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What variables are important in predicting
bovine viral diarrhea virus? A random forest
approach
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Abstract
Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is
found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of
strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed
variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence
of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to
logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative
class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the
ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence
were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation
performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising
methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability
to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors
and found some new and hard to control practices that may lead to the spread of this disease within and
among farms, mainly regarding poor or neglected reproduction management, which should be considered for
disease control and eradication.

Introduction
Bovine viral diarrhea virus (BVDV) has a single-stranded,
positive-sense RNA genome and belongs to the genus
Pestivirus of the family Flaviviridae [1], causing one of the
most common and economically important viral diseases of
cattle [2]. Several BVDV control strategies have been pro-
posed and launched in many countries based on informa-
tion about prevalence, incidence and associated risk factors,
which is the baseline knowledge required for designing
and implementing effective regional control actions [3].
A number of studies based on traditional risk factors

identification approaches (logistic regression mainly) have
been performed on BVDV [4-8], and the knowledge about
major risk factors are related to the following: biosecurity
[6], reproduction management [2,6,9,10], herd size [5,8],
animal introduction [2,4,5,11], direct contact with other

animals (from the same species or not) [4,11-13], com-
munal grazing [4,5], age of animals [5,14], artificial
insemination (AI) [15], and natural mating [13]. None-
theless, usual epidemiologic analytic frameworks like
logistic regression are often limited for the analysis of
high-dimensional, imbalanced and nonlinear data, and
may be poorly adapted to epidemiological datasets with
a large number of predictor variables (parameters) in
relation to the number of observations given the high
susceptibility to overfitting [16,17].
Feature selection methods provided by machine learning

(ML) approaches are an interesting, flexible and robust
alternative for identifying predictors that contribute to
disease occurrence. Among these, the random forest (RF)
algorithm [18] has been regarded as one of the most pre-
cise prediction methods, having advantages such as ability
to determine variable importance, ability to model complex
interactions among independent variables, and flexibility to
perform several types of statistical data analysis, including
regression, classification and unsupervised learning [19].
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Briefly, RF builds a collection of decision trees based on
randomly and independently selected subsets of data, and
a simple majority vote among all trees in the forest is
taken for class prediction. A clear difference from trad-
itional statistical frameworks is that RF performs a data-
driven analysis without making a priori assumptions about
the structure of data or the relationship between the re-
sponse and independent variables, and is less sensitive to
spatial autocorrelation and multicollinearity issues [17,20].
Its high predictive power has been supported by previous
comparative studies with other ML methods [21-25].
The use of RF allows for a new way of modeling and

extracting information from observational data, thus
contributing to a better understanding of a target system
and mechanism that are, in general, complex and non-
linear. However, according to the authors’ knowledge,
there are a limited number of studies in veterinary epi-
demiology that adopt ML-based methods, and most of
them still neglect the importance of proper and careful
tuning of models parameters [26-28]. For example, RF
was used in a cross-sectional study that aimed at asses-
sing risk factors that may have led to spillover of pH1N1
from humans to swine in Cameroon, Central Africa [26].
In human epidemiology, RF has been already applied in
Diabetic Retinopathy (DR) classification analysis for early
detection of this illness based on clinical and fundus pho-
tography data [16]. Results suggested that RF was a valu-
able tool to diagnose DR, producing higher classification
accuracy than logistic regression, and that the most rele-
vant variables detected by this ML algorithm are meaning-
ful and correlate well with known risk factors.
In this paper, we aim to investigate the use of RF in

the analysis of cross-sectional data collected in a BVDV
prevalence study. As previously discussed, the applica-
tion of this ML algorithm is still uncommon for this type
of task. Hence, this study has the following main objec-
tives: (1) train a RF model that provides a good predict-
ive power for the collected data, (2) perform a variable
importance analysis using the RF model and the well-
established Gini index method to identify potential
BVDV predictors, (3) investigate the effect of feature se-
lection on the overall performance of the RF model,
carefully assessing the impact on the accuracy and the
sensitivity-specificity balance, and, finally, (4) compare
RF performance with that obtained by other popular ML
algorithms and by logistic regression, examining their pre-
dictive power and robustness on the scenario of interest.

Materials and methods
Based on data collected from a prevalence study of repro-
ductive disease in dairy cattle in the State of Rio Grande
do Sul, Brazil, a RF model was trained and evaluated with
respect to model accuracy, followed by variable importance

analysis. All procedures performed for this study was
approved by the Institutional Animal Care and Use Com-
mittee (Federal University of Rio Grande do Sul, project
number: 28288, Porto Alegre, Brazil).

Study design-data collection
Study area and target population
Rio Grande do Sul is the southernmost state of Brazil, with
a total area of 268 781.896 km2 and 497 municipalities.
The cattle population is approximately 13.5 million, 10% of
which are dairy cattle [29]. Rio Grande do Sul is the second
largest milk-producing state, in which milk production is
clustered in six well-defined regions [30]. The study area is
explained in more detail in [31].
The target population of data collection included all

dairy herds in the state of Rio Grande do Sul. According
to the official data from the Office of Agriculture, Live-
stock and Agribusiness of the State of Rio Grande do Sul
81 307 dairy herds were registered. Descriptive statistics of
the studied population can be found in Additional file 1.

Survey design and sample collection
First, a cross-sectional survey was performed to estimate
the BVDV, Neospora caninum and Infectious Bovine
Rhinotracheitis (IBR) prevalence in dairy herds based on
(bulk tank milk) BTM samples and to identify the asso-
ciated risk factors, required by the Office of Agriculture,
Livestock and Agribusiness of the State of Rio Grande
do Sul. A one-stage stratified random sample design was
used. Those farms from which one BTM sample was
collected were considered a sampling unit. A stratified
sample, which was proportional to the herd population
present in each of the seven regions, was performed, and
each herd was randomly sampled from all the individual
strata. These regions are subdivisions of Brazilian states
that are grouped according to proximity and share com-
mon agroecological characteristics. The sample size was
calculated using R Foundation for Statistical Computing,
Vienna, Austria (Package EpiCalc), considering the fol-
lowing parameters: total dairy herds registered at the
moment (81 307), 50% expected prevalence, 95% confi-
dence interval, and 5% of absolute precision. The mini-
mum sample size required was 384 dairy herds; however,
388 herds were collected to have a safety margin of extra
farm samples.

Bulk tank milk collection
For each herd, a total of 12 mL of milk was collected dir-
ectly from the milk container immediately after the entire
volume had been homogenized. During sampling and
transportation, the raw milk was kept under refrigeration
between 2 and 8 °C without preservatives. Following an
overnight rest, a 1.2 mL sample of skim milk was collected
and kept at −20 °C until analysis.
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Serological assay and interpretation
The SVANOVIR BVDV p80-AB blocking BVDV ELISA
(enzyme-linked immunosorbent assay) was used to de-
tect the BTM samples positive for anti-BVDV antibodies.
This blocking ELISA was developed to identify anti-
bodies against the protein p80/NS3, which enables the
differentiation between vaccination antibodies and anti-
bodies produced by natural infection. All milk samples
were centrifuged for 15 min at 2000 × g, according to
the manufacturer’s instructions. The absorbance at a
single wavelength of 450 nm (A450) was determined using
a spectrophotometer (Asys Expert Plus, Asys Hitech
GmbH, Austria). For the herd prevalence, the percent of
inhibition (PI) values were calculated in the same manner
as the positive control, as well as for each sample, using
the following formula:

PI ¼ ODNegative control−ODSample or Positive control

ODNegative control
� 100

ð1Þ

Herds with PI ≥ 30% were considered to have a high
probability to harboring an active infection and/or to
have at least one positive cow contributing to the
sample.

Random forest
In this study we built a RF classifier based on the
epidemiological observational data collected from a set
of BVDV positive (24%) and negative (76%) farms. The
model training process is represented in the flowchart of
the study (Figure 1). Since RF algorithm is not routinely
used in veterinary epidemiology, we dedicate this section
to explain its basis.
Random forest is an example of a machine learning

method for classification and regression analysis that uses
an ensemble of randomized decision trees to define its
output. The algorithm constructs a collection of decision
trees using the traditional classification and regression
trees methodology (CART) [32] (Figure 2A) and combines
the predictions from all trees as its final output when
predicting the class of new instances (Figure 2B), making
it accurate and robust in relation to other ML algorithms
[18]. In classification tasks, as is the case in the current
study, combination is performed by means of majority
voting among the individual decision trees. Briefly, when
classifying new instances from an input variables vector,
the mode of the classes returned by the classification
performed by individual trees is defined as the final output
of the RF model. Hence, supposing we have 100 trees in
the forest, among which 70 predict a particular instance as
positive for BVDV and the other 30 predict it as negative,
the final RF prediction would be positive for BVDV given
the majority of votes for this class.

Each decision tree composing the forest has the stand-
ard flowchart-like structure, in which internal (split) nodes
test variables and branch out according to their possible
values, and leaf (terminal) nodes assign a classification for
all instances that reach the leaf. The tree growing process
in RF is also based in binary recursive splitting that aims
at maximizing the decrease of impurity at each node,
where impurity can be evaluated by heterogeneity for
classification trees (if the response is of categorical type).
Nonetheless, in constructing the ensemble of trees, RF
incorporates two types of randomness. First, each tree is
built using a random bootstrap sample of the original
training data (~2/3 of samples), drawn by sampling with
replacement (Figure 2A). Second, at each candidate split
in the tree growing process, a subset of variables is ran-
domly selected among all available variables to decide
node splitting, and the best split among these variables is
chosen based on the smallest node impurity [18,33]. Here,
we adopt the well-known Gini index as a measure of node
impurity. The tree growing procedure is performed recur-
sively until a minimum node size is reached, which is pa-
rameterized by the user, or until no further improvement
can be made [34]. The two main parameters of the RF al-
gorithms are the number of random variables (predictors)
to evaluate at each node split and the number of trees to
grow in the ensemble.
The methodology underlying the RF algorithm has in-

teresting properties that make it especially appealing for
classification tasks. To begin with, the mechanism ap-
plied for tree growing allows the estimation of the most
important variables for classification, and generates an
internal unbiased estimate of the generalized error drawn
from the data left out of the bootstrap sample used as a
training set, called out-of-bag (OOB) data, which corre-
sponds to about ~1/3 of the original data. In addition, the
fact that the predicted class represents the mode of the
outputs returned by individual trees gives robustness to
this ensemble classifier in relation to a single tree. Finally,
the bootstrapping procedure and the out-of-bag estimates
make RF more accurate and less sensitive to issues such as
overfitting, outliers and confounding in comparison to
other statistical and machine learning methods [18,33].
In this study, the learning process was carried out with

the randomForest and caret packages for the R statistical
environment [35,36].

Data preparation
Given the severe class imbalance observed in the data
and the general difficulty of machine learning methods
to handle this issue [37], we have incorporated a down-
sampling procedure in the model learning functions
provided by the caret R package, which samples the
majority class to make its frequency closer to the rarest
class. This procedure aims at avoiding the ML algorithm’s
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tendency to be strongly biased towards the majority class,
consequently misclassifying a lot of instances related to
the minority class.
The original dataset was randomly and uniformly

(i.e., maintaining the same proportion of classes as in
the original dataset) split into a training set (80% of
observations) and an independent testing set (20% of
observations). This subdivision reflects an attempt to
compose a minimum sample size that would be represen-
tative in future applications of the model and is a common
strategy for evaluating ML models when external valid-
ation data is not available. The training set was applied for
training our classifier using a cross-validation process and
the testing set was further used to compare models
performance based on independent test data.

Variables
The set of 40-predictor variables collected in the survey
performed and used to train the BVDV classification

model were: (1) who inseminates the animals, (2) number
of neighboring farms that have cattle, (3) what proportion
of the farm income is based on milk production, (4) for
how many years has the farm produced milk, (5) fre-
quency of technical assistance, (6) is rectal palpation per-
formed routinely, (7) the number of different inseminators
in the last year, (8) what is the origin of the bulls, (9)
frequency of veterinary assistance, (10) are the animals
placed in quarantine before introduction, (11) what is the
origin of animals brought into the farm, (12) how often
does the fence between/among farms that hold cattle
collapse, (13) how the cows are milked, (14) was there an
increase in abortions, (15) does calving occur in closed
barns, (16) number of cows lactating at the sampling
moment, (17) were animals vaccinated for BVDV, (18)
was there a rise of mating failure, (19) do animals share
the same feed and water containers, (20) number of cows
not lactating at the sampling moment, (21) is colostrum
stock available, (22) total farm area in hectares, (23) are

384 herds selected for BVDV testing
based on one-stage stratified random sampling 

Prevalence study carried on a 
target population of 81 307 dairy herds
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Data preparation and down-sampling

RF model trained, performance assessed 
with repeated 10-fold cross-validation

Random selection

Variable selection after variables importance analysis, 
RF model trained with top relevant variables

Classification performance comparison 
carried among RF, SVM and GBM

Marginal effect of top relevant variables on RF classification
results estimated with partial dependence plots

Figure 1 Flowchart of the study design. Representation of each step of the study.
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paddocks available for sick animals, (24) who adminis-
ters the medications, (25) is blood from a sick animal
injected into the healthy ones (“Premunição”), (26)
within the last year have animals been sent to fairs, (27)
has the farmer seen weak born calves, (28) were preg-
nant cows introduced, (29) total area for cow farming,
(30) has the farmer seen weak calves, (31) were new
animals introduced in the last year, (32) possibility of
direct contact (over the fence) between animals from
the neighboring farm, (33) animals are grouped based
in age category, (34) is the inseminator always the
same, (35) does the farm have technical assistance, (36)
is natural mating used, (37) does the farm have bulk milk
tank, (38) is artificial insemination used, (39) does calving
occurs in the fields, (40) does the farm have veterinary as-
sistance. See Additional file 2 for the frequency of import-
ant predictor variables.

Model training
The RF model was trained with the training set derived
from the original data (i.e., 80% of data) and the complete
set of variables using the randomForest package in R. The
number of trees induced in the training process was
configured to 500 trees following the suggestion of the
authors, and the number of variables (mtry) randomly
sampled as candidates for node splitting during the tree
growing process was optimized using the caret package in

the R environment. In training the model, we adopted a
repeated 10-fold cross-validation technique to better esti-
mate its performance and generalization power, and to
prevent overfitting and artificial accuracy improvement
due to use of the same data for training and testing the
classifier.
Once the model was trained, we investigated the effect

of multicollinearity over the performance of RF. For this
purpose, we computed the correlation matrix for the set
of 40 variables using Pearson correlation and identified
highly correlated predictors among our independent var-
iables. Next, we selected some of the highly correlated
variables to discard from the analysis based on plausibil-
ity criteria and repeated the RF training process without
these variables, comparing its performance with the
original RF model.
An interesting property of RF is that it naturally pro-

vides estimates of variable importance, which are com-
puted during model training by evaluating the average
decrease in the nodes’ impurity measured by Gini index.
The importance of a variable is defined as the Gini index
reduction for the variable summed over all nodes for
each tree in the forest, normalized by the number of
trees [38]. Hence, the higher the Gini importance, the
more relevant that variable is for maintaining the pre-
dictive power of the RF model. Although RF are capable
of modeling a large number of variables and achieving

Figure 2 Random forest model. Example of training and classification processes using random forest. A) Each decision tree in the ensemble is
built upon a random bootstrap sample of the original data, which contains positive (green labels) and negative (red labels) examples. B) Class
prediction for new instances using a random forest model is based on a majority voting procedure among all individual trees. The procedure
carried out for each tree is as follows: for each new data point (i.e., X), the algorithm starts at the root node of a decision tree and traverse down
the tree (highlighted branches) testing the variables values in each of the visited split nodes (pale pink nodes), according to each it selects the
next branch to follow. This process is repeated until a leaf node is reached, which assigns a class to this instance: green nodes predict for the
positive class, red nodes predict for the negative class. At the end of the process, each tree casts a vote for the preferred class label, and the
mode of the outputs is chosen as the final prediction.
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good prediction performance, finding a small number of
variables with equivalent or better prediction ability is
highly desired not only because it is helpful for inter-
pretation, but also easy for practical use as strategies
for disease control [38].
Thus, after running the first round of model training

and obtaining the Gini importance for each of the 40-
predictor variables of our data set, we performed a
restricted forward feature selection and verified the
impact of variables inclusion over the model’s predict-
ive accuracy in an incremental fashion. This step aims
at identifying irrelevant variables that may mislead the
algorithm and increase the generalization error [39].
Specifically, we trained several RF models, starting
from a model trained upon a single variable, and subse-
quently adding new variable one at a time, from the most
relevant to the least relevant. For each of the classifiers
generated, we evaluated its performance by computing
the AUC score, specificity and sensitivity for the OOB
data. Based on this analysis, we selected the top import-
ant predictor variables that optimized model’s perform-
ance and ran the training process again, generating a
simplified RF classifier that considers only the most im-
pactful variables.
Finally, we explored the relevance of variables for

classification results by partial dependence plots, which
are useful for providing insights of the marginal effect of
a given variable over the desired outcome. The partial
dependence of a variable’s effect is best understood by
examining general patterns in relation to the values of the
predictor variable rather than the specific values of partial
dependence [40]. Because we are modeling binary classifi-
cation (i.e., presence/absence of BVDV), partial depend-
ence values are given in “logit” scale and are computed in
relation to the probability for the positive class [19].

Model performance assessment
The model performance was assessed by computing
the total prediction accuracy (ACC), specificity (SPE)
and sensitivity (SEN) based on the confusion matrix.
This matrix quantifies the number of instances in the
test data classified as false positive (FP), true positive
(TP), false negative (FN), and true negative (TN). We
also plotted the area under the Receiver Operating
Characteristic (ROC) curve. The area under the ROC
curve gives us the AUC score, interpreted as the
probability that a classifier will rank a random chosen
positive instance higher than a random negative one.

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð2Þ

SPE ¼ TN
TN þ FP

� 100% ð3Þ

SEN ¼ TP
TP þ FN

� 100% ð4Þ

Comparing RF to other machine learning methods
In order to assess the predictive power of RF in compari-
son to other ML techniques, we performed a comparative
evaluation of the RF classifier with two other popular
methods, namely Support Vector Machine (SVM) and
Gradient Boosting Machine (GBM), which have also
not been extensively assessed in veterinary epidemi-
ology. SVM was introduced by [41] and is based on a
statistical-learning technique known as structural risk
minimization [41,42], being first used in observational
epidemiology studies in 2005 [43]. GBM, on the other
hand, is an ensemble method that combines regression
trees with weak individual predictive performances into
a single model with high performance [34,40].
For such comparison, we adopted the same procedure

used for RF training, i.e., 10 repetitions of 10-fold cross-
validation, assuring that the exact same data points are
used in each step of model training and testing. In other
words, we maintained the same subsampling of the training
data used in the cross-validation process. In addition, we
applied the caret R package to train SVM and GBM
models, tuning some of the parameters involved in order to
carry a fair comparison with RF. Based on the results from
cross-validation, we performed a first round of comparison
among models, contrasting their AUC score, sensitivity and
specificity drawn from the average confusion matrix. Fi-
nally, the differences between models performance in terms
of AUC scores were assessed with a pairwise Wilcoxon
rank test in order to test for statistical significance.

Comparing RF to logistic regression
Since we are interested in suggesting the use of RF as an
alternative method for traditional statistical approaches,
we also assessed its performance relative to logistic re-
gression, which is frequently used for the analysis of risk
factors. Logistic regression was estimated with the glm()
function in R environment and performance evaluation
was carried out based on 10 repetitions of 10-fold cross-
validation using the caret R package. To assure a fair
comparison, we run the logistic regression analysis with
the same distribution of data used for RF training among
folds and across all repetitions of cross-validation.

Models evaluation on independent testing data
In addition to evaluating the methods performance using
cross-validation, we also assessed their predictive accur-
acy with an independent test set derived from the ori-
ginal data. As aforementioned, during data preparation
the original data set was subdivided in training data
(80%) and testing data (20%), which is not used in the
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cross-validation procedure and thus can be regarded as
an independent test set.
This approach is recommended when no external

independent data are naturally available [44,45], which is
the case in our study. Although cross-validation is well
known for providing precise and unbiased estimative of
the predictive accuracy and generalization power of ML
classifiers, we opted to follow the common practice and
conduct another comparison among models with expli-
citly independent data.

Results
Performance of the RF model
The confusion matrix for the tuned RF model trained with
all available predictor variables (n = 40) and mtry = 25
(optimized value computed by caret R package), averaged
over the 10 repetitions of the 10-fold cross-validation, is
shown in Table 1. We evaluated the confusion matrix for
the final RF model, obtaining the following performance
metrics: ACC: 67.42% (±3.69); SPE: 67.65% (±3.85) and
SEN: 62.26% (±3.44). Despite optimizing parameters and
adopting a down-sampling procedure, RF had an average
error rate of 32.03% for the negative class (negative for
BVDV) and 36.78% for the positive class (positive for
BVDV), with a standard deviation of 1.30% and 2.46%,
respectively.
Analysis of the correlation matrix computed for the

set of 40 variables (Additional file 3) suggested that a
small set of independent variables is highly correlated.
Based on plausibility criteria, we eliminated the highly
correlated variables, namely (5) frequency of technical
assistance, (9) frequency of veterinary assistance, (11)
what is the origin of the animals brought into the farm
and (30) has the farmer seen weak calves, and repeated
the training process. We observed a minimal change in
the RF model performance after the elimination of cor-
related variables, with the highest (but still modest) im-
pact found for sensitivity, i.e., an increase from 62.26%
to 65.10%.

Variable importance
We performed a variable importance analysis assessing
the average decrease in the nodes’ impurity measured by
the Gini index during the construction of the random
forest model. Figure 3 presents the result of this analysis,
with the variables ranked by their Gini importance. As
we may observe, the variables (1) who inseminates the
animals, (2) the number of neighboring farms that have
cattle, (3) what proportion of the farm income is based
on milk production and (4) for how many years has the
farm produced milk are the four most important vari-
ables for BVDV prediction found in this analysis, since
they are associated to the highest Gini importance.
The result of the restricted forward feature selection

carried after variable importance analysis can be seen in
Figure 4. The best performance balance considering
AUC score, specificity and sensitivity, as well as model
complexity, seems to be associated with the model
trained with the top 25-predictor variables. Hence, the
RF training procedure was repeated for this subset of
variables (Figure 3), optimizing model’s parameters by
means of the caret package in R. The best tune for mtry
was 16, and the classification results for this model are
shown in the confusion matrix depicted in Table 2. We
noticed that the model trained with 25 variables, gener-
ated after feature selection, presented a slight increase in
the average accuracy (ACC: 67.75%) and specificity (SPE:
67.98%) in relation to the model trained with the total set
of variables, whilst no variation was observed for sensitiv-
ity. Nonetheless, this increase is not statistically signifi-
cant, and hence in this scenario feature selection does not
seem to introduce important benefits to the performance
of the RF model.
To better understand the effects of the most important

variables over classification results, we explored the par-
tial dependence plots for the top 25-predictors (Figure 5),
which give a graphical depiction of the marginal effect of
a variable on the class probability. Greater y-values indi-
cate that an observation for a specific variable is associ-
ated with higher probability for classifying new instances
as BVDV positive.
As this analysis suggests, (B) the number of neighbor-

ing farms that have cattle and (G) the number of differ-
ent inseminators in the last year had a strong linear
correlation with BVDV. Moreover, we observed that dis-
ease occurrence was highly influenced by observations
related to some specific variables, mainly by (A) insem-
ination performed by the owner or farmer, (C) milk pro-
duction representing about 61-80% of far income, (E)
technical assistance conducted annually, (F) rectal palpa-
tion performed routinely, (I) veterinary assistance held
annually, (J) animals placed in quarantine before intro-
duction, (M) milking process performed in an automatic
fashion, (X) administration of medications performed by

Table 1 Classification performance of RF model for the 40
variables. Confusion matrix for the RF model trained with the
complete set of predictor variables (n = 40) and a down-sampling
procedure, estimated by averaging the results over ten
repetitions of 10-fold cross-validation. Standard deviations are
given in parenthesis*

Real

BVDV-negative BVDV-positive

Predicted BVDV-negative 114.0 (6.5) 2.83 (0.25)

BVDV-positive 54.5 (6.5) 4.67 (0.25)
*Performance metrics: ACC: 67.42 (Sd. 3.69); SPE: 67.65 (Sd. 3.85) and SEN:
62.26 (Sd. 3.44).
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a technician and (Y) the regional habit of injecting blood
from a sick animal into a healthy one (“Premunição”). In
contrast, there was no significant relationship between
BVDV occurrence and the variables (O) does calving oc-
curs in closed barns, (P) number of cows lactating at the
sampling moment, (S) do animals share the same feed

and water containers, (T) number of cows not lactating
at the sampling moment, (U) is colostrum stock avail-
able and (W) are paddocks available for sick animals.

Comparative evaluation of RF, SVM and GBM
The results of the comparative analysis based on the aver-
age AUC scores, computed as the mean of the area under
the ROC curves over all repetitions of cross-validation,
were 0.702 for RF, 0.690 for GBM and 0.687 for SVM. The
highest specificity was achieved by SVM (69.45% ± 4.05),
followed by RF (67.65% ± 3.85) and GBM (66.15% ± 2.58).
On the other hand, RF achieved the highest sensitivity
(62.26% ± 3.44), followed by GBM (61.73% ± 5.33) and
SVM (57.60% ± 4.73).

Figure 3 Variable importance analysis performed by RF. The set of 40 variables used for classification, ordered by their importance as estimated
by the RF model.

Figure 4 Result of restricted forward feature selection. Performance
of the RF model evaluated by means of a restricted forward feature
selection. Several RF classifiers were trained adding each of the predictor
variables at a time, following the rank obtained from the variable
importance analysis, which is based on the mean decrease of
Gini index.

Table 2 Classification performance of RF model for the top
25 variables. Confusion matrix for the RF model trained with
the top 25-predictor variables selected after variable importance
analysis, estimated by averaging the results over ten repetitions
of 10-fold cross-validation. Standard deviations are given in
parenthesis*

Real

BVDV-negative BVDV-positive

Predicted BVDV-negative 114.55 (6.8) 2.8 (0.20)

BVDV-positive 53.95 (6.8) 4.7 (0.20)
*Performance metrics: ACC: 67.75 (Sd. 3.69); SPE: 67.98 (Sd. 3.85) and SEN:
62.26 (Sd. 3.33).
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Figure 5 Partial dependence plots for the top 25 variables. Partial dependence plots for the top 25 variables with the variable importance
scores as calculated by random forests. Plots show the partial dependence of a Relative Occurrence Index value for BVDV on each predictor
variable; the y-axis is given in log scale [the logit function gives the log-odds, or the logarithm of the odds p/(1 − p)].
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In a visual analysis of density distributions of AUC scores
obtained for each classifier (Figure 6A), RF presents a dis-
tribution slightly shifted to the right in relation to others,
indicating a tendency in provide a better predictive accur-
acy than GBM and SVM. Nonetheless, differences among
methods performance in terms of AUC scores are not
statistically significant according to a pairwise Wilcoxon
Ranked Sum test using the Benjamini-Hochberg procedure
to correct for multiple comparisons. The lowest p-value
was associated to the comparison between RF and SVM
(P-value = 0.064), followed by the comparison between RF
and GBM (P-value = 0.075).
We also compared the distribution of sensitivity and

specificity metrics across all repetitions of cross-validation
following the same methodology, and we found that SVM
has better specificity performance than RF and GBM
(P-value < 0.05), while both RF and GBM outperform
SVM in terms of sensitivity (P-value < 0.05).

Comparison between RF and logistic regression
As expected according to our theoretical motivation, we
observed a superior performance of RF relative to logistic
regression. While RF had an average AUC score of 0.702,
the model estimated by logistic regression achieved an
AUC score of 0.610 across all repetitions of cross-
validation. The density plots drawn from the cross-
validation procedure makes evident the better predictive
power of RF, which presents an AUC scores distribution
shifted to the right of that related to logistic regression
(Figure 6B).

Moreover, we observed that the classification provided
by RF is much more balanced in terms of sensitivity and
specificity than logistic regression. The average specifi-
city was 67.65% (±3.85) for RF and 61.36% (±3.33) for
logistic regression, while the average sensitivity achieved
by these methods were 62.26% (±3.44) and 56.30%
(±3.84) for RF and logistic regression, respectively.

Models evaluation with independent testing data
In addition to the comparative analysis carried out among
classifiers using cross-validation, we evaluated the models’
predictive accuracy with independent test data. Results in
terms of the ROC curves are shown in Figure 7A for the
ML algorithms. The corresponding AUC scores are 0.697
for RF, 0.703 for SVM and 0.785 for GBM.
Differently from the cross-validation technique that

ensures every instance in the data set will be used
exactly once for model validation, the initial partitioning
of data is performed a single time in a random fashion,
and may generate a testing data set for which GBM,
fortunately, have a superior performance – an effect that
is out of our control. To test for this possibility, we
repeated the process of model training and testing 10
times, each of which with a random (and thus potentially
different) partitioning of data into training and testing
sets, keeping the proportions of 80% and 20%, respect-
ively. We performed this procedure for the three classi-
fiers, i.e., RF, SVM and GBM, and compared their
average performance for the independent test data
across all repetitions. We observed that RF outperforms

Figure 6 Comparative evaluation of RF against GBM, SVM and logistic regression based on repeated cross-validation. The performance
of the models over several resamples are summarized by a kernel density estimator, which indicates a narrow distribution and slightly shifted to
the right (higher values) for RF A) in relation to SVM and GBM and B) in relation to logistic regression.
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the other classifiers in 6 out of the 10 repetitions, while
in the remaining 4 the best performance is achieved by
GBM (Additional file 4). Although the average AUC
score of RF is only slightly better than GBM, 0.7466 vs.
0.7301, the worst and best performances achieved by RF
show a performance gain of 12.09% and 7.13% in rela-
tion to the worst and best models trained by GBM,
respectively.
Regarding the comparative evaluation between RF and

logistic regression, similarly to what was observed from
the cross-validation procedure, RF presented a more ro-
bust performance for independent testing data in rela-
tion to logistic regression. The ROC curves are shown in
Figure 7B, corroborating the better predictive accuracy
of RF in contrast to logistic regression.

Discussion
In this study, we trained a RF model based on cross-
sectional data derived from an investigation for BVDV
prevalence carried in Southern Brazil, aiming to identify
important predictors for disease occurrence and to evalu-
ate the predictive power of this machine learning model in
this specific domain. To the best of our knowledge, this is
one of the few studies in veterinary epidemiology that
performs an investigation based on machine learning
algorithms adopting a careful training process, which en-
compasses parameters optimization and a strategy to treat
a severe class imbalance problem. In addition, it was also
the first time that a comparative evaluation among RF,
SVM and GBM models was held in this context, adopting

appropriate methods for model tuning and a repeated
10-fold cross-validation technique.
Based on the classification results by RF, we noticed

that our model’s performance has shown an overall good
predictive accuracy and quite balanced sensitivity and
specificity across all repetitions of the cross-validation.
The data-driven analysis carried by RF, without a priori as-
sumptions about the relationship between the dependent
and independent variables, has a great potential to outper-
form the traditional logistic regression, as experimentally
verified for our data, suggesting that RF could be a valuable
tool in cross-sectional studies. The reader should be aware
that our results do not come from basic measures of total
classification accuracy and error rates; instead, we have
adopted robust evaluation approaches and made important
interventions for training and optimizing the machine
learning classifiers, providing a more appropriate applica-
tion of these methods to our scenario. Specifically, we have
optimized the number of predictor variables selected for
splitting a new node during the production of the decision
trees, and we decided to not optimize the number of trees
in the forest based on the former discussion that RF is not
very sensitive to this last parameter [35].
Despite its satisfactory performance, our classifier has

missed on average more positive than negative cases of
BVDV, even after the application of the down-sampling
strategy (Table 1). Most standard algorithms assume or
expect balanced class distribution or equal misclassifica-
tion costs [46], so when a complex imbalanced data set
is used, these algorithms fail to properly represent the

Figure 7 Evaluation of models performance for independent test data. A) RF, SVM and GBM were also compared using an independent test
set, which corresponds to the 20% portion of data that was not used in the training and cross-validation procedures. According to the ROC
curves, the GBM classifier outperforms RF and SVM. B) Relative to the logistic regression, a traditional statistical approach used for the analysis of
risk factors, RF achieved a more robust performance.
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distributive characteristics of the data and resultantly
provide unfavorable accuracies across the classes of the
data [46]. In our data we found an imbalance in a form
commonly referred to as “intrinsic”, which means the im-
balance is a direct result of the nature of the data space
[46]. We analyzed the effects of the down-sampling pro-
cedure over classifiers performance, comparing the results
obtained from training with and without handling the data
imbalance issue, and we observed that all three methods
suffered impact from the severe data imbalance over their
sensitivity. When training is carried without treating this
issue, models’ sensitivities were in the approximate range
of 11.5% to 20%, which is clearly lower than the values of
57.60%, 61.73% and 62.26% achieved by SVM, GBM and
RF, respectively. Hence, we observed that adopting this
pre-processing strategy in data sets containing classes that
are highly under-represented in comparison to others may
introduce important benefits for data analysis, although in
this case it did not completely solved this issue.
The final variables ranking in a descending order of im-

portance as provided by RF’s variable importance analysis
(Figure 3) suggests that the main variables involved in
BVDV prediction are related to reproduction-associated
factors, movement of many people into and out of the
farms, and direct contact among animals, as we discuss
further. Feature selection has been previously shown to
result in slight error reductions [47], and this step is
normally performed in order to remove variables that do
not contribute to the performance of the model, either
because they do not play an important role on error re-
duction or because they have a minimal effect on the dis-
criminant power of the RF classifier [48]. One can notice
that although performance improvement was not so ex-
pressive after feature selection (Table 2), we still observed
a slight gain in terms of accuracy and specificity. The top
25 variables model is therefore more efficient, as it pro-
vides a performance as good as the model trained with the
complete set of 40 variables despite the reduction in
model complexity.
Regarding the results of variable importance analysis,

we discuss only the most relevant variables due to space
limitation. The most impactful variable for BVDV predic-
tion was related to farms that perform AI (Figure 5A), a
factor that has been considered a predictor for BVDV
globally, especially when semen is used from untested
bulls or when farms use AI along with natural mating in
order to “guarantee” the success of a pregnancy, a com-
mon and unsafe practice in Brazil [10]. AI is an important
route of transmission of BVDV because semen remains
infective, which is evident by the demonstration that sus-
ceptible cows can become infected following insemination
[15,49-51]. A remarkable new association that we found
was that when AI is performed by the owner or someone
that is responsible for the farm, a common reproductive

practice in Brazil and other countries, the influence on
BVDV cases was evidently harmful, increasing the prob-
ability of disease occurrence. It was also reaffirmed that
the number of neighboring cattle farms where there is
chances of direct contact between cattle over the fence
was a predictor for BVDV [13]. Others have identified the
direct contact over fence lines one of the hardest to
control [52]. In our analysis, we showed that the partial
dependence of BVDV on this variable increases as the
numbers of neighbors’ increases, and that BVDV occur-
rence rises abruptly when there are three neighboring
farms. The occurrence of BVDV was also influenced by
factors related to milk production. When milk production
was reported to represent 61 to 80% of farm income
(Figure 5C), we observed a high association with BVDV,
most likely due to milk production with intensive pressure
on cow performance. It was found that farms that have
produced milk for up to nine years had the highest influ-
ence on disease occurrence in contrast to farms that have
been harvesting milk for longer periods (Figure 5D) this
fact may be related to the inexperience of the farmer.
Partial dependence analysis also suggested that rectal

palpation performed routinely (Figure 5F) causes signifi-
cant influence on BVDV occurrence. It has been found
that indirect transmission of BVD virus can be spread by
veterinary equipment such as nose tongs, needles and pro-
tective rubber gloves worn during rectal examination
[53,54]. Others [55] had also reported that rectal palpation
performed consecutively on different animals without
proper hygiene (e.g., without replacing glove between ani-
mals) might play an important role in the transmission of
BVDV. Moreover, the number of different inseminators
that had visited the farm in the past year showed a linear
influence on BVDV (Figure 5G). We observed that as the
number of inseminators increases, the chances of predict-
ing positive cases of BVDV were also higher, probably due
to intense people movement acting as fomites.
In order to compare the RF model against other clas-

sifiers that have similar literature, a repeated 10-fold
cross-validation was performed, averaging model accuracy
measures over all repetitions. We found a better overall
performance of RF in relation to SVM and GBM, espe-
cially in terms of specificity and sensitivity balance, but
results were very close among ensemble-based algorithms
(i.e., RF and GBM). Although the difference between the
AUC scores of these two classifiers are not statistically
significant, we found based on visual analysis of kernel
density estimates that the probability distribution of RF is
shifted to the right of GBM and SVM distributions, which
suggests that RF has a tendency to produce higher AUC
scores (i.e., achieve best performance) in relation to the
latter. Others had previously found similar results when
testing the performance of all tree classifiers, but in the
previous study, GBM and SVM performed relatively better
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than RF [56]. The poor results related to SVM may be due
to the fact that the performance and prediction results of
this classifier are heavily dependent on the chosen values
for the tuning parameters [57-59]. Although we adopted a
parameter optimization procedure based on grid search
methods that minimize total error rates, a more exhaust-
ive study towards the evaluation of classifier’s performance
upon parameters optimization, combined with the appli-
cation of other optimization techniques, could lead to an
even better performance. However, this analysis is out of
the scope of our work.
Surprisingly, for tests with independent data, GBM

showed an improved performance, which is better and
more balanced than the performance achieved by RF and
SVM. This may indicate a better generalization power of
this algorithm, but it may also be an artifact of data parti-
tioning, which randomly generates a test set for which
GBM has a more favorable chance of producing accurate
classification. However, due to the random nature of the
procedure, repeated partitioning of the original data into
training and testing sets may produce results with large
variability, both qualitative and quantitative, and conse-
quently provide less consistent insights than the analysis
performed with cross-validation. We verified this effect by
repeating 10 times the complete training process, from
data preparation (and consequently data partitioning) to
models evaluation, based on which we observed signifi-
cant variance in methods performance. Briefly, RF and
GBM were always the top-performing classifiers, but in 6
out of the 10 repetitions, RF outperformed GBM, showing
that the outcome of this comparison is highly dependent
on initial data partitioning. Hence, we emphasize that the
10-fold cross-validation technique is more powerful in
reducing overfitting and more precise for assessing the
predictive power of machine learning methods, providing
an unbiased estimative of how a classifier model will
generalize to an independent data set.
It should be noted that GBM is functionally similar to

RF because it creates an ensemble of trees and uses
randomization during this process. This fact could sup-
port the similar results observed for these two methods.
However, whereas RF builds the trees in parallel and
these trees “vote” simultaneously on the preferred class
during prediction, GBM creates a series of trees in which
the prediction receives incremental improvement by
each tree in the series [60].
In life sciences, random forests have been used to

analyze genomic data [61,62], in ecology they have been
successfully used as classifiers [19,63,64], and herein they
are used for cross-sectional studies in veterinary epi-
demiology. Random forests proved to have good accur-
acy, sensitivity and specificity, showing a discriminant
power that is highly competitive with other ML-based
methods for detecting biologically plausible predictors

of BVDV. Based on these results, we believe that RF is
a promising computational approach for cross-sectional
studies in veterinary epidemiology and should be more
frequently considered as an alternative for traditional
statistical methods.
Moreover, our model demonstrated a novel use of ob-

servational data that goes beyond the previously identified
predictors. The application of machine learning extends
the usefulness of classical risk factors found on the basis
of traditional statistical approaches. Based on the pro-
posed RF model, we could take a closer look at some clas-
sical predictors and found important details regarding
their relationship with disease occurrence, mainly regard-
ing reproduction management, which should be consid-
ered for disease control and eradication. One should take
this investigation further ahead in order to clarify how the
important reproduction variables contribute to BVDV in
other countries.

Additional files

Additional file 1: Descriptive statistics on the study population. A
descriptive analysis has been performed in order to show an overview of
the study population.

Additional file 2: Frequency of important predictor variables. The
prevalence of important predictor variables obtained by serological assay
results provides details of disease occurrence in the study population.

Additional file 3: Correlation matrix for predictor variables.
Negative correlation is represented by red ellipses pending to the left;
positive correlation is represented by blue ellipses pending to the right.
The exact correlation values are given in the upper panel.

Additional file 4: Models performance for 10 randomly generated
independent test data sets. The AUC scores are computed for 10
repetitions of model training and testing. In each repetition, a random
portion of 80% of data is used for training, and the remaining 20% for
testing (independent data).
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