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                          Serum   amyloid A (SAA) concentration in plasma in-
creases markedly following infl ammation or infection, with 
the liver being the principal site of its synthesis. SAA was 
fi rst reported to be associated with both human and animal 
HDLs in the late 1970s ( 1 ), but is also associated with other 
lipoprotein fractions ( 2 ,  3 ). Further studies showed that 
HDL particles isolated from endotoxin-treated mice con-
tain up to two SAAs per apoA-I molecule ( 4 ). When SAA 
containing HDL was reinjected into mice it was cleared 
from the plasma more rapidly than apoA-I ( 5  –  8 ). However, 
isolation of SAA and its reconstitution with HDL to create 
SAA-enriched particles gives particles that on reinjection 
are more slowly cleared from plasma compared with native 
SAA containing HDL ( 5 ). HDL particles isolated from pa-
tients with myocardial infarction also contain SAA and are 
small ( 9 ), with a density similar to that of HDL 3  ( 10 ), but 
with a diameter resembling HDL 2 . The lipid content of 
these particles is reduced and enriched in triglyceride 
compared with HDL from healthy people ( 10  –  12 ). During 
acute infl ammatory stress the principal protein bound to 
HDL 3  is SAA ( 13 ), not apoA-I, showing a reversal in the 
protein composition from normal HDL. SAA increases the 
binding affi nity of HDL to macrophages but reduces HDL 
binding to hepatocytes ( 14 ), suggesting that SAA directs 
HDL to preferentially remove cholesterol from sites of in-
fl ammation ( 15 ), possibly through the formation of pre β -
HDL ( 16 ). HDL cholesteryl ester uptake from reconstituted 
HDL via SR-B1 is inhibited by the presence of SAA on the 
particles ( 17 ), but the effl ux of free cholesterol is en-
hanced through both SR-B1 ( 18 ) and ABCA1 ( 18 ,  19 ) to 
SAA-containing HDL particles. 

 Early studies of the HDL particle focused mainly on 
changes in the lipid and protein content as well as the struc-
ture, size, and clearance of the particles from plasma. 
Extensive investigations into identifying HDL ’ s protein 
cargo have suggested that the HDL proteome can be highly 
variable among individuals and altered in response to acute 
cardiac events ( 20 ). These studies suggest a need for accu-
rate quantitative methods to carefully assess individual risk 

factors with regard to heart disease and HDL function. 
More recent work has begun to quantify the changes in 
the protein cargo of HDL under both normal conditions 
and infl ammatory stress. Mass spectrometry is the principal 
tool used for these studies, employing one of two methods. 
The fi rst method analyzes intact protein mixtures, called 
top-down proteomics ( 21  –  23 ), and often involves electron 
transfer dissociation or electron capture dissociation to 
obtain amino acid sequence information that helps confi rm 
protein identifi cation. In the second, more commonly 
used method called bottom-up proteomics ( 24  –  30 ), protein 
mixtures are digested with a single protease, usually trypsin. 
Protein identifi cation is based on accurate mass analysis 
of peptides combined with MS/MS peptide sequencing. 
Quantitation of proteins, including those carried by HDL, 
depends on the method of analysis. Label-free, shotgun 
proteomics gives the greatest possibility of identifying all of 
the possible changes that are taking place with minimum 
manipulation of the samples. Label-free proteomics yields a 
more comprehensive picture of the cargo proteins carried 
by HDL, whereas methods that label peptides, like iTRAQ 
or stable-isotope labeling, can lead to a more quantitative 
assessment of individual protein concentration ( 20 ,  31 ). 
Label-free methods require careful attention to detail if 
accurate quantitation is desired and usually employs ei-
ther spectral counting or measurements of ion abundance 
( 32 ). When the content of specifi c target proteins carried 
by HDL is desired, multiple-reaction monitoring ( 33  –  35 ) 
with the addition of stable-isotope labeled peptides has 
worked well ( 36 ). 

 The largest number of HDL cargo proteins identifi ed in 
a single study was 225 by Jorge et al. ( 20 ) who employed 
both iTRAQ and  16 O/ 18 O labeling. Comparison of HDL 
protein cargo between normolipidimic and CVD patients 
showed that there were differences in the levels of several 
cargo proteins carried by HDL 2  ( 25 ) and HDL 3  ( 37 ). Inter-
estingly, an association between SAA and CVD was pro-
vided by Lepedda et al. ( 3 ), who extracted VLDL, LDL, 
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and HDL from carotid endarterectomy samples and found 
that SAA levels were signifi cantly increased in patients 
compared with controls. In another study, HDL isolated 
from CVD patient plasma identifi ed 196 proteins associ-
ated with HDL particles, of which four showed increased 
expression in CVD patients, whereas a further seven pro-
teins were decreased compared with normal controls ( 38 ). 
Using MS, and with verifi cation by ELISA, SAA showed a 
highly signifi cant increase in patient samples, whereas 
apoC-I levels showed a signifi cant decrease compared with 
controls. Mass spectrometry combined with 2-D gel elec-
trophoresis has also been used to precisely map the pro-
teins that coelute with HDL and apoA-I ( 28 ). 

 In this issue of the  Journal of Lipid Research , Vaisar et al. 
investigate how infl ammation, an established risk factor for 
CVD, affects cholesterol effl ux to HDL. The human partici-
pants were subjected to acute endotoxin-induced infl am-
mation and changes in HDL cargo proteins were measured 
using mass spectrometric-based proteomic methods. As re-
ported by others, Vaisar et al. found that infl ammation did 
not change plasma HDL cholesterol levels, but that the 
amount of SAA1 and SAA2 carried by HDL was signifi cantly 
increased. Unlike a previous study, they did not see any 
change in apoC-I levels ( 38 ) possibly due to differences in 
the stringency of the methods used to analyze the results. 
Notably, Vaisar et al. report a reduction in the cholesterol 
effl ux to HDL isolated from endotoxin-treated subjects and 
demonstrate an inverse correlation between the concentra-
tion of HDL SAA 1 and 2 and cholesterol effl ux capacity. 
These authors further recapitulated their fi ndings using 
wild-type and SAA 1/2 defi cient mice, in an experiment in 
which the SAA defi cient mice were protected from a re-
duction in cholesterol effl ux after infl ammatory challenge  . 
However, using the mouse model to provide a mechanism 
of how HDL SAA infl uences cholesterol effl ux gave an 
array of results that raises the question, how much HDL 
SAA is required to disrupt cholesterol effl ux capacity? 

 In summary, the report by Vaisar et al. demonstrates a 
link between HDL SAA and decreased cholesterol effl ux 
from J774 macrophages. The SAA appears to displace other 
proteins from the plasma HDL particles, generating par-
ticles that are rich in SAA and defective in their effl ux ca-
pacity. The next step may be to determine at what SAA 
plasma or particle concentration cholesterol effl ux is af-
fected, and whether SAA alters all HDL size classes equally, 
or if it is limited to the smaller, denser HDL 3  particles.     
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