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Abstract The short half-life of 212Bi and 213Bi limits the

application of these radionuclides in a radionuclide ther-

apy. The labeling of biomolecules with 212Pb (mother

nuclide of 212Bi) instead of 212Bi or 213Bi has the advantage

of obtaining a conjugate with a half-life of 10.6 h, com-

pared with of 60 min for 212Bi or 46 min for 213Bi. Pre-

vious attempts to prepare a potential in vivo generator with
212Pb complexed by the DOTA chelator failed, because

about 36 % of Bi was reported to escape as a result of the

radioactive decay 212Pb�!b
�

212Bi. Herein, we report studies

on the stability of the 212Pb complexes with eight selected

polydentate ligands, which demonstrate high affinity for

3? metal cations. From the ligand studied DOTP and

BAPTA show a sufficient 212Pb labeling yields but only
212Pb–DOTP complex is stable in isotonic solution of

sodium chloride making this way radioactivity level

of released 212Bi is below the limit of detection. It should

be emphasized that the DOTP complex is stable only in

the case when the concentration of free DOTP exceeds

10-4 M.

Keywords In vivo generator � 212Pb � 212Bi �
Polyaminipolycarboxylate ligands

Introduction

In the field of targeted radiotherapy, the selection of radio-

nuclide depends on the type of the treated disease. Solid

tumors are generally treated with high and medium energy

b--emitters such as 90Y, 188Re and 131I, because their

b--particles have a tissue range of several millimeters. The

effective tissue range of b--particles is not optimal for

treatment of tumors forming small clusters of cells and for

treatment of single cancer cells and micrometastases.

Treatment of these neoplastic diseases could be more

effective with a-emitters, which combine short range with

high linear energy transfer, combination that results in the

relatively high biological effect and cytotoxicity [1]. Owing

to this, a-particles are able to make lethal double strand

breaks in DNA. When the double stranded DNA molecules

breaks, there is very little chance to repair such damage.

Humm and Cobb [2] reported that to attain single cell kill

probability of 99.99 % tens of thousands of b-decays at the

cell membrane are required, whereas in the case of a-emitters

only few a-decays at the cell membrane are sufficient to kill

malignant cells. Due to high radiotoxicity of a-particles, high

degree of accuracy is required to deliver the radiation to the

target cells without targeting normal cells. From the medical

point of view, a-particles can be used either for treatment of

cancer micro-metastasis, or to destroy tumor margins after

surgical resection. Another potential application is in treat-

ing cancers such as lymphoma and leukemia, which are

present as free-floating tumor cells in the circulation system

[3]. Till now, only few clinical studies with 213Bi and 211At

labeled peptides and monoclonal antibodies have demon-

strated the potential of alpha particle emitting isotopes in

radionuclide therapy [4, 5].

There are only few a-particle emitting radionuclides,

which have properties suitable for developing therapeutic
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radiopharmaceuticals: generator-obtained 212Bi (t1/2 =

60 min), 213Bi (t1/2 = 46 min), 226Th (t1/2 = 30 min), 225Ac

(t1/2 = 10 days), 227Th (t1/2 = 18.7 days), as well as the

cyclotron-produced 211At (t1/2 = 7.2 h). The available a-

emitters have serious shortcomings, because in the case of
225Ac and 227Th the designed ligand must form chemically

stable complexes with both parent and decay radionuclides.
225Ac decays directly to 221Fr (alkali metal), which has a half-

life of 4.9 min and escapes from 225Ac-radiobioconjugate.

Similar situation appears in the case of 227Th, where the decay

product, the gaseous 219Rn, easily liberates itself from 227Th-

radioconjugate. Application of 211At is limited, because

astatine as the heaviest halogen forms weak bond with a car-

bon atom in the biomolecule. Therefore, 211At-bioconjugates

are unstable under physiological conditions.

In the case of 212Bi, 213Bi and 226Th short half-life often

limits the application of these nuclides to situations when the

tumor cells are rapidly accessible to the targeting agent.

However, the short half-life of 212Bi could be effectively

lengthened by chelation of the parent 212Pb radionuclide

(t1/2 = 10.6 h) to a biomolecule [6]. In comparison with

direct use of 212Bi, radiopharmaceuticals based on 212Pb

would have much broader applicability, because the half-life

of 212Pb corresponds better with the pharmacokinetics of

various biomolecules. Moreover, the 212Pb–212Bi in vivo

generator delivers the dose per unit of administered activity

ten times greater than that in the case of 212Bi alone or of the
213Bi a-emitter [7]. Thus, the required activity of the radio-

pharmaceutical preparation would be greatly reduced, and

making this way generation and administration of the

a-emitting radiopharmaceutical much easier.

It is very important that 212Bi formed in the b--decay of
212Pb remains bound to the carrier. This is because free

bismuth localizes in the kidneys, prohibiting this way the

use of structures that are not effective in stabilizing 212Bi in

vivo [8]. In theory, the decay of 212Pb should not generate a

problem with retention of 212Bi. The calculated recoil

energy of the Bi nucleus is only about 0.5 eV. This is not

sufficient to break a chemical bond, which requires about

10 eV. However, over 30 % of the c-rays emitted when
212Pb decays are internally converted during the decay

time. The resulting cascade of conversion electrons brings
212Bi to highly ionized states such as Bi5? and Bi7?, hence

the energy required to neutralize the charge is sufficient to

break chemical bonds [9]. The potential use of 212Pb as an

in vivo generator has been studied in earlier works [8, 10,

11]. Previous attempts to prepare a potential in vivo gen-

erator with 212Pb complexed by the DOTA chelator [11]

failed, because about 36 % of Bi was reported to escape as

a result of the radioactive decay
212

Pb�!b
�

212

Bi. Because the

free highly energetic radiobismuth escapes from the com-

plex during the decay, toxicity emerges when unchelated

212Bi accumulates in various organs, mainly in kidneys.

Formation of kinetically inert Bi3?–DOTA complexes is

very slow, therefore liberated 212Bi very poorly reassoci-

ates with DOTA.

In this paper we report the formation and stability studies

of 212Pb complexes with various polydentate ligands

exhibited faster than DOTA kinetics of complex formation.

Experimental

Lead-212

The 1 MBq of 212Pb (t1/2 = 60 min) was obtained from
232U as one of the decay products. Separation of 212Pb from
232U and other decay products was performed in a two-step

procedure. In the first step, 224Ra was eluted by 0.1 M

HNO3 from HDEHP-Teflon column loaded with 232U. In

the second step 212Pb was separated from 224Ra on cation

exchange resin Dowex 50 9 8 by elution with 1.0 M HCl.

The effluent was acidified with HNO3, evaporated and the

residue was dissolved in 0.01 M HNO3.

Measurements

The radioactivity was measured by c-spectrometer using the

HPGe detector (Canberra) with associated electronics (reso-

lution 2.09 keV for 1,332 keV 60Co line, efficiency ca.

30 %), coupled to the multichannel analyzer TUKAN (The

Andrzej Soltan Institute for Nuclear Studies, Świerk, Poland).

Ligands

We have chosen the following acyclic ligands for the

studies: 8-dentate diethylenetriaminepentaacetic acid

(DTPA), 6-dentate N,N-bis(2-hydroxybenzyl)ethylenedia-

mine-N,N-diacetic acid (HBED), 6-dentate 1,2-bis(o-ami-

nophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA),

8-dentate ethylene glycol-bis(2-aminoethylether)-N,N,N0,
N0-tetraacetic acid (EGTA) and 10-dentate triethylenetet-

raamine-N,N0,N00,N000-hexaacetic acid (TTHA). From the

cyclic ligands we have chosen 8-dentate 1,4,7,10-tetra-

azacyclododecane-1,4,7,10-tetraacetic acid (DOTA),

8-dentate 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayl-

tetrakis(methylphosphonic acid) (DOTP) and 6-dentate

1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA).

Synthesis of radiolabeled complexes

The experimental conditions for labeling, such as the

metal-to-ligand molar ratio, pH, time of reaction and

temperature, were optimized to achieve a high complexa-

tion efficiency. The 212Pb complexes with the studied
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ligands were synthesized by mixing 50 ll of non-carrier-

added 212Pb in 0.01 M HNO3 with 5 ll of either 10-1 or

10-2 M solution of the respective ligand. The volume of

solution was adjusted to 500 ll by adding 0.01 M

CH3COONH4 solution, and pH were settled at pH 6 or 7

using 2 M NaOH. Complexes with acyclic ligands were

prepared at room temperature in 2 h.

Determination of labeling efficiency and assay

The determination of labeling efficiency was achieved in

accordance with the modified procedure proposed by

Mirzadeh et al. [9] by isolation of uncomplexed cations by

the use of chelating Chelex 100 resin in a small column

(d = 3 mm, h = 10 mm). In preliminary experiments we

found that when solution containing nca 212Pb and 212Bi

was loaded on the column all activity remained on the

column, even after elution with 0.1 M NH4NO3. In next

step the 212Pb and 212Bi radionuclides were quantitatively

eluted with 2 ml of 5 M HCl. We assumed that under the

same conditions the negatively charged complexes of Pb2?

and Bi3? would be eluted from the column by 0.1 M

NH4NO3. This separation procedure was tested on Pb and

Bi complexes formed by 0.01 M DOTA and DTPA

ligands, and we found that these complexes were com-

pletely eluted by 2 ml of 0.1 M NH4NO3.

Assay of 212Bi after decay of 212Pb–L complexes

The complexes were prepared as described above. Con-

centration of the synthesized complexes was decreased

using isotonic solution of sodium chloride (0.9 % NaCl

solution), in order to obtain 0.5 ml samples. Solutions were

incubated for 4 h to attain 212Pb–212Bi radioactive equi-

librium and then in order to separate complexes from the

uncomplexed cations the solution was loaded on the col-

umn filled with Chelex 100 resin (3 9 10 mm). To achieve

the separation the column was washed with 2 ml of 0.1 M

NH4NO3 solution which eluted the complexes. The

retained uncomplexed 212Pb and 212Bi cations were next

eluted with 2 ml of 5 M HCl. The activities of the eluted

fractions were measured over 5 h time period.

Results and discussion

The labeling of biomolecules with 212Pb instead of 212Bi or
213Bi has the advantage of obtaining a conjugate with a half-

life of 10 h, instead of 60 min for 212Bi or 46 min for 213Bi.

Therefore, when 212Pb labeled conjugate is used, the

delivered dose is much greater per unit of administered

activity than in the case of 212/213Bi conjugates [7]. As

noted in [12] a dose of 10 mCi of 212Pb was equally

effective as a 500 mCi injected dose of 213Bi. However, as

reported by Mirzadeh et al. [9] and Miao et al. [13]

approximately one-third of the radioactivity escaped from

the DOTA chelator due to ionization associated with the

decay of 212Pb to 212Bi. In the case of radiobioconjugate

Fu-Min Su et al. [14] found that 212Pb–DOTA-biotin was

initially stable, but 30 % of 212Bi activity was released

from the DOTA-biotin in 4 h. This result is in agreement

with that reported by Mirzadeh et al. [9] who found that

36 % of 212Bi activity was released from 212Pb–DOTA in

the decay.

Redistribution was not a concern for 212Pb internalized

in tumor cells, since diffusion of metal ions across the cell

membrane would be very slow. However, loss of 212Bi

from circulating 212Pb-bioconjugate could allow 212Bi to

redistribute and irradiate normal organs.

In the previous studies, DOTA and its N,N,N,N-tetraa-

mide analog were used for binding 212Pb to biomolecules

[11]. In our opinion, because formation of kinetically inert

Bi3?–DOTA complex is very slow, the released 212Bi from

the 212Pb–DOTA complex very poorly reassociates with

DOTA. In our studies, we examined selected acyclic and

cyclic polyaminopolicarboxylate ligands, which form com-

plexes with bismuth cations more rapidly than does DOTA.

The ligands demonstrating high affinity for 3? metal cations

like Fe3? and lanthanides were selected for our studies. The

structure of the ligands is presented in the Fig. 1.

From the studied ligands DOTP and BAPTA are the only

two, which can be taken into consideration for designing

new applicable radioconjugates, because they demonstrate

sufficient labeling yields Table 1. The high yield of labeling

can be achieved only in the case, when the ligand concen-

tration exceeds 10-4 M. The remaining ligands form

complexes with 212Pb with too low efficiency. Therefore,

only the 212Pb–DOTP and 212Pb–BAPTA complexes were

selected for studying stability in isotonic solution of sodium

chloride (0.9 % NaCl).

As shown in Table 2 the 212Pb–DOTP complex is stable

in isotonic solution of sodium chloride, because at DOTP

concentration of 10-4 M only very small amount of 212Pb

escapes into solution. The radioactivity level of released
212Bi is under the limit of detection. Comparison of our

results with those on 212Pb–DOTA, described by Mirzadeh

et al. [9], shows that DOTA forms with 212Pb kinetically

inert complexes. Unfortunately, 212Bi the decay product of
212Pb, released to solution very poorly reassociates with

DOTA. On the contrary, DOTP forms with 212Pb more

labile complexes, for which the escaped 212Bi easily reas-

sociates with the ligand. It should be emphasized that
212Pb–DOTP is stable only in the case when concentration

of the free ligand exceeds 10-4 M.

The results obtained show that DOTP could be used as a

ligand in designing 212Pb/212Bi in vivo generators, but only
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in the case when high specific activity of the radiophar-

maceutical is not required, as it happens in palliation

therapy of bone metastasis.
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