disruption system (Constant Systems) and puri-
fied by standard nickel-nitrilotriacetic acid affinity chromatog-
raphy. Prior to crystallization trials, recombinant ISAV
F294 – 404 protein was dialyzed against 10 mM Tris-HCl, pH 7.5,
and 50 mM NaCl and digested with thrombin at 4 °C over 48 h to
remove the polyhistidine tag and generate the ISAV F294 –383
fragment. Cleavage reactions were stopped with a final concen-
tration of 2 mM PMSF and applied onto an anion exchange
column (MonoQ 5/50 GL). Prior to biophysical assays or crys-
tallization trials, the fusion proteins were further purified by
size exclusion chromatography using a Superdex 200 prep
grade 10/300 column (GE Healthcare) equilibrated in 10 mM

Tris-HCl, pH 7.5, and 150 mM NaCl. Protein concentration was
determined by absorbance at � � 280 nm, and purity was mon-
itored by SDS-PAGE and mass spectrometry.

Crystallization and Structure Determination—Initial sparse
matrix crystallization screening of ISAV F294 –383 (�30 mg/ml)
was performed by sitting drop vapor diffusion using the Doug-
las Instruments Oryx 8 liquid handling system. ISAV F294 –383
was crystallized by sitting drop vapor diffusion in 0.2 M lithium
sulfate, 0.1 M sodium acetate, pH 4.5, 2 mg/ml tetramethylthi-
onine chloride, and 50% (v/v) PEG 400. Data for ISAV F294 –383
were collected on beamline 08ID-1 at the Canadian Light
Source (Saskatoon, Saskatchewan). All data were reduced using
XDS (12), and scaling was performed using programs from the
CCP4 program suite, Pointless and Aimless (13, 14). The struc-
ture of ISAV F294 –383 was determined by molecular replace-
ment, using the program PHENIX.phaser (15) with a polyala-
nine model of the HIV-1 gp41 inner helix (Protein Data Bank
(PDB) number 3UIA; residues 15– 48) and a polyalanine model
of the pre-fusion parainfluenza virus 5 F protein (PDB number
2B9B; residues 450 – 465) as search models. Initial attempts at
molecular replacement phasing using existing post-fusion
structures of orthomyxoviral HA as search models failed (PDB
numbers 1HTM; 1QU1; and 4NKJ). The polyalanine HIV-1
gp41 inner helix model was sufficient to find a molecular
replacement solution; however, the density was appreciably
clearer once the polyalanine parainfluenza 5 F core was
included as an ensemble. Following molecular replacement,
PHENIX.autobuild (16) was used to build in side chains and
extend the placed search model. Iterative rounds of model
rebuilding and refinement were performed using the program
Coot (17) and PHENIX.refine (18), respectively. 10% of unique
reflections were held back during refinement as the test set.
Clear electron density was seen for residues 311–377 in ISAV
F294 –383; however, only weak or no electron density was
observed for the first 14 residues. The tetramethylthionine
ligand was located along the 3-fold axis, with �30% occupancy.
Following structural determination of the post-fusion ISAV
F294 –383, a search for its closest structural neighbor was per-
formed using the DaliLite version 3 server Dali (19), and heptad
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repeat analysis was performed using SOCKET (20). All data
collection and refinement statistics are presented in Table 1.

Circular Dichroism and Thermal Melts—CD spectral
scans and thermal melting curves of ISAV F294 – 404 and IAV
HA2382–519 were acquired on a Jasco J-810 spectropolarimeter
in quartz cuvettes (Helma) with a 1-mm path length. Assays
were conducted using protein concentrations ranging from 10
to 25 �M. All ISAV F294 – 404 and IAV HA2382–519 fusion pro-
teins were buffer-exchanged by extensive dialysis into the fol-
lowing buffer conditions: pH 4.5–5.5, sodium acetate (NaOAc)
buffer (20 mM NaOAc, 150 mM NaCl, or 500 mM NaCl); pH
6.0 –7.5, potassium phosphate buffer (20 mM K2HPO4/
KH2PO4, 150 mM NaCl, or 500 mM NaCl). Following dialysis,
CD wavelength scans were collected between 200 and 260 nm
and averaged over three accumulations at 20 °C. Thermal dena-
turation assays were carried out at a single wavelength (217 nm)
by increasing the temperature from 20 to 80 °C for all ISAV F
constructs or from 20 to 95 °C for IAV HA2382–519 and moni-
toring the resultant change in ellipticity. After each denatur-
ation scan, the cuvette was allowed to return to 20 °C and an
additional wavelength scan was collected. All thermal denatur-
ation data were baseline-subtracted, normalized between 0
(folded) and 1 (unfolded), and fit to a nonlinear biphasic sigmoi-
dal curve using GraphPad Prism (version 5.01). Apparent Tm
values were determined from the peak value of the first deriva-
tive of the thermal melt curves as calculated by the Jasco J-810

software suite. All melts were performed in triplicate with inde-
pendently purified recombinant protein. Data are represented
as the mean of the triplicate experiments � S.D.

Results and Discussion

In Silico Characterization of the ISAV F Protein Draws Par-
allels to Other Orthomyxoviral Fusion Proteins—Clustal� pair-
wise alignment between full-length ISAV F and IAV HA, IBV
HA, and ICV HEF showed 13.9% (87 identical and 138 similar
positions), 13.7% (87 identical and 141 similar positions), and
13.4% (94 identical and 123 similar positions), respectively.
Pairwise alignment between IAV and IBV fusion proteins
results in a 26.5% identity (157 identical and 206 similar posi-
tions) and a 15.1% identity (108 identical and 192 similar posi-
tions) between IAV and ICV fusion proteins. However, upon
comparison of secondary structure predictions between ISAV F
and the other orthomyxoviral fusion proteins using NPS@:
CONSENSUS (9), a trend is observed (Fig. 1A). In each viral
fusion protein, a high propensity for helical secondary structure
is observed for the last �120 amino acids of the primary
sequence. These helices are sandwiched between two regions
predicted by TMPRED (10) to be transmembrane domains.
Within influenza virus glycoproteins, these predicted regions
have been experimentally determined to be the fusion peptide
and transmembrane anchor, respectively (Fig. 1B). In IAV and
IBV, this �-helical region corresponds with the post-fusion
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FIGURE 1. Computational characterization of orthomyxovirus fusion proteins. A–C, representative protein sequences of IAV HA (H1N1), IBV HA, ICV HEF,
and ISAV F proteins were used for protein secondary structure (A), transmembrane propensity (B), and coiled-coil propensity (C). Numerals along the x-axis of
the graphs correspond to the primary sequence of a given orthomyxoviral fusion glycoprotein.
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core trimeric bundle of anti-parallel helical hairpins. Although
the sequence alignment indicates that there is minimal conser-
vation between the ISAV F primary protein sequence and the
other orthomyxoviral fusion proteins, we were able to demon-
strate that all of our orthomyxoviral fusion protein primary
sequences, including ISAV F, were predicted to contain a
coiled-coil domain at this region (Fig. 1C) using the program
COILS (11). Our in silico characterization results have indi-
cated that the ISAV F protein uses a dissimilar primary amino
acid sequence from that of its orthomyxoviral cousins to
achieve similar tertiary architecture for host-viral fusion.

ISAV F294 –383 Core Fusion Protein Exhibits Class I Fusion
Machinery—Crystal structures of the fusion proteins from IAV,
IBV, and ICV viruses have been experimentally determined
(21–23), and their fusion proteins have been largely annotated;
however, ISAV is the only orthomyxovirus to isolate its fusion
activity from receptor binding and/or destroying activities. In
silico comparisons between the ISAV F protein and other
orthomyxoviral glycoproteins with fusion activity predict sim-
ilar secondary structural elements that correspond with the
core fusion protein of previously annotated orthomyxoviral
fusion proteins (Fig. 1). Therefore, we designed our initial
E. coli expression constructs within the bounds of the predicted
fusion peptide at ISAV F residues 277–293 and the predicted
transmembrane domain at residues 413– 435. Recombinant
ISAV F294 – 404 expressed as a soluble protein in milligram
quantities in E. coli. Purified ISAV F294 – 404 was subjected to
enzymatic digestion by thrombin protease to remove our His6
purification tag. However, ISAV F294 – 404 contains a naturally
occurring thrombin cleavage site at residue 383, and this site
was also cleaved during proteolysis (confirmed by MALDI-
TOF mass spectrometry). We have termed this product ISAV
F294 –383. The crystal structure of post-fusion ISAV F294 –383 was
determined at 2.1 Å resolution in space group H 3 2 (Table 1).
Each asymmetric unit contains one ISAV F294 –383 molecule,
and the biological trimeric bundle was generated through the
crystallographic symmetry operators (Fig. 2, A and B).

The overall architecture of ISAV F294 –383 is reminiscent of
previously determined post-fusion orthomyxoviral fusion pro-
teins. The ISAV F fusion core is fully �-helical and trimeric, as is
characteristic of class I fusion machinery. It is composed of a
central 14-turn extended coiled-coil with hydrophobic residues
packed into the core, away from the bulk solvent. The central
coiled-coil region abruptly breaks at Tyr357, forming a helical
hairpin that switches back and continues for another four turns.
This four-turn helix packs against the adjacent helix of the
coiled-coil core, generating the hallmark class I viral protein
post-fusion conformation (Fig. 2B). Interestingly, the outer
helix on ISAV F spirals back to pack against an adjacent ISAV
chain. This spiral architecture appears to be a result of alternat-
ing layers of polar and hydrophobic intermolecular interactions
(Fig. 2C). This is unlike the IAV hemagglutinin, which folds
directly back onto itself to form a true hairpin (Fig. 2D).

Chloride coordination is common to most class I fusion pro-
teins; however, ISAV is the first orthomyxovirus to our knowl-
edge where this has been experimentally observed. There are
two chloride coordination sites within the central core. The
trimeric nature of the central coiled-coil allows the formation

of two asparagine layers (Asn340 and Asn347) to coordinate the
two chloride ions. Interestingly, the polar layer formed by
Asn347 found approximately four helical turns before the chain
reversal region is conserved in the post-fusion structures of
both IAV HA2 at residue Asn95 and IBV HA2 at residue Asn65

(22–24). In our ISAV F294 –383 crystallographic model, the chlo-
ride ion is flanked by residue Ser344, whereas in the IBV post-
fusion HA2, the corresponding residue is a threonine (Thr61).
This arrangement on IBV HA2 places a methyl group into the
space that the chloride ion occupies in ISAV F294 –383. On IAV
HA2, this region is occluded by Leu91 and Trp92.

Thermal Stability of pH-dependent Orthomyxoviral Fusion
Core Proteins Correlates with Biological Fusion Requirements—
The thermal stability of ISAV F294 – 404 and IAV HA382–519 core
fusion protein was determined by CD spectroscopy over a wide
pH range. Both IAV and ISAV host-viral envelope fusion events
are pH-dependent, and an inverse correlation between class I
core fusion protein thermal stability and pH has previously
been demonstrated (25, 26). Additionally, it is known that the
IAV HA fusion core is stabilized as the pH is adjusted to that of
viral fusion in a biological system (27). As expected, our recom-
binant IAV HA fusion core was stabilized as it was subjected to
an increasingly acidic environment (Fig. 3A). This stability gra-
dient was also observed for the ISAV F core fusion protein (Fig.
3B), albeit the IAV HA fusion core (Tm � 86.5 °C; pH 4.5) dem-
onstrated greater thermal stability overall than ISAV F294 – 404
(Tm � 67.5 °C; pH 5.5), and below the ISAV pH of fusion, ISAV
F294–404 became increasingly unstable (Tm � 57 °C; pH 5.0, Tm �
48 °C; pH 4.5) (Fig. 4A). In vivo, there is an extensive conforma-
tional change that occurs between the pre- and post-fusion spe-
cies of the IAV HA protein. Notably, the B-loop of the trimeric

TABLE 1
Data collection and refinement statistics

ISAV F (294 –383)

Data collection
Wavelength (Å) 0.9795
Resolution range (Å) 38.7–2.1 (2.16–2.10)a

Space group H 3 2
Unit cell

a, b, c (Å) 42.9 42.9 232.2
�, �, � (°) 90.0 90.0 120.0

Total reflections 23,796 (1,453)
Unique reflections 5,037 (361)
Multiplicity 4.7 (4.0)
Completeness (%) 97.6 (88.6)
Mean I/�(I) 13.7 (3.2)

Wilson B-factor 28.7
Rmeas

b 0.073 (0.56)
Refinement

Rwork 0.20
Rfree 0.25
Number of non-hydrogen atoms 562

Macromolecules 534
Ligands 22
Water 6

Protein residues 70
RMSD (bonds; Å) 0.011
RMSD (angles; °) 1.23
Ramachandran favored (%) 100
Ramachandran outliers (%) 0
Average B-factor 41.2

Macromolecules 41.3
Ligands 36.7
Solvent 47.9

a Statistics for the highest-resolution shell are shown in parentheses.
b Rmeas: multiplicity-independent r � Sum(�(N/(N � 1))(�Ihl � �Ih	�))/Sum(�Ih	).
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IAV HA protein becomes �-helical and generates an extended
coiled-coil core that begins at the N-cap region that encom-
passes the residues that previously formed the B-loop and ter-
minates at a helical hairpin nearly 100 Å away (22). This con-
formation is nearly identical for the IAV HA protein (23), and
the triggers for these changes are receptor engagement and
decreasing pH. However, in the absence of the receptor binding
subunit, the HA proteins adopt a post-fusion conformation
even at neutral pH. Indeed, our orthomyxoviral fusion core
protein constructs represent these proteins in the post-fusion
conformation as CD wavelength spectral scans are superimpos-
able between pH 7.5 and that of fusion for both IAV HA382–519
and ISAV F294 – 404 (Fig. 4, B and C), but importantly, their
respective thermal stabilities increase dramatically in response
to acidification (IAV HA382–519 
Tm � �8 °C; ISAV F294 – 404

Tm � �16 °C).

Electrostatics Control the pH-dependent Stabilization of the
ISAV F Core Fusion Protein—Unlike retroviral glycoproteins
that contain both an immunosuppressive motif and a CX6CC
motif within structured chain reversal regions (28 –30), IAV
HA, IBV HA, and ISAV F proteins all generate similar post-
fusion bundles that lack an appreciable chain reversal region.
Previously, we have shown that at low pH, positively charged
residues located at the apex of the chain reversal region in var-
ious class I fusion proteins can stabilize the helical dipole
moment present in the post-fusion conformation (25). A single
conservative point mutation (R106H) at the apex of the chain
reversal region in the post-fusion conformation of IAV HA can
alter the pH of glycoprotein-catalyzed fusion events (31). How-
ever, in the ISAV F protein structure, the chain reversal region
is capped by neutral polar residues, Tyr357 and Asn359, gener-
ating a polar environment that can interact with the bulk sol-
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vent, but does nothing to cap the negative helix dipole moment
generated by the helical coiled-coil at the pH of fusion or oth-
erwise. As such, the observed thermal stability of ISAV F294 – 404
is 19 °C lower than that of IAV HA382–519. Upon inspection of
our crystallographic model, an alternate stabilization strategy
of ISAV involving electrostatic stabilization became apparent.

The ISAV environmental niche demands that it survive dras-
tic shifts in salinity while maintaining a functional glycoprotein
on its surface in a poised state for fusion. Between pH 5.4 and
pH 5.6, fusion occurs and the metastable fusion protein
becomes an irreversible helical bundle as modeled by the ISAV

F294 –383 crystal structure. Furthermore, changes in the thermal
stability of this conformation negatively correlate with the pH
requirements of fusion (as illustrated in Fig. 3). In class I viruses
that fuse in a pH-independent fashion, multiple intra- and
intermolecular electrostatic interactions lock the outer heli-
ces into the core helical bundle to generate the post-fusion
conformation (28). Viruses that fuse through a pH-depen-
dent mechanism commonly use histidine-cation or anion-
anion/carboxyl-carboxylate electrostatic switches to aid in
the conformational rearrangement necessary for fusion (26,
32). Carboxyl-carboxylate interactions have long been dem-
onstrated to stabilize cellular proteins at low pH (33, 34) or
destabilize proteins at near neutral pH (35).

The structure of ISAV F294 –383 at low pH revealed a carbox-
yl-carboxylate pair that bands the trimeric helical core
together. Glu327 participates in a 2.6 Å O–H–O hydrogen bond
with Glu329 of the neighboring helix specifically when the mol-
ecule is subjected to low pH (Fig. 5A). NMR studies have iden-
tified short strong hydrogen bonds (shorter than 2.75 Å) as
important mediators of protein stability (36). Through trunca-
tions and mutations, we hypothesized that the Glu327–Glu329

carboxyl-carboxylate electrostatic interaction on the ISAV F
core fusion protein acts as a pH sensor. Initially, we looked for
changes in thermal stability upon increasing the salt content of
the protein buffer solution from 150 mM NaCl to 500 mM NaCl.
The 500 mM NaCl solution was chosen to approximate the high
salinity of seawater, which ranges from 2.5 to 4.0% (w/v) NaCl.
The increased NaCl in the protein buffer solution only mod-
estly increased the thermal stability of the protein by �3 °C at
pH 7.5 and pH 6.5; however, there was no apparent change in
the stability of ISAV F294 – 404 at the pH of fusion (Fig. 5B).
Interestingly, when we incubated the protein with 1 M GuHCl,
another chaotrope, we observed a striking stabilization of the
protein at pH 7.5 (
Tm � �8 °C) and a decrease in thermal
stability at pH 5.5 (
Tm � �3 °C) (Fig. 5B). This observation
immediately suggested to us that free carboxylates were desta-
bilizing our construct at neutral and near neutral pH values. As
a control, incubation of ISAV F294 – 404 with 1 M urea failed to
stabilize the fusion subunit and instead resulted in �2 °C
decrease of the apparent Tm at all pHs assayed (Fig. 5B).

Finally, we generated a double-mutant ISAV F294 – 404
E327A,E329A construct to test the role of the observed carbox-
yl-carboxylate in conformational stability at various pH values.
We hypothesized that the Glu327:Glu329 carboxyl-carboxylate
would generate destabilizing repulsive electrostatics in the
fusion protein at neutral and near neutral pH values while gen-
erating strong short O–H–O hydrogen bonds at the pH of
fusion. In the pre-fusion conformation of IAV HA, much of the
N-terminal portion of the extended central coil observed in the
post-fusion conformation is folded out and over, much like a
peeled banana. Using our understanding of the pre-fusion gly-
coprotein from IAV as a framework, it is likely that this region
of the ISAV F protein makes electrostatic interactions with the
vestigial receptor-binding subunit of the ISAV F protein in its
pre-fusion conformation (37, 38). IAV HA switches between
the electrostatic HA1-Arg120:HA2-Glu69 to a familiar intramo-
lecular Glu69:Glu74 carboxyl-carboxylate as the pH lowers to
that of IAV HA-mediated fusion (32). In the current model, we
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F294 – 404 was measured at 217 nm from 20 to 95 °C in acetate buffers with pH
values ranging from 4.5 through 5.5. All thermal melts were performed in
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sigmoidal curve in GraphPad Prism (version 5.01). B and C, the molar ellipticity
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have shown that the putative ISAV F B-loop becomes a part of
the extended central coiled-coil and is locked in by the Glu327:
Glu329 carboxyl-carboxylate at the pH of fusion by strong short
O–H–O bonds. To account for the possibility of stabilization
due to the C-terminal extended region, we assayed our throm-
bin-proteolyzed construct and observed an identical pH-depen-
dent stabilization. Furthermore, when we incubated the protein
with 1 M GuHCl, the stabilization observed for the wild-type
and ISAV F294 –383 truncations at near neutral pH was absent
(Fig. 5C), further implicating the Glu327:Glu329 carboxyl-car-
boxylate as a pH sensor. Stability assays at various pH values
indicate that our E327A,E329A double-mutant protein has
largely lost the stability profile associated with a pH-dependent
class I fusion protein (Fig. 5D). Additionally, when we
performed the thermal stability assays on ISAV F294 – 404
E327A,E329A at pH 7.5, the melting curve became prostrate
over an extensive temperature range. We cannot report an
exact melting temperature without a clear inflection point to
base the calculation on, but this prolonged melting curve was

overcome by incubation with chaotrope (Fig. 5E). Regardless,
the ablation of the Glu327:Glu329 carboxyl-carboxylate destabi-
lizes the molecule at pH 5.5 and stabilizes the molecule at near
neutral pH values.

Our structure does not include the membrane-proximal
C-terminal fragment that is visualized as an extended coil
packed against the core in the post-fusion structures of IAV HA
and IBV HA. Upon proteolysis of ISAV F294 – 404 to ISAV
F294 –383, the corresponding region of the protein was removed.
Cysteine to serine mutations introduced into ISAV F294 – 404 did
not alter the labile nature of this region (data not shown). How-
ever, the lack of the extended coil region affected the overall
stability of the protein at pH 7.5, pH 6.5, and pH 5.5, but the
relative increase in thermal stability at the pH of fusion was
maintained. Incubation of the truncated construct with 1 M

GuHCl had the same results as with the full-length ISAV F
construct, stabilizing at neutral and near neutral pH and desta-
bilizing at the pH of fusion (Fig. 5C). Evidently, the membrane-
proximal C-terminal fragment lends some stability to the post-
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fusion conformation of the ISAV F protein; however, it is easily
removed by limited tryptic or directed thrombin proteolysis,
unlike IAV HA2 (22, 39, 40), suggesting that this protein
region is more dynamic than in its terrestrial orthomyxoviral
counterpart.

The HA subunits are bound together via an inter-subunit
disulfide bond, which is maintained from pre- to post-fusion
(22, 23). Mutation of the cysteine located in HA2 that partici-
pates in this disulfide bond has been employed in crystallo-
graphic studies of HA2 to generate well behaved recombinant
protein (24). Like IAV and IBV HA, the ISAV F protein is
cleaved into two subunits during viral maturation by host pro-
teases (7). The disulfide-linked organization of processed F pro-
tein is also thought to be analogous to the influenza A hemag-
glutinins; however, mutation of individual cysteine residues in
recombinant ISAV F294 – 404 resulted in disulfide-mediated
aggregation of our recombinant trimer (data not shown).

The Post-fusion ISAV F Protein Central Coiled-coil Is Struc-
turally Conserved—The post-fusion structure of the ISAV
F294 –383 reported herein illustrates an apparently simpler chain
reversal region when compared with other known post-fusion
orthomyxoviral fusion proteins. Despite the qualitative similar-
ities of our post-fusion model to the overall fold of post-fusion
IAV and IBV HA2, it is not clear whether the ISAV F gene
evolved with the orthomyxoviruses or was acquired through a
different path. A comparative analysis of trimeric ISAV
F294 –383 to structures deposited in the Protein Data Bank using
the Dali server (19) revealed that the post-fusion orthomyxovi-
rus structures are not the closest structural neighbors. IAV
HA2 was ranked very close to the bottom of the list (rank: 637)
with a 7% sequence identity, a Z-score of 2.8, and an RMSD of
4.4 Å. Additionally, the IBV HA2 post-fusion structure was not
represented within the first 1000 results. It is also important to
note that the chain reversal region of ISAV F294 –383 in the post-
fusion conformation could not be aligned with any existing
post-fusion structures. Nevertheless, the top structural neigh-

bor (rank: 31) to ISAV F294 –383 was a fragment of the HIV-1
gp41 heptad repeat 1 (PDB: 3UIA), which comprises the central
coiled-coil of the post-fusion structure. This alignment yielded
a Z-score of 4.9 and an RMSD of 1.3 Å within the aligned region.
In addition, alignment of the central coiled-coil of ISAV
F294 –383 was observed with numerous viral fusion proteins
including both parainfluenza virus 5 F and hemagglutinin-
neuraminidase (HN) and various other core structures of HIV
gp41 (Fig. 6). Neither the parainfluenza virus 5 F nor the lenti-
viral results proved surprising as trimmed structures of these
proteins were both used as search models during molecular
replacement-based phasing of the ISAV F294 –383 crystal struc-
ture. Table 2 summarizes the nearest structural neighbors to
the ISAV F294 –383 curated to include structures of viral fusion
glycoproteins. The conservation of the trimeric central coiled-
coil within post-fusion viral glycoproteins has been previously
shown by Igonet et al. (41, 42) and centers around a heptad
repeat stutter region within the coiled coil. Parallel to our Dali
queries, we analyzed our structure with the program SOCKET
(20) and found that a stutter region exists between Leu326 and
Glu329, within the carboxyl-carboxylate pH sensor. A similar
stutter region was identified in the IAV HA post-fusion struc-
ture, albeit more N-terminal than the post-fusion IAV HA2
carboxyl-carboxylate found at Glu69:Glu74 discussed earlier
(28). Our observations illustrate that the ISAV F protein is a
unique member of the orthomyxoviral fusion protein repertoire
and lend further support to a similar yet simpler post-fusion fold
than other orthomyxoviral structures. However, the post-fusion
structure of the ICV HEF protein has yet to be described and may
further stratify our current library of post-fusion orthomyxoviral
fusion proteins.

Triggering of ISAV Fusion—As mentioned previously, ISAV is
the only known member of the Orthomyxoviridae genera with
attachment and fusion activities on disparate proteins. The
physical arrangement of the ISAV entry glycoproteins on the
surface of the ISAV virion may provide an explanation for this

Heptad Repeat Stutter Region Dali Alignment Region No Structural Alignment

ISAV F
IAV HA2

MuV F Henipa 
Virus F

PIV5 HF TLV-1 
gp21

CASV 
gp2

HIV-1 
gp41

FIGURE 6. Nearest neighbor comparisons of ISAV F294 –383 with various fusion protein structures illustrates a conserved �-helical core. The trimeric ISAV
F F294 –383 crystal structure was aligned to structures within the PDB using the Dali server. Structures of aligned viral proteins that catalyze the fusion of
membranes are depicted here. Colored in blue are fragments that were not aligned by the Dali server, and fragments colored in pink were aligned. The arrows
point to the heptad repeat stutter regions identified by Igonet et al. (41, 42) and are presented in green. Accession codes for the structural models herein can
be found in Table 2.
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apparent strategic divergence. ISAV F protein has been
observed with ISAV HE protein as co-localized punctae during
translocation to, and on the surface of, salmonid cells in culture
(43), likely protecting the ISAV F protein from humoral recog-
nition. This is further supported as the HE protein is the main
antigen responsible for the neutralization efficiency of the cur-
rent Centrovet ISAV vaccine (44). Physical dissociation of ISAV
HE from ISAV F is observed following receptor engagement,
with fusogenic character inversely related to the relative avidity
of the association. This avidity is thought to be influenced by
the ISAV HE membrane-proximal highly polymorphic region
(43); however, nothing is known of the precise structural orien-
tation of this pre-entry complex.

Paramyxoviruses such as measles virus (MeV) present an
attractive mechanistic model of fusion that may apply to ISAV
fusion. In MeV fusion, binding of the human CD46 or signaling
lymphocyte activation molecule (SLAM) surface receptor to
the MeV attachment protein (H) triggers a rearrangement of
the MeV H head domain. H tetramer reorientation forces the
dissociation of the MeV fusion protein (F) and subsequent
fusion (45). Interestingly, spontaneous syncytia formation in
Chinook head salmon embryo cells expressing ISAV F protein
has been observed (7), suggesting that ISAV F protein requires
additional factors, such as ISAV HE, to maintain a metastable
pre-fusion conformation, analogous to the MeV pre-entry
complex.

From a structural standpoint, this is of interest as class I
fusion proteins from paramyxoviruses have a large structured

domain that intersects the helices that make up the prototypical
post-fusion helical bundle (45) instead of the four-residue chain
reversal region reported here for the post-fusion ISAV F294 – 404.
It would seem that the ISAV fusion protein is structurally sim-
ilar to the entry proteins of other orthomyxoviruses, yet has a
mechanistic resemblance to that of paramyxoviruses.

Conclusions—Viral fusion following engulfment into endo-
cytic vesicles is a prominent strategy of which both enveloped
and non-enveloped viruses make extensive use. There are mul-
tiple examples of class I, II, and III fusion glycoproteins where
the viral entry machinery consists of pH-sensing residues such
as histidine (46 – 48); however, the ISAV F fusion core does not
encode for any readily ionizable histidine residues. We have
now shown that stabilization of the ISAV F post-fusion confor-
mation is accomplished largely through a single carboxyl-car-
boxylate interaction that locks the extended helical core in
place, allowing the catalysis of host membrane fusion with the
ISAV virion at low pH. Our structure has provided the first
experimental insight into the molecular mechanism of ISAV
F-mediated low pH fusion and highlights the striking similari-
ties and differences across orthomyxoviral fusion proteins and
beyond.
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