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Abstract

Objective—In this conceptual review, we propose a novel mechanistic candidate in the etiology 

of depression with onset in the menopause transition (a.k.a. perimenopausal depression) involving 

alterations in stress-responsive pathways, induced by ovarian hormone fluctuation.

Methods—The relevant literature in perimenopausal depression was reviewed, including its 

prevalence, predictors, and treatment with estrogen therapy. Subsequently, the growing evidence 

from animal models and clinical research in other reproductive mood disorders was synthesized to 

describe a heuristic model of perimenopausal depression development.

Results—The rate of major depressive disorder and of clinically meaningful elevations in 

depressive symptoms increases two- to threefold during the menopause transition. While the 

mechanisms by which ovarian hormone fluctuation might impact mood are poorly understood, 

growing evidence from basic and clinical research suggests that fluctuations in ovarian hormones 

and their derived neurosteroids result in altered GABAergic regulation of the hypothalamic-

pituitary-adrenal (HPA) axis. Our heuristic model suggests that for some women, failure of the 

GABAA receptor to regulate overall GABAergic tone in the face of shifting levels of these 

neurosteroids may induce HPA axis dysfunction, thereby increasing sensitivity to stress, and 

generating a period of greater vulnerability to depression.

Conclusions—The proposed model provides a basis for understanding the mechanisms by 

which the changing hormonal environment of the menopause transition may interact with the 

psychosocial environment of mid-life to contribute to perimenopausal depression risk. Future 
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research investigating this model may inform the development of novel pharmacological 

treatments for perimenopausal depression and related disorders such as postpartum depression and 

premenstrual dysphoric disorder.
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Introduction

The rate of major depressive disorder (MDD) in women of reproductive age is double that of 

men's. Depressive disorders tied to reproductive events may partially account for this 

increased risk. Premenstrual dysphoric disorder (PMDD) and postpartum depression are two 

such disorders for which pathophysiological mechanisms include an increased vulnerability 

to fluctuations in ovarian-derived hormones as well as hypothalamic-pituitary-adrenal 

(HPA) axis dysregulation. Substantially less research has been conducted on depressive 

disorders tied to the menopause transition.

The neuroendocrine mechanisms by which the complex hormonal milieu of the menopause 

transition might trigger depressive symptomology also remain poorly understood, though 

multiple candidate mechanisms are under investigation. These include, but are not limited 

to, withdrawal from the anti-inflammatory (1) and neuroprotective (2) effects of estradiol 

(estradiol) as well as its modulation of the limbic processing (3) and memory (4, 5) of 

emotionally-relevant information. The primary goal of the current review is to set forth an 

additional mechanistic hypothesis involving interactions among reproductive steroids, 

GABAergic neurosteroids, and HPA axis function, which can serve as the basis for further 

investigation. We will discuss the literature implicating ovarian hormone variability in the 

development of depression with onset in the menopause transition (a.k.a. perimenopausal 

depression) and describe a paradigm in which changes in progesterone (progesterone)-

derived GABAergic neurosteroids may induce dysfunction of the GABAergic system and, 

in turn, the HPA axis. To first provide a context in which to discuss this potential 

mechanism, we briefly describe the following: 1) the endocrine environment characterizing 

the menopause transition; 2) the prevalence of perimenopausal depression; 3) risk factors for 

perimenopausal depression; and 4) the evidence for the use of estrogen therapy as a 

treatment for perimenopausal depression

The Endocrine Environment of the Menopause Transition

The menopause transition, triggered by a woman's diminishing supply of ovarian follicles, 

represents the reproductive stage transitioning from reproductively capable ovulatory cycles 

through the loss of ovulatory function and to the cessation of menses. The latter marks the 

onset of the menopause. In premenopausal women, antral ovarian follicles produce inhibin 

B, a protein complex that inhibits follicle stimulating hormone (FSH) release, which 

stimulates the recruitment and growth of ovarian follicles. As women approach the end of 

their reproductive years and fewer antral ovarian follicles are available to produce inhibin B, 

FSH concentrations gradually rise. While FSH levels have historically been used as an 
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endocrine marker of postmenopausal status, FSH is less useful for reproductive staging in 

the menopause transition due to variability in FSH concentrations at this time. 

Consequently, standard criteria for reproductive staging are based primarily on menstrual 

bleeding patterns, which can be corroborated with endocrine data. The Stages of 

Reproductive Aging Workshop (STRAW), first developed in 2001 and revised in 2011 (6), 

is among the most commonly used staging systems and divides a woman's reproductive 

lifespan into stages, using the final menstrual period as the anchor (Figure 1).

While there are substantial individual differences in the hormonal trajectory through the 

menopause transition (7, 8), most women experience the following changes (reviewed in (9, 

10)), beginning in the early, and progressing into the late menopause transition. First, 

menstrual cycle length becomes increasingly variable, with long cycles becoming more 

common as the transition progresses. This is illustrated in Figure 2, showing daily 

concentrations of urinary FSH and the urinary metabolites of estradiol (estradiol) and 

progesterone (progesterone) (proxies for estradiol and progesterone concentrations) in two 

women in the menopause transition. While short cycles are due to early follicular 

recruitment by intermittently high FSH levels, long cycles can be due to anovulation (Figure 

2, Panel 2, Cycle D) or a delayed ovarian response to FSH stimulation, resulting in an 

extended (low-estradiol) early follicular phase (Figure 2, Panel 1, Cycle A). Second, luteal 

progesterone also decreases, thought to result from declining dominant follicle quality 

(Figure 2, Panel 2, Cycle B). Third, appearing in the early and continuing into the late 

menopause transition are cycles in which concentrations of estradiol are elevated compared 

to premenopausal concentrations, also thought to result from elevated FSH. In addition to 

these changes in ovulatory cycles, the late menopause transition is also marked by an 

increasing frequency of anovulatory cycles (60-70% of cycles), which are characterized by 

low progesterone and erratic estradiol concentrations. Eventually, estradiol and progesterone 

production ceases, though recent evidence suggests that the early postmenopausal period is 

characterized by more ovarian activity than previously believed (8). In summary, most 

women undergoing a natural transition to menopause are exposed to highly erratic hormonal 

flux. While an increasing proportion of anovulatory cycles translates to fewer luteal-phase 

increases in progesterone, variable FSH concentrations cause periods of both hypo- and 

hyper-estrogenism. This exposure to erratic ovarian hormone concentrations may extend 

over 5 years (11).

Prevalence of Perimenopausal Depression

Though the existence of menopause-associated depression has long been debated (12) and 

several cross-sectional studies find no relationship between the prevalence of MDD and 

menopausal status (13, 14), longitudinal studies have been more consistent in finding that 

the menopause transition is associated with a substantial increase in vulnerability to 

clinically significant depressive symptoms, with odds ratios ranging from 1.33 to 1.79 

(15-17); this increased vulnerability is also observed in longitudinal studies in women with 

no history of MDD (16, 18, 19). Furthermore, studies using the Structured Clinical Interview 

for DSM Disorders IV to examine the incidence of syndromal MDD in the menopause 

transition echo the above findings in mixed samples of women with or without a history of 

MDD (20). For example, in a sub-analysis of 221 initially premenopausal participants from 
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the Study of Women's Health Across the Nation (SWAN), which included women with or 

without a history of depression who were followed for ten years, the rate of syndromal 

MDD was doubled during the MT and tripled in the early postmenopausal period (21). In 

contrast, two longitudinal studies (18, 22) to date suggest that the risk of first-onset 

syndromal MDD may not be increased in the menopause transition, though additional 

research to confirm this is warranted.

In all, there is strong evidence that the menopause transition and early postmenopausal 

period are a time of increased vulnerability to dysphoric mood, though the risk of a major 

depressive episode may be elevated only in the context of recurrent MDD.

Risk Factors for Perimenopausal Depression

Multiple longitudinal studies have provided insight regarding the factors that are most 

predictive of the development of depressive symptomology in the menopause transition. 

These predictors fall into two broad categories, the first relating to traditional psychosocial 

factors and the second relating to an increased sensitivity to ovarian hormone fluctuations 

and menopausal symptoms.

A history of MDD is the strongest predictor of both elevated depressive symptoms and 

syndromal MDD in the menopause transition, with odds ratios of 4-6 (16, 21, 23). 

Psychosocial stress, including unemployment (16), financial strain (15), lack of social 

support (15) and stressful life events proximate to the menopause transition (15, 21) also 

predict increased risk for both depressive symptoms and syndromal MDD. Finally, poor 

sleep during the menopause transition, independent of night sweats, has been associated 

with an increased risk of perimenopausal depression (16).

In addition to any role for psychosocial factors in perimenopausal depression, there is 

evidence to suggest that women vulnerable to perimenopausal depression exhibit a greater 

“hormonal sensitivity” to the endocrine profile of the menopause transition (24). First, both 

a history of PMDD and a history of postpartum depression – two disorders for which 

reproductive hormonal flux may be pathophysiologically relevant (25, 26) – are each strong 

predictors of perimenopausal depression (16, 17, 19). Second, vasomotor symptoms in the 

menopause transition are also associated with an increased risk of elevated depressive 

symptoms (16-18). While the relationship between vasomotor symptoms and depressive 

symptoms is multifactorial, some evidence suggests that increasingly erratic ovarian 

hormone fluctuation may represent a shared mediator of risk for both vasomotor symptoms 

and perimenopausal depression (27). Third, there are data suggesting that the duration of the 

menopause transition, and therefore a longer exposure to fluctuating hormones of the 

menopause transition, is positively associated with perimenopausal depression risk (23). A 

recent report from the Penn Ovarian Aging Study (POAS) (28) found that a more rapid rise 

in FSH prior to the final menstrual period predicted a decreased risk of elevated depressive 

symptoms after the final menstrual period; suggesting that a shorter menopause transition 

may protect against perimenopausal depression.

Gordon et al. Page 4

Am J Psychiatry. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Estrogen Therapy in Treating Perimenopausal Depression

Studies demonstrating the efficacy of estradiol to treat perimenopausal depression provide 

additional support that fluctuating estradiol during the menopause transition may be 

etiologically relevant to perimenopausal depression. While randomized controlled trials 

(RCTs) evaluating the efficacy of oral conjugated estrogen for the treatment of 

perimenopausal depression have been inconsistent in demonstrating a beneficial effect 

(reviewed in (29)), studies using transdermal estradiol have proven promising. To date, three 

small RCTs have examined the efficacy of transdermal estradiol as a treatment for 

perimenopausal depression. In two, remission rates of 68 and 80% were observed compared 

to rates of approximately 20% and 22%, respectively, in the placebo groups (29, 30). 

Interestingly, the study obtaining the remission rate of 80% (30) included only patients 

reporting that the onset of their depressive symptoms coincided with the onset of menstrual 

irregularity. A third RCT (31) of depressed peri- and postmenopausal women that did not 

require depression onset to coincide with menstrual irregularity failed to find any differences 

between transdermal estradiol, the hypnotic zolpidem and placebo on mood. However, this 

study did find that increases in serum estradiol predicted symptom improvement among 

depressed peri-, but not postmenopausal, women, suggesting specificity of mood effects of 

increasing estradiol levels for perimenopausal women. Also of relevance, one open-label 

study examined the efficacy of transdermal estradiol to treat depression in peri- versus 

postmenopausal women and reported a greater proportion of perimenopausal women 

achieved remission compared to postmenopausal women (32). These results are consistent 

with the study by Morrison et al., which found that transdermal estradiol was an ineffective 

treatment for depression among postmenopausal women (33).

It is well documented that estradiol “beneficially” modulates pathways implicated in the 

pathophysiology of depression, including serotonin (34, 35) and norepinephrine pathways, 

and exerts strong antidepressant effects in animal models (reviewed in (36)). In addition, 

transdermal estradiol, which can impair ovulation (37) and restore early to mid-follicular 

phase levels of FSH (38) and estradiol (39), may reduce the degree of ovarian hormone 

variability to which a perimenopausal woman is exposed. Although the evidence is limited, 

the efficacy of transdermal estradiol in depression treatment for peri- but not post-

menopausal women, therefore suggests that it is stabilization of estradiol during the 

menopause transition which is effective for mood and, indirectly, that estradiol fluctuation 

may act as a trigger for perimenopausal depression (31). Clearly there is a need for larger 

RCTs, including a direct comparison of estradiol therapy and antidepressant medication, as 

there is an insufficient evidence base with which to inform clinical decisions about treating 

perimenopausal depression. Treatment studies distinguishing between mid-life women with 

MDD onset in the menopause transition and those with onset prior to the menopause 

transition would inform clinical practice and have implications for understanding the 

pathophysiology of perimenopausal depression.

Mechanisms

While the etiology of perimenopausal depression is not well understood, most studies 

suggest it is not simply due to low basal hormone concentrations. It has been hypothesized 

(e.g. (40, 41)) that the ovarian hormone fluctuations that characterize the menopause 
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transition trigger mood disturbances in vulnerable women. To our knowledge, five studies 

have evaluated the hormone variability hypothesis by examining naturally-occurring 

fluctuations in ovarian hormones in relation to mood among women in the menopause 

transition (reviewed in (40)). The first of these, the Massachusetts Women's Health Study 

(42) measured serum estradiol annually for 3 years in 309 women ranging from 

premenopausal to postmenopausal (STRAW −3 to +1) and found no association between 

estradiol variability and CES-D score. In a subset of Seattle Midlife Women's Health Study 

participants, CES-D score was not associated with a urinary metabolite of estradiol, FSH or 

testosterone in 131 women in STRAW stages −3 or −2 at baseline (17). In that study, the 

CES-D was administered annually for 8 years and hormone concentrations were measured 

monthly for 4 years then quarterly for 4 years. However, only 714 observations were 

collected in total suggesting that, on average, participants provided 5 samples over the 

course of the 8-year study. Bromberger et al. (21) also reported that among 3302 SWAN 

participants, estradiol or FSH variability, calculated across 8 annual measurements, was not 

associated with depressive symptoms. However, independent of menopausal status, 

testosterone levels and the change (increase) in testosterone from baseline were positively 

associated with CES-D score. While, overall, the above studies do not support a relationship 

between estradiol or FSH variability and mood, the absence of a positive finding may be 

related to the infrequent hormone sampling intervals. Given the considerable hormonal 

variation occurring in the menopause transition, such infrequent measurements may be 

limited in their ability to capture the dynamics of the hormonal environment, characterizing 

the menopause transition.

In contrast, Freeman et al. (19) found that over 8 years in the Penn Ovarian Aging Study, 

clinical elevations in depressive symptoms and syndromal MDD were more likely to occur 

at times when estradiol variability was highest. Ten estradiol and FSH assessment periods 

occurred over the 8 years; each consisting of two blood draws taken one month apart. 

estradiol variability at each assessment was calculated as the standard deviation across the 

two estradiol levels obtained during each assessment period. In cycling women, these 

measurements were taken in the early follicular phase. Importantly, the relationship between 

estradiol variability and depressive symptoms continued to be significant after adjustment 

for increases in poor sleep, which may also accompany periods of increased hormonal flux. 

This study has several strengths that may explain its ability to detect a relationship between 

estradiol variability and perimenopausal depression. First, unlike the Massachusetts 

Women's Health Study and the Seattle Midlife Women's Health Study, the Penn Study 

included only euthymic participants at baseline, ensuring that they were examining 

depression with onset in the menopause transition rather than MDD that began prior to, and 

continued into, the menopause transition. Second, the Penn Study used more frequent 

hormonal assessments (twice annually, one month apart) than the above-mentioned studies. 

A study by Daly et al. (43), which also employed more frequent hormone sampling, assessed 

FSH weekly in 110 women with documented onset of depression in the menopause 

transition and found that those women who experienced a 50% drop in FSH over 6 weeks, 

indicating a return to premenopausal ovarian function, experienced a significant decline in 

depressive symptoms. Future research using more frequent assessments of depressed mood 

and ovarian hormone concentrations and isolating depression with onset during the 
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menopause transition may therefore more definitively implicate the involvement of 

hormonal variability in the etiology of perimenopausal depression.

To the extent that variability in reproductive steroid hormones may play a role in the 

etiology of perimenopausal depression, by what mechanism(s) would it do so? Based on the 

evidence that estradiol modulates serotonergic and noradrenergic function (see (36, 44) for 

review), combined with the documentation that SSRI and SNRIs are effective in some 

women with perimenopausal depression, the possibility exists that estradiol fluctuation in 

the menopause transition may adversely impact the serotonergic and noradrenergic systems 

(36, 44, 45), though this has never been directly tested.

In this review, we discuss the available evidence to support another plausible mechanism – 

that is, reproductive steroid modulation of GABAergic regulation of the HPA axis. More 

specifically, we present evidence for the role of progesterone-derived neurosteroids, 

including allopregnanolone (3α-hydroxy-5α-pregnan-20-one; ALLO), in altering 

GABAergic modulation of the HPA axis and discuss how these alterations may sensitize 

perimenopausal women to stress and, consequently, to the development of perimenopausal 

depression. When this increased stress sensitivity is combined with stressful life events 

and/or a genetic or dispositional vulnerability to depression, clinical elevations in depressed 

mood may ensue. This mechanistic candidate is illustrated in Figure 3 and will be expanded 

upon in the following sections.

GABA-ergic Neurosteroids in the Menopause Transition—While most studies 

have focused on the role of estradiol in the risk of perimenopausal depression, evidence 

from animal models suggests that ovarian hormone fluctuation increases the risk of 

perimenopausal depression, at least in part, because of the concurrent changes in 

progesterone-derived neurosteroids. Among the most studied progesterone-derived 

neurosteroids in humans is ALLO, an A-ring-reduced metabolite of progesterone. ALLO is 

stress responsive in animals and humans (reviewed in (46)) and serves as a potent, positive 

allosteric modulator of GABAA receptors via dose-dependent enhancement of GABA-

induced Cl-ion channels (47). GABA is the chief inhibitory neurotransmitter in the 

mammalian central nervous system. The role of GABA in regulating the HPA axis in 

response to stress by limiting the extent and duration of the HPA axis stress response is well 

established (48). In part, it is through ALLO's modulation of the GABAA receptor to 

increase GABAergic transmission that ALLO not only negatively modulates the HPA axis 

to return it to homeostasis following stress (49), but also exerts profound anxiolytic (50) and 

antidepressant (51) actions. However, ALLO's anxiolytic properties may also be partially 

mediated through its effects on the bed nucleus of the stria terminalis, the “relay center” 

linking stress-responsive pathways such as the HPA axis and limbic structures such as the 

amygdala (52). Two major sources of ALLO in women of reproductive age are the adrenal 

glands and the corpus luteum, where ALLO is converted from progesterone (53). Because of 

ovarian ALLO contributions, ALLO concentrations in premenopausal women are highest in 

the luteal phase and lowest in the follicular phase (53). However, in postmenopausal 

women, the adrenal glands become the exclusive source of peripheral ALLO (53). 

Importantly, peripherally derived ALLO freely crosses the blood-brain barrier (54) and 

contributes significantly to CNS concentrations (55).
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As mentioned earlier, an increasing proportion of anovulatory cycles results in less frequent 

luteal phases and therefore overall lower levels of progesterone. Although the availability of 

progesterone is an important determinant of ALLO, estradiol is also likely to positively 

influence ALLO production through its modulation of the enzymes involved in the 

conversion of progesterone to ALLO, 5α-reductase and 3α-hydroxysteroid dehydrogenase 

(56). This is supported by both basic and clinical research. For example, while ovariectomy 

in animals has been shown to decrease ALLO concentrations in the hippocampus, 

hypothalamus, pituitary and plasma, transdermal estradiol administration restores pre-

ovariectomy brain and plasma ALLO concentrations (see (56) for review). Similarly, 

transdermal estradiol increases plasma ALLO in postmenopausal women (57, 58). Thus, 

even in the absence of ovulation and the consequent production of progesterone, intermittent 

endogenous production of estradiol during the menopause transition may cause fluctuations 

in the synthesis and release of ALLO.

ALLO fluctuation may have important implications at the GABAA receptor, which is 

composed of a combination of five (out of 19 existing) subunits. Which subunits a receptor 

contains will greatly influence its sensitivity to neurosteroids (see (59) for review). For 

example, the δ subunit has been shown to greatly increase receptor sensitivity to very low 

concentrations of neurosteroids; mice lacking the δ subunit therefore exhibit greatly reduced 

neurosteroid sensitivity (60). In contrast, GABAA receptors containing the ε subunit are 

relatively insensitive to neurosteroids like ALLO. Furthermore, the subunit composition of 

GABAA receptors is extremely plastic and influenced by neurosteroid levels; for example, 

during pregnancy when levels of progesterone, and thus progesterone-derived neurosteroids, 

are extremely elevated, the expression of δ subunits is down-regulated in multiple areas of 

the brain, thus reducing receptor sensitivity to elevated ALLO levels (61).

This ability of the GABAA receptor to change its composition in response to ALLO 

concentrations is likely to be especially important in times of considerable ALLO flux. 

Failure of the GABAA receptor to match its composition to an ever-changing hormonal 

environment could result in either too-high or too-low GABAergic inhibitory tone. In 

addition, ovarian hormone fluctuation may actually trigger maladaptive changes in GABAA 

receptor configuration. Evidence supporting this comes from animal models of puberty, in 

which ovarian hormone fluctuations have been shown to promote the expression of GABAA 

receptors containing α4, β2 and δ subunits in rodents, the combination of which has been 

found to transform ALLO's effects from excitatory to inhibitory at the GABAA receptor 

(62). Thus, rather than positively modulating the GABAA receptor, ALLO inhibits it. In 

turn, there is an overall decline in GABAergic inhibitory tone. Furthermore, this reduction in 

GABAergic tone during puberty is also accompanied by an increase in anxiety, as indicated 

by less time spent in the open arms of the elevated plus maze and more anxiety behavior 

following a restraint stress (62). Hormone fluctuation across the estrous cycle (63) or 

progesterone (and therefore ALLO) withdrawal induced in the laboratory (64) have also 

been shown to result in similar changes in GABAA receptor subunit expression.

Failure of the GABAA receptor to demonstrate adaptive homeostatic plasticity in the context 

of steroid hormone fluctuations is theorized to be involved in the development of PMDD 

and postpartum depression (see (65) for review). This may be one mechanism contributing 
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to decreased saccadic eye velocity (SEV), an indirect measure of GABAA receptor 

sensitivity, in PMDD women during their symptomatic phase (66). In light of this, we 

propose that insufficient plasticity of the GABAA receptor in the menopause transition, or 

maladaptive changes to the GABAA receptor, may contribute to mood disturbance during 

the menopause transition, when concentrations of both estradiol and progesterone become 

erratic and unpredictable. How GABAA receptors “respond” to fluctuating ALLO 

concentrations in the menopause transition would be critical in determining overall 

GABAergic tone, mood, and, theoretically, regulation of the HPA axis. This process, in 

which hormonal fluctuation can trigger GABAA subunit changes such that ALLO's effects 

become paradoxical (inhibitory rather than excitatory at the GABAA receptor; anxiogenic 

rather than anxiolytic), may shed light on the results of a study by Andreen et al. (67). This 

study of 36 late peri- and early postmenopausal women treated with progesterone 

supplementation found that women with resultant medium ALLO concentrations reported 

significantly more negative mood when compared to those women with low ALLO. The 

possibility exists that the context of the perimenopausal fluctuating hormonal environment 

to which these women were exposed had contributed to GABAA receptor subunit changes 

with consequent alterations in ALLO's effects at the receptor, and in turn, its effects on 

mood (68).

To the extent that GABAergic dysregulation is involved in perimenopausal depression, 

genes coding for GABAA receptor subunits may be implicated in predisposing some 

individuals to respond maladaptively to ALLO fluctuations and thus be at increased risk for 

perimenopausal depression. GABAA receptor subunit gene polymorphisms are differentially 

associated with risk for other mental disorders such as alcohol dependence (69), MDD, 

bipolar disorder and schizophrenia (70). In animal models, mice genetically designed to lack 

the δ subunit do not exhibit ALLO's paradoxical effects at the GABAA receptor during 

puberty as do wild-type mice (62). An investigation of which GABAA receptor subunit gene 

polymorphisms are associated with an increased risk for perimenopausal depression may be 

warranted. Large-scale epidemiologic studies such as SWAN may provide appropriate 

specimens for such genotyping.

Although ALLO's effects on the GABAergic system are most well-characterized and thus 

the primary focus of this review, alterations in overall GABAergic tone are likely to impact 

the release of other neurotransmitters relevant to the development of psychopathology. For 

example, recent in vitro studies of rodent hippocampal neurons suggest that ALLO, via 

presynaptic GABAA receptors, modulates glutamate release (71). ALLO's effects on 

glutamate may be particularly relevant to the study of perimenopausal depression in light of 

the recent recognition that glutamate transmission is likely a key player in the etiology of 

MDD and other psychopathologies (72).

HPA Axis Dysregulation in the Menopause Transition—GABA plays a critical role 

in regulating the HPA axis and limiting HPA activation following exposure to stress (48). 

As such, any failure of the GABAA receptor to adapt appropriately to the hormonal 

environment can be expected to have direct consequences for HPA axis activity. For 

example, if ALLO were to negatively modulate the GABAA receptor in response to 

hormonal fluctuation (as opposed to serving as a positive allosteric modulator of the 
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GABAA receptor), as is seen in animal models of puberty, this would contribute to an 

overall increase in HPA axis activity since the GABAergic inhibition of the HPA axis is 

removed. Under these conditions, because ALLO increases following stress, this could 

potentiate HPA axis reactivity and prolong recovery in response to stress. In this way, we 

speculate that menopause transition-related ovarian hormone fluctuation could trigger HPA 

axis dysregulation.

Dysregulation of the HPA axis in MDD has frequently been described as one of the most 

consistent findings in psychiatry (73). However, only in the last decade have we begun to 

view altered HPA axis activity as a risk factor increasing one's susceptibility to depression 

rather than a consequence or epiphenomenon of depression (74). This view is not only 

supported by prospective studies identifying elevated cortisol as a precursor to the onset of 

first-episode MDD (75) as well as relapse (76), but also supported by studies observing 

increased HPA axis activation among the euthymic relatives of individuals with a history of 

depression compared to controls with no family history of depression (77). Research on 

postpartum depression (78, 79) and PMDD (see (80) for review) also suggest that HPA axis 

dysregulation has pathophysiological relevance to reproductive mood disorders.

To date, little is known about HPA axis activity in the menopause transition. Komesaroff et 

al., 1999 (81), examined cortisol reactivity to the Trier Social Stress Test, a speech and 

arithmetic stressor battery, following eight weeks of oral estradiol or placebo in women 

during the menopause transition. It was found that estradiol therapy resulted in an attenuated 

cortisol response to the stressor. Two additional studies have examined basal cortisol levels 

in the menopause transition. In the Seattle Midlife Women's Health Study, 91 women 

provided monthly first-morning urine specimens for cortisol measurement as they 

transitioned across menopausal stages (early to middle; middle to late and late menopause 

transition to postmenopause) (82). It was found that 68% of the 22 women transitioning 

from the middle to late menopause transition exhibited an increase in cortisol, the magnitude 

of which has previously been associated with a decrement in memory performance in older 

women (83) and may therefore have clinical significance. While the late menopause 

transition increase in cortisol was not associated with depressive symptoms in this 

community sample, this study was limited in that it examined basal cortisol and not cortisol 

reactivity to stress. A second study by Schmidt et al. (84) found no difference in the basal 

cortisol levels of 24 women with perimenopausal depression when compared to 26 

asymptomatic controls. However, again, this study did not examine cortisol reactivity; it also 

did not account for STRAW stage. Together, these studies suggest that perimenopausal 

depression may not be associated with alterations in basal HPA axis hormone 

concentrations but that ovarian hormones do regulate HPA axis responses to stress in 

women during the menopause transition. There have been no studies examining HPA axis 

activation in response to stress in women with perimenopausal depression.

Conclusions and Future Directions

Based on emerging evidence from both animal and clinical research, we propose a heuristic 

model of perimenopausal depression whereby failure of the GABAA receptor to adapt to 

fluctuations in ALLO over the course of the menopause transition increases the risk of 
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perimenopausal depression in vulnerable women. Specifically (see Figure 3), in the context 

of the menopause transition, characterized by fluctuations in ALLO that are consequent to 

estradiol and progesterone fluctuations, an inability of the GABAA receptor to demonstrate 

plasticity necessary to maintain GABAergic homeostatic control might exacerbate the 

response of the HPA axis to stress. Combined with an increased vulnerability to MDD due 

to personality or genetic factors (e.g. in women with a history of MDD) and/or stressful life 

events proximate to the menopause transition, the endocrine profile of the menopause 

transition sets the stage for depressive symptomology. While speculative, this model is 

consistent with studies linking both HPA axis dysregulation (80) and altered GABAA 

receptor sensitivity (66) to other reproductive mood disorders. Future research investigating 

this model has the potential to inform the development of novel pharmacological treatments 

for perimenopausal depression.

While novel, our model remains speculative as there is virtually no research examining these 

pathways in the menopause transition. However, the risk factors predictive of 

perimenopausal depression, including sensitivity to hormonal fluctuations and greater 

psychosocial stress and/or increased sensitivity to stress, are consistent with this model. 

Furthermore, evidence from other reproductive mood disorders indirectly suggests that 

neurosteroid and HPA axis dysregulation may be involved in the etiology of perimenopausal 

depression. However, we wish to acknowledge that our model is by no means 

comprehensive. There are likely multiple complex down-stream effects of GABAergic and 

HPA axis dysregulation as well as entirely separate mechanisms involving serotonin, 

dopamine and norepinephrine that contribute to the etiology of perimenopausal depression 

and warrant further investigation.

Our intent is that this model will foster research in perimenopausal depression and its 

etiological mechanisms. Based on our review of the existing literature, we offer the 

following recommendations for future research: 1) Studies seeking to clarify the 

mechanisms involved in perimenopausal depression should confirm that depressive 

symptomology onset coincides with onset of the menopause transition since a differing 

etiological mechanism(s) may be involved in perimenopausal depression versus MDD with 

onset at other life stages; 2) Research aimed at detecting an effect of ovarian hormones on 

perimenopausal depression and/or its underlying mechanisms should measure hormone 

concentrations frequently, as once annual assessments of hormones may be insufficient to 

capture the erratic changes in ovarian hormones occurring in the menopause transition; 3) 

Examination of ovarian hormone and ALLO variability in relation to mood disturbance 

before and after the treatment of perimenopausal depression with estradiol therapy will help 

to advance the proposed etiologic model of perimenopausal depression. To the extent that 

the etiologic model proposed here is predictive of perimenopausal depression, estradiol and 

ALLO stabilization with estradiol therapy would be expected to predict clinical outcomes. 

Couched within a placebo-controlled RCT comparing estradiol therapy and an 

antidepressant medication, such research would further inform clinical decision-making in 

the treatment of perimenopausal depression.
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Figure 1. 
Stages of Reproductive Aging Workshop (STRAW +10). Reprinted with permission from 

Harlow et al. (2012) (6).
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Figure 2. 
Daily urinary FSH and urinary metabolites of estradiol (E1G) and progesterone (PDG) in 

two perimenopausal women illustrating A) a long ovulatory cycle, B) a long ovulatory cycle 

with low luteal progesterone, C) a normal ovulatory cycle and D) a long anovulatory cycle. 

Triangles on x-axis represent days of menstrual bleeding. Adapted with permission from 

O'Connor et al. (2009) (85). PDG, pregnanediol-glucuronide; E1G, estrone-glucuronide; 

FSH, follicle stimulating hormone.
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Figure 3. 
Proposed etiologic model of depression with onset in the menopause transition.
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