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Vaccines targeting pathogens are generally effective and
protective because based on foreign non-self antigens which
are extremely potent in eliciting an immune response. On the
contrary, efficacy of therapeutic cancer vaccines is still
disappointing. One of the major reasons for such poor
outcome, among others, is the difficulty of identifying tumor-
specific target antigens which should be unique to the
tumors or, at least, overexpressed on the tumors as compared
to normal cells. Indeed, this is the only option to overcome
the peripheral immune tolerance and elicit a non toxic
immune response. New and more potent strategies are now
available to identify specific tumor-associated antigens for
development of cancer vaccine approaches aiming at
eliciting targeted anti-tumor cellular responses. In the last
years this aspect has been addressed and many therapeutic
vaccination strategies based on either whole tumor cells or
specific antigens have been and are being currently
evaluated in clinical trials. This review summarizes the current
state of cancer vaccines, mainly focusing on antigen-specific
approaches.

Tumor Cell Vaccines

Tumors accumulate several genetic modifications in somatic
cells1,2 which provide selective growth advantage to cancer cells
in order to initiate clonal expansion.3

Considering the high number of potential tumor antigens for
each individual cancer, vaccination with whole tumor cells has
been considered the optimal strategy to include all potentially

relevant antigens. Moreover, such vaccine approach circumvents
the major histocompatibility complex (MHC)- restriction and
the need for specific patient-tailored epitope identification.

Autologous tumor vaccines prepared using patient-derived
tumor cells represent one of the first types of cancer vaccines that
have been tested.4 The efficacy of such approach has been evalu-
ated during the years in several clinical trials targeting different
tumor types, including lung cancer,5,6 colorectal cancer,7-9 mela-
noma,10-12 renal cell cancer13,14 and prostate cancer.15 However,
sufficient amount of tumor specimen is needed for preparation
of such autologous tumor cell vaccines, restraining its application
to a limited number of tumor types or stages.

To overcome the limitations of patient-tailored vaccines, allo-
geneic whole tumor cell vaccines have been developed based on 2
or 3 established human tumor cell lines. In particular, they allow
standardization of large-scale production, quality and composi-
tion of the vaccines as well as comparative analysis of clinical out-
come. Moreover, they can be easily manipulated for expression
of immunostimulatory molecules.

The first allogeneic whole-cell vaccine was the CanvaxinTM,
consisting of 3 melanoma lines combined with BCG as an adju-
vant16 which, after promising results in phase II clinical trials,17,18

failed in 2 multi-institutional randomized phase III trials.19

However, the effectiveness of such vaccine strategy is dramati-
cally hampered by the immune system’s inherent tolerance to
several antigens expressed in the whole tumor cell preparation, as
they may be expressed by normal tissues or presented to T cells
in a non-stimulatory context. In order to break tolerance and
contain immune suppression, antigens should be combined to
strong immunological adjuvants (reviewed in20,21). To this aim,
whole tumor cell vaccines (autologous or allogeneic) can be
genetically modified to express co-stimulatory molecules and/or
cytokines, such as granulocyte macrophage-colony stimulating
factor - GM-CSF (GVAX). GVAX has proven to be more
effective than others in inducing recruitment, maturation, and
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function of dendritic cells (DCs), the most potent antigen-pre-
senting cell (APC).22–24

The clinical activity of GVAX based on allogeneic whole-cell
vaccine has been evaluated for treatment of recurrent prostate
cancer,25,26 breast cancer27 and pancreatic cancer.28 However,
the use of allogeneic cells as a vaccine can generate strong anti-
MHC immune reactions that can interfere with the anti-tumor
response and recent observations suggest a potential detrimental
effect of GM-CSF due to induction of immune suppression in
cancer patients (reviewed in29,30).

An alternative strategy to improve immunogenicity of alloge-
neic tumor cell vaccines is to engineer cell lines to secret antisense
oligonucleotide for inhibiting expression of the immunosuppres-
sive cytokine TGF-b2. This strategy is the principle of Luca-
nixTM, targeting non-small-cell lung carcinoma – NSCLC,
which in 2 independent phase 2 trials has induced significant
improvement in overall survival in advanced disease.31,32 The
phase 3 STOP (Survival, Tumor-free, Overall, and Progression-
free) trial is in progress enrolling patients with locally advanced
or advanced NSCLC without progression after first-line chemo-
therapy or chemoradiation (NCT00676507).

Tumor-Associated Antigens - TAAs

Shared TAAs
Cancer vaccines based on defined specific tumor antigens

should elicit a very specific effector and memory cell response.
However, such approach may result in selection and expansion of
tumor variants which lack the target tumor antigen and are resis-
tant to the vaccine-induced immune response. Nevertheless, the
newly expressed antigens on tumor variants may elicit a broader
anti-tumor immune response, in a process defined “epitope
spreading."33,34

MAGE-1 was the first gene reported to encode a human
tumor antigen recognized by T cells.35 Since then, a large num-
ber of tumor-associated antigens (TAAs) have been described
and are divided into shared and unique TAAs.36 A complete and
update list of shared TAAs is available at http://www.
cancerimmunity.org/peptide/.

Shared TAAs can be classified in 3 main groups: 1) cancer-tes-
tis; 2) tissue differentiation; and 3) widely occurring over-
expressed antigens. Cancer-testis (CT) antigens result from re-
activation of genes which are normally silent in adult tissues,37

but are transcriptionally activated in different tumor histotypes.38

Many CT antigens have been identified and tested in clinical tri-
als, although little is known about their specific functions, espe-
cially with regards to malignant transformation. Such group of
TAAs includes the MAGE-A1,39,40 NY-ESO-141 and SSX-2.42

Tissue differentiation antigens are shared between tumors and
the normal tissue of origin; they are mostly found in melanomas
and normal melanocytes (Gp100, Melan-A/Mart-1, Tyrosi-
nase).43-48 as well as in epithelial tissues and tumors such as pros-
tate (PSA)49,50 and breast carcinomas (Mammaglobin-A).51

Widely occurring overexpressed TAAs are over-expressed in
tumor cells compared to normal tissues, reaching the threshold

for T cell recognition to break the immunological tolerance and
trigger an anticancer response. The antiapoptotic proteins livin
and survivin,52,53 hTERT,54-56 and tumor suppressor proteins
(e.g., p53)57,58 belong to such group. Mucin 1 (MUC1) belongs
to the “overexpressed TAA” category, although it is the combina-
tion of overexpression and modification of glycosylation status in
tumor cells to make MUC1 highly immunogenic and, thus, an
interesting target in cancer immunotherapy.59

Tumor-associated carbohydrate antigens (TACAs) represent
an additional class of shared tumor antigens. They are glycans
uniquely or overexpressed by tumors60 correlating also with vari-
ous stages of cancer development.61,62

Unique personalized TAAs
Unique TAAs result from random somatic point mutations

induced by physical or chemical carcinogens, and therefore repre-
sent neo-antigens uniquely expressed by individual tumors
(reviewed in63,64). Cancer genome instability and subsequent
selective pressure lead to accumulation of mutations which may
give rise to non-synonymous mutations. Interestingly, the num-
ber of such non-synonymous mutations shows a significant vari-
ability between different tumor types (10 to 400).2,65 Given that
neo-antigens are tumor – specific, their immunogenicity is not
hampered by central T-cell tolerance and the elicited T-cell
responses are not expected to result in autoimmune toxicity.
Indeed, mutated epitopes identified in a murine melanoma cells
have been shown to elicit a stronger T-cell response in vivo in a
side-by-side comparison with corresponding wild type epito-
pes.66 Moreover, neo-antigens should be more resistant to
immune-selection being crucial to the oncogenic process and
thus indispensable for maintaining the neoplastic state. Most of
the studies focused on cancer mutation discovery have been per-
formed using broad assays like whole genome (WGS) and whole
exome sequencing (WES) on each individual tumor,67,68 in order
to identify mutated genes and select peptides whose motifs are
predicted to be presented by the patient’s HLA alleles. However,
only a small fraction of such mutated peptides are indeed pre-
sented by MHC or recognized by T cells, and this seems to
directly correlate with the tumor-specific mutation load.66,69-72

Therefore, prediction of MHC presentation calculated by soft-
ware algorithms needs to be confirmed by experimental proce-
dures. Moreover, each tumor bears highly heterogeneous sets of
defects in dozens of different genes73-77 which need to be further
verified for their substantial contribution to the tumor develop-
ment and progression and, consequently, for their relevance as
vaccine target.78

On the contrary, identification of unique TAAs for hemato-
logical tumors as B cell lymphomas requires sequencing analysis
focused only on immunoglobulin idiotype (Ig Id) included in
the B-cell receptor (BCR), which represents the target
antigen.79,80

Selection of antigens for cancer vaccine development
TAAs may be used as vaccine administering the full-length

protein, which contains all potential MHC class I and MHC
class II epitopes capable of stimulating CD8C and CD4C T
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cells, respectively. Therefore, the full-length protein can be con-
sidered as an “off-the-shelf” vaccine ready-to-use for any eligible
cancer patient regardless his/her HLA allele background. On the
contrary, vaccines based on epitopes derived from TAAs require
the identification and selection of specific epitopes that interact
with specific MHC complexes in order to stimulate a T-cell-asso-
ciated immune response. Such epitopes represent an “off-the-
shelf” vaccine ready-to-use for any eligible cancer patient charac-
terized by that specific HLA allele background. In the last years,
this has been performed by predictive immune-informatics algo-
rithms.81-85 Prediction algorithms have been constantly updated
in order to take into considerations all the biological variables
related to the complexity of the intra-cellular process governing
the peptide fragmentation by the proteasome and the transporta-
tion to HLA class I molecules in the endoplasmic reticulum, via
the transporter associated with antigen processing (TAP)
(http://www.cbs.dtu.dk/services/). Nevertheless, immunological
experimental validation of predicted epitopes is required to ulti-
mately confirm the selection of epitopes.

Recently, strategies based on high resolution mass spectrome-
try (MS) have been developed for directly sequencing peptides
presented by HLA molecules (HLA ligandome) on tumor cells,
to identify naturally processed class I and class II tumor-associ-
ated peptides.86 This strategy, indeed, allows the identification of
T cell epitopes in fact presented by the tumor cells, thus repre-
senting a valid target of the T cells, and it has been employed to
identify the HLA ligandome for glioblastoma (GB),87 renal cell
cancer (RCC) and colorectal cancer (CRC) (reviewed in88).

In the quest of the most specific tumor-associated antigens, a
personalized approach is currently feasible based on the individ-
ual features of tumors. Next-generation sequencing and compu-
tation prediction allow the identification of genetic alterations in
cancer cells of each cancer patient (the mutanome) encoding
unique mutated peptides (m-peptides) that can be used as vaccine
to elicit specific anti-tumor T cells.66,89 The latter approaches
represent the very last frontier of the immunotherapy and their
translation into clinical application is currently used in 2 projects
funded by the European Union, within the Framework Program
7, focused on glioma (www.gapvac.eu) and on hepatocellular car-
cinoma (www.hepavac.eu).

Peptide-protein based cancer vaccines
Peptide-protein based vaccines are cost effective, compared to

other vaccine approaches including multiple antigens. For such
reason, most of cancer vaccine clinical trials have been performed
with peptide-protein based vaccines including cancer-testis or
differentiation TAAs but, despite the induction of strong T-cell
immunity, clinical outcomes have been disappointingly
limited90-95 (Table 1 and 2).

Indeed, with exception of the 2 cancer vaccine clinical trials
based on Sipuleucel-T which have allowed the licensing by FDA
for the treatment of asymptomatic metastatic castrate-resistant
prostate cancer (see below),96,97 the other 8 Phase 3 clinical trials
completed or terminated have not provided satisfactory results
and no further implementation for licensing has been pursued
(Table 3).

Among many possible reasons for such unsatisfactory results,
one could be the induction of a restricted T cell immune
response that may not be sufficient and ultimately cause a selec-
tion of tumor cells lacking or down-regulating the targeted anti-
gen. The use of multiple peptides derived from different TAAs
could overcome such a drawback, eliciting a T cell response
against multiple targets which may counteract tumor heterogene-
ity and enhance the probability of tumor eradication. The feasi-
bility of such multi-epitope approach has been confirmed by in
vivo and in vitro studies showing that multiple peptides do not
mutually compete for MHC presentation and are able to induce
a multi-specific T-cell response.98-100 Furthermore, studies have
also clearly demonstrated that a potent and sustained CD8C T-
cell response can be induced only combining HLA class I and II-
restricted peptides, due to the helper function provided by
CD4C T helper (TH) cells.101-103 Vaccines based on a multi-
peptide cocktail have been developed and evaluated in phase I/II
clinical trials for glioblastoma (IMA950, NCT01920191), renal
cell carcinoma (IMA901, NCT00523159) and colo-rectal cancer
(IMA910, NCT00785122) showing feasibility, safety and
immunogenicity. IMA901 is currently in a world-wide phase 3
trial in patients receiving Sunitinib for advanced/metastatic RCC
(NCT01265901).

Strategies to improve immunogenicity of peptide-based
vaccines

Several strategies have been adopted to improve clinical out-
come of peptide-based vaccines, mainly aiming at potentiating
the innate immune response. Toll-Like Receptors (TLRs) ago-
nists are being tested in clinical trials evaluating peptide/protein-
based cancer vaccines. TLR3 agonists currently evaluated in
human clinical trials are the poly(I) poly(C12U) (Ampligen�), in
a phase I-II study of HER2 vaccination in breast cancer patients
(NCT01355393) and the Poly-ICLC (Hiltonol�) in a multipep-
tide vaccine in melanoma patients (NCT01585350), in a
MAGE-A3 ASCI peptide vaccine in melanoma patients
(NCT01437605) as well as in a MUC1 peptide vaccine in
patients with advanced colorectal adenoma (NCT00773097).
The TLR7/8 agonist Resiquimod is currently evaluated in a
gp100(g209–2M) and MAGE-3 peptide vaccine in patients with
melanoma (NCT00960752). Additional agonists for Pattern
Recognition Receptors (PRRs) are evaluated for their adjuvant
activity in therapeutic cancer vaccines. In particular, stress/heat
shock proteins (HSPs) can be utilized as immunostimulatory
agents for cancer immunotherapy.104–106 Chaperoning technol-
ogy has been generated to formulate recombinant HSP vaccines
including clinically relevant tumor antigens (e.g.,, gp100, HER-
2/Neu) (reviewed in107). Such strategy may be used to develop
many different antigen targets108 and 2 phase I clinical trials of
recombinant chaperone vaccine targeting melanoma have been
designed, one completed (NCT00005633) and one currently
recruiting patients (NCT01744171).

A phase III clinical trial has shown that melanoma patients in
the M1a and M1b substages, receiving a larger number of immu-
nizations with vitespen (autologous, tumor- derived heat shock
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Table 1. Cancer vaccines in Phase 1/2 clinical trials based on peptide/protein strategies.

CANCER Antigen STRATEGY NCT NUMBER PHASE

Bile duct URLC10 Peptide NCT00624182 Phase 1
Bladder NY-ESO-1 Peptide NCT00070070 Phase 1
Brain GAA DC NCT00612001 Phase 1
Breast OFA DC NCT00715832 Phase 1

cyclin B1/WT-1/CEF DC NCT02018458 Phase 1/2
VEGFR1 and VEGFR2 Peptide NCT00677326 Phase 1/2
TTK Peptide NCT00678509 Phase 1/2
Multiple Peptide NCT00674791 Phase 1
MUC1-KLH Protein NCT00004156 Phase 1
OFA DC NCT00879489 Phase 1/2
HER2 Protein NCT00952692 Phase 1/2

Cervical HPV16 E7 DC NCT00155766 Phase 1
Colorectal CEA DC NCT00228189 Phase 1/2

VEGFR1 and VEGFR2 Peptide NCT00677612 Phase 1/2
Multiple Peptide NCT00677287 Phase 1/2
Multiple IMA910 Peptide NCT00785122 Phase 1/2

Esophageal URLC10 Peptide NCT00753844 Phase 1
URLC10, VEGFR1 and VEGFR2 Peptide NCT00681421 Phase 1/2
URC10, TTK, KOC1 Peptide NCT00681330 Phase 1/2
Multiple Peptide NCT00669292 Phase 1/2

Gastric URLC10 Peptide NCT00845611 Phase 1/2
URLC10, VEGFR1 and VEGFR2 Peptide NCT00681252 Phase 1/2
URLC10, KOC1, VEGFR1 and VEGFR2 Peptide NCT00681577 Phase 1/2

Gliobalstoma not specified DC NCT00576641 Phase 1
not specified Peptide NCT01854099 Phase 1
SL-701 Peptide NCT02078648 Phase 1/2
Multiple IMA950 Peptide NCT01403285 Phase 1
Multiple IMA950 Peptide NCT01920191 Phase 1/2
Multiple Peptide NCT02149225 Phase 1

Hematological WT1 Peptide NCT00672152 Phase 1
Leukemia WT1 DC NCT00923910 Phase 1/2
Melanoma p53; survivin; telomerase DC NCT00197912 Phase 1/2

MART-1; gp100; tyrosinase Peptide NCT00005841 Phase 1
MART-1; gp100; Tyrosinase; NY-ESO-1 DC NCT00313508 Phase 1
NY-ESO-1 Protein NCT01079741 Phase 1/2
GSK2302025A Protein NCT01149343 Phase 1
MART-1, gp100; tyrosinase Peptide NCT00028431 Phase 1
gp100; tyrosinase DC NCT01530698 Phase 1/2
tyrosinase Protein NCT01331915 Phase 1/2
Multiple DC NCT00124124 Phase 1
gp100 Peptide NCT00003229 Phase 1/2
MART-1; MAGE-3.1; survivin DC NCT00074230 Phase 1/2
MART-1, gp100 Peptide NCT00470015 Phase 1
MART-1; MAGE-3.1 Peptide NCT00002952 Phase 1/2
MART-1, gp100; tyrosinase DC NCT00003665 Phase 1
MAGE-10.A2; MART-1; NY-ESO-1; tyrosinase Peptide NCT00037037 Phase 1
MART-1; gp100 Peptide NCT00091338 Phase 1
gp100 Peptide NCT00091143 Phase 1
MART-1; gp100 Peptide NCT00019214 Phase 1/2
MART-1; gp100 Peptide NCT00010309 Phase 1/2
OVA BiP; gp209–2M; tyrosinase peptide Peptide NCT00005633 Phase 1
MART-1; gp100; MAGE-3.1; tyrosinase Peptide NCT00003792 Phase 1
gp100; MART-1 Peptide NCT00004025 Phase 1/2
gp100 Peptide NCT00003897 Phase 1
MAGE-1/MAGE-3; tyrosinase; MART-1; gp100 DC NCT01082198 Phase 1/2
Melan-A Peptide NCT00324623 Phase 1
MART-1; NY-ESO-1; gp100 Peptide NCT01176461 Phase 1
gp100(g209–2M) Peptide NCT00960752 Phase 2
gp100; tyrosinase DC NCT00243529 Phase 1/2
MAGE-3.A1; NA17.A2 Peptide NCT01191034 Phase 1/2

Multiple KOC1, TTK, CO16, DEPDC1, MPHOSPH1 Peptide NCT00676949 Phase 1

(continued on next page)
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protein gp96 peptide complexes), have a longer survival than
those receiving fewer such treatments.109

Additional strategies to improve immunogenicity of peptides
aims to generate peptide variants of TAAs, including mimotopes,
heteroclitic peptides, altered-peptide ligands (reviewed in110) as
well as introducing amino acid substitutions in the peptide-
MHC-binding surface.111-113 A clinical trial based on a novel
prostate and breast cancer antigen TARP, designed as an
“epitope-enhanced” or “anchor-modified” peptide,114 is cur-
rently conducted in stage D0 prostate cancer patients
(NCT00972309) with promising early clinical results.115 In
addition, the above mentioned gp100(g209–2M) peptide evalu-
ated in a clinical trial in melanoma patients (NCT00960752) is,
indeed, an “epitope-enhanced” or “anchor-modified” peptide.116

Furthermore, long peptides (LPs) have been shown to be more
immunogenic than individual MHC class I-restricted short pep-
tide.117 Indeed, LPs do not bind directly to MHC class I but
only through processing by DCs,118-120 resulting in a significant
reduction of transient CTL response or tolerance.121,122 More-
over, LPs may persist longer in inflamed lymph nodes sustaining
the clonal expansion of IFNg-producing effector T cells with
improved anti-tumor CTL response.118 LPs have been generated
linking CTL and Th epitopes, as shown for several TAAs includ-
ing human papillomavirus (HPV) E6-E7 antigens,123,124 the CT
antigen NY-ESO-1125 and HER-2/neu126,127 and, very recently,
the novel cancer-testis antigen, cell division cycle associated 1
(CDCA1).128 Five clinical trials have been designed using LPs, 2
targeting melanoma based on NY-ESO-1 (NCT00112242) and
on multiple TAAs (NCT02126579), 2 targeting ovarian cancer
based on p53 TAA (NCT00844506 and NCT01639885) and
one targeting cervical cancer based on HPV E6/E7 proteins
(NCT02128126).

In the last years, it has been shown that the blockade of
immune checkpoints by antibodies or modulated by recombi-
nant forms of ligands or receptors (such as MAbs to PD-1, PDL-
1, CTLA4) represents one of the most promising approaches to
improve therapeutic antitumour immunity, amplifying antigen-
specific T-cell responses.129 Therefore, the combination of a vac-
cine and blockade of immune checkpoints could result in elicita-
tion of a stronger immune response with a more potent control
of tumor growth. A clinical trial of patients with advanced mela-
noma evaluated the effect of a peptide vaccine of melanoma-spe-
cific gp100 combined with humanized CTLA4 antibody
ipilimumab, showing a 3.5 month survival benefit compared
with the group receiving the gp100 peptide vaccine alone.130

Few clinical trials have been or are currently conducted to investi-
gate the combinatorial effect of TAA-based cancer vaccine and
ipilimumab in patients with melanoma (MART-1 -
NCT00090896; gp100 - NCT00094653; Tyrosinase/gp100/
MART-1 - NCT00025181) or pancreatic cancer (PSA -
NCT00113984). Similarly, few clinical trials are currently con-
ducted to investigate the combinatorial effect of TAA-based can-
cer vaccine and anti-PD-1 antibody BMS-936558 in patients
with melanoma (multiple epitopes - NCT01176461 and
NCT01176474).

Dendritic Cells as Antigen Delivery System

Increased immunogenicity of peptides for cancer vaccine can
be achieved by loading autologous dendritic cells (DCs) either ex
vivo or in vivo with the peptide.131-133 Indeed, DCs are the pro-
fessional antigen-presenting cells (APCs) bridging innate and
adaptive immunity.134 Their role in the periphery is to uptake

Table 1. Cancer vaccines in Phase 1/2 clinical trials based on peptide/protein strategies. (Continued)

CANCER Antigen STRATEGY NCT NUMBER PHASE

HER2, NY-ESO-1 Peptide NCT00291473 Phase 1
MAGE-12 Peptide NCT00020267 Phase 1
NY-ESO-1 Peptide NCT01584115 Phase 1/2
ONT-10 glycolipopeptide NCT01556789 Phase 1
ONT-10 glycolipopeptide NCT01978964 Phase 1
CEA Peptide NCT00057915 Phase 1

Neuroblastoma GD2L and GD3L Protein NCT00911560 Phase 1/2
Non Small Cell Lung GSK2302032A Protein NCT01159964 Phase 1

URLC10; CDCA1; VEGFR1; VEGFR2 Peptide NCT00874588 Phase 1
URLC10; TTK; KOC1 Peptide NCT00674258 Phase 1/2
URLC10; VEGFR1; VEGFR2 Peptide NCT00673777 Phase 1/2

Ovarian Survivin Peptide NCT01416038 Phase 1/2
Multiple Peptide NCT01095848 Phase 1

Pancreatic MUC1 Peptide NCT00008099 Phase 1
Prostate TF Protein NCT00003819 Phase 1

rsPSMA Protein NCT00705835 Phase 1
PSA DC NCT00005992 Phase 1
MUC-2 Protein NCT00004929 Phase 1
MUC-2 Protein NCT00036933 Phase 1
PSA; PAP; KLH DC NCT01171729 Phase 1/2

Renal cell Survivin; TERT DC NCT00197860 Phase 1/2
Sarcoma NY-ESO-1; MAGE-A1; MAGE-A3 DC NCT01241162 Phase 1

NY-ESO-1; MAGE-A1; MAGE-A3 DC NCT00944580 Phase 1
NY-ESO-1 Peptide NCT00027911 Phase 1
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Table 2. Cancer vaccines in Phase 2 or 3 clinical trials based on peptide/protein strategies.

CANCER Antigen STRATEGY NCT NUMBER PHASE

Bladder MPHOSPH1 and DEPDC1 Peptide NCT00633204 Phase 2
Breast MUC1 Peptide NCT00925548 Phase 3
Cervical HPV16/18 Protein NCT01356823 Phase 2

HPV16/18 Protein NCT01735006 Phase 3
Colorectal not specified DC NCT01348256 Phase 2

not specified DC NCT01413295 Phase 2
Esophageal STF-II Peptide NCT01267578 Phase 2

G17DT Peptide NCT00020787 Phase 3
Glioblastoma ICT-107 DC NCT01280552 Phase 2
Hodgkin/Non-Hodgkin LMP2A DC NCT02115126 Phase 2
Melanoma tyrosinase Peptide NCT01989572 Phase 3

gp100; tyrosinase; MAGE-3.1 Peptide NCT00085189 Phase 2
gp100; tyrosinase; MART-1 Peptide NCT00089063 Phase 2
MART-1; NA17-A; gp100; tyrosinase Peptide NCT00036816 Phase 3
MART-1; gp100; tyrosinase Peptide NCT00031733 Phase 2
gp100; tyrosinase Peptide NCT00003339 Phase 2
MART-1; gp100; tyrosinase DC NCT00334776 Phase 2
gp100 Peptide NCT00032045 Phase 2
MART-1; gp100; tyrosinase Peptide NCT00019396 Phase 2
MART-1; gp100 Peptide NCT00295958 Phase 2
MART-1, gp100 and tyrosinase Peptide NCT00001685 Phase 2
MART-1; gp100 Peptide NCT00020475 Phase 2
MART-1, gp100; tyrosinase Peptide NCT00059475 Phase 2
gp100 antigen Peptide NCT00080353 Phase 2
MART-1, gp100; tyrosinase Peptide NCT00006113 Phase 2
MART-1, gp100; tyrosinase Peptide NCT00006385 Phase 2
MART-1; gp100 Peptide NCT00019721 Phase 2
MART-1; gp100 Peptide NCT00019994 Phase 2
gp100 Peptide NCT00072085 Phase 2
gp100; tyrosinase Peptide NCT00003222 Phase 2
gp100; tyrosinase Peptide NCT00003362 Phase 2
gp100; tyrosinase Peptide NCT00003274 Phase 2
gp100 Peptide NCT00003568 Phase 2
multi-epitope Peptide NCT00071981 Phase 2
gp100; tyrosinase Peptide NCT00020358 Phase 2
gp209–2M Peptide NCT00019487 Phase 2
NY-ESO-1 Peptide NCT00079144 Phase 2
multi-epitope Peptide NCT00004104 Phase 2
gp100 Peptide NCT00077532 Phase 2
NY-ESO-1 Peptide NCT00020397 Phase 2
gp100 Peptide NCT00019682 Phase 3
gp100; MART-1 Peptide NCT00303836 Phase 2
NA17.A2; MAGE-3.1; MART-1 Peptide NCT01307618 Phase 2
gp100; MART-1 DC NCT00019890 Phase 2

Multiple CEA Peptide NCT00012246 Phase 2
Non Small Cell Lung Dex2 Peptide NCT01159288 Phase 2
Pancreatic hTERT Peptide NCT00358566 Phase 3
Prostate PSA Peptide NCT00109811 Phase 2

PAP Sipuleucel-T NCT01477749 Phase 2
PAP Sipuleucel-T NCT00005947 Phase 3
PAP Sipuleucel-T NCT00715078 Phase 2
PAP Sipuleucel-T NCT01338012 Phase 2
PAP Sipuleucel-T NCT00065442 Phase 3
PAP Sipuleucel-T NCT00901342 Phase 2
PSA Peptide NCT00030602 Phase 2
PAP Sipuleucel-T NCT01431391 Phase 2

Renal Cell gp100; MART-1; tyrosinase Peptide NCT00019396 Phase 2
Multiple IMA901 Peptide NCT00523159 Phase 2
Multiple IMA901 Peptide NCT01265901 Phase 3
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pathogen- or host-derived antigenic proteins, which are processed
and presented to na€ıve T lymphocytes at the lymphoid organs in
the context of major histocompatibility (MHC) molecules.135

Several cancer immunotherapeutic strategies have been devel-
oped based on DCs (reviewed in132) stemming from the original
works on generation of ex vivo DCs from mice, starting from
bone marrow precursors,136 and later on from humans, starting
from CD34C haematopoietic progenitors or from peripheral
blood–derived monocytes.137 Ex vivo generated DCs have been
loaded with different sources of antigens mostly targeting mela-
noma, including whole tumor cells138-141 and tumor-derived
proteins or peptides.142-144 Several clinical trials have been

conducted along the years with DCs loaded with tumor-derived
specific targeting melanoma,145-147 renal cell carcinoma148 and
glioma,149,150 resulting in contrasting clinical outcomes.

The Sipuleucel-T (ProvengeTM) is an “immune cell”-based
cancer vaccine targeting prostate cancer consisting of autologous
whole immune cell population incubated with PA2024 that con-
tains prostatic acid phosphatase (PAP, a prostate antigen) fused
to GMCSF.97,96 In 2010 it was the first therapeutic cancer vac-
cine ever approved by the US FDA and its application is for the
treatment of asymptomatic metastatic castrate-resistant prostate
cancer (mCRPC).151 However, no difference in time to progres-
sion is observed and a modest 4.1-month improvement in

Table 3. Cancer vaccines in Phase 3, completed or terminated, based on peptide/protein strategies.

CANCER Antigen STRATEGY NCT NUMBER STATUS Outcome

Breast MUC1 Peptide NCT00925548 Terminated Following the clinical hold, EMD Serono
has decided to permanently terminate
the trial EMR 200038–010 (STRIDE) in
the indication of breast cancer

Esophageal/Gastric G17DT Peptide NCT00020787 Completed Data not available
Melanoma tyrosinase Peptide NCT01989572 Completed Data not yet available

MART-1; NA17-A;
gp100; tyrosinase

Peptide NCT00036816 Terminated Low accrual

gp100 Peptide NCT00019682 Completed In patients with advanced melanoma, the
response rate was higher and
progression-free survival longer with
vaccine and interleukin-2 than with
interleukin-2 alone.

Pancreatic hTERT Peptide NCT00358566 Completed Preliminary data showed no survival
benefit in the GV1001 group compared
to the gemcitabine group

Prostate PAP Sipuleucel-T NCT00005947 Completed Data for FDA registration
PAP Sipuleucel-T NCT00065442 Completed Data for FDA registration

Table 4. Cancer vaccines in clinical trials based on nucleic acids strategies.

CANCER Antigen STRATEGY NCT NUMBER PHASE

Acute Myeloid Leukemia WT-1 RNA-pulsed DC NCT01686334 Phase 2
WT-1 RNA-pulsed DC NCT00834002 Phase 1

Breast Multiple antigens DNA vaccine NCT02157051 Phase 1
CEA RNA-pulsed DC NCT00003432 Phase 1/2

Colorectal CEA RNA-pulsed DC NCT00003433 Phase 1/2
Kidney hPSMA DNA NCT00096629 Phase 1
Lymphoma Idiotype DNA NCT01209871 Phase 1
Melanoma Multiple RNA NCT00204516 Phase 1/2

tyrosinase-related peptide 2 (TRP2) RNA-pulsed DC NCT01456104 Phase 1
Neo-antigens RNA NCT01684241 Phase 1
Neo-antigens RNA NCT02035956 Phase 1
gp100 and tyrosinase RNA-pulsed DC NCT00940004 Phase 1/2
gp100 and tyrosinase RNA-pulsed DC NCT00243529 Phase 1/2
Multiple RNA-pulsed DC NCT01216436 Phase 1
gp100 and tyrosinase RNA-pulsed DC NCT01530698 Phase 1/2
Multiple RNA-pulsed DC NCT00672542 Phase 1

Multiple CEA RNA-pulsed DC NCT00004604 Phase 1
NY-ESO-1 DNA NCT00199849 Phase 1

Non Small Cell Lung Multiple RNA NCT00923312 Phase 1/2
Multiple RNA NCT01915524 Phase 1

Prostate Multiple RNA NCT00906243 Phase 1/2
PSA DNA NCT00859729 Phase 1/2
PSA RNA-pulsed DC NCT00004211 Phase 1/2

3338 Volume 10 Issue 11Human Vaccines & Immunotherapeutics



median survival in the active arm with respect to the placebo arm
was observed (25.8 vs. Twenty-one.7 months).

Although the registration of Sipuleucel-T as therapeutic can-
cer vaccine represents a great advancement in the cancer immu-
notherapy field, the modest efficacy urges improvements and
optimizations of the DC-based strategy. Increasing expression of
activating molecules or, on the other side, reducing expression of
inhibitory molecules would result in improved capacity of DCs
in stimulating T cell activation and, ultimately, in anti-tumor
efficacy. Over-expression of CD40L in human DCs results in
increased elicitation of T cell response to tumor antigens, such as
glycoprotein 100 (gp100) and Melan A.152,153 Similarly,
enhanced DC functions in stimulating antigen-specific Th1 and
CTL responses can be achieved by modulation of other costimu-
latory molecules or proinflammatory factors.154-159 Conversely,
silencing of the ubiquitin-editing enzyme A20 or the scavenger
receptor SRA/CD204 in human DCs facilitates the development
of IFN-g producing Th1 cells and antigen specific CD8C T
cells.160-163 These findings suggest that the potency of current
DC vaccines can be efficiently optimized resulting in improved
clinical outcomes.

Additional strategies for antigen-specific vaccines
Alternative strategies to deliver antigen or antigen fragments

in vivo is to utilize genetic vaccines or viral vectors (Table 4 and 5).
These strategies, indeed, allow the delivery of multiple antigens
with the activation of various arms of immunity (reviewed in164,165).

DNA vaccine platforms have shown promise in preclinical
studies166 which, however, do not hold when translated to non-
human primates and humans167,168 due to lack of efficacy. New
constructs and methods of administration may enhance their effi-
cacy. Indeed, Phase I/II trials for melanoma and other cancers are
currently testing the efficacy of DNA vaccines injected directly
into the lymph nodes, aiming at increasing antigen uptake by
APCs and promote local inflammatory signals.169,170 However,
the in vivo nucleic acid electro-gene-transfer (EGT) appears to be
the most promising strategy to enhance immunogenicity of
nucleic acid immunizations for cancer vaccine protocols171 and a
list of the ongoing cancer vaccine clinical trials with use of elec-
tro-gene-transfer is reviewed in.172

Similar to DNA vaccines and viral vectors, RNA vaccines may
induce both CD4C and CD8C T cell responses and candidates
targeting cancer antigens have been evaluated.173–175

mRNA vaccine candidates have been tested in human clinical
trials using either whole tumor cell transcriptome176 to target
metastatic melanoma, or specific TAAs to target metastatic mela-
noma177 and renal cell carcinoma,178 eliciting tumor antigen-
specific antibody and T cell responses. More recently, trials tar-
geting prostate and non-small cell lung cancer have shown
mRNA vaccines to be safe, well tolerated and immunogenic.179

The first and most extensively evaluated viral-based vectors in
cancer vaccine trials are from the poxviridae family, such as vac-
cinia, modified vaccinia strain Ankara (MVA), and the avipoxvi-
ruses (fowlpox and canarypox; ALVAC).180,181 PROSTVAC is a

Table 5. Cancer vaccines in clinical trials based on viral vector strategies.

CANCER ANTIGEN STRATEGY NCT NUMBER PHASE

Bladder PANVAC Vaccinia/Fowlpox NCT02015104 Phase 2
Brain/CNS CEA measles virus NCT00390299 Phase 1
Breast CEA & MUC-1 Vaccinia/Fowlpox NCT00179309 Phase 2

HER-2/Neu Adenovirus NCT00197522 Phase 1
Melanoma gp100 antigen Fowlpox NCT00019175 Phase 1

gp100 antigen Fowlpox NCT00019669 Phase 2
tyrosinase Fowlpox NCT00019734 Phase 2
tyrosinase Fowlpox NCT00054535 Phase 2
multiple ALVAC NCT00613509 Phase 2

Multiple MUC-1 MVA NCT00004881 Phase 1
EBNA1/LMP2 MVA NCT01147991 Phase 1
HER-2/Neu Adenovirus NCT01730118 Phase 1
CEA Fowlpox NCT00217373 Phase 1

Nasopharyngeal EBNA1/LMP2 MVA NCT01256853 Phase 1
Non Small Cell Lung MUC-1 MVA NCT01383148 Phase 2b/3
Ovarian NY-ESO-1 Fowlpox NCT00112957 Phase 2

NY-ESO-1 ALVAC NCT00803569 Phase 1
CEA Measles virus NCT00408590 Phase 1
NY-ESO-1 ALVAC NCT01982487 Phase 1/2

Pancreatic CEA, MUC1, and TRICOM Vaccinia/Fowlpox NCT00088660 Phase 3
Prostate 5T4 Poxvirus NCT01194960 Phase 2

PSA Fowlpox NCT00005039 Phase 2
PSA Fowlpox NCT00450463 Phase 2
PSA Fowlpox NCT00045227 Phase 2
PSA Adenovirus NCT00583024 Phase 2
PSA Fowlpox NCT00020254 Phase 2
PSA Fowlpox NCT00003871 Phase 2
PSA Vaccinia NCT00001382 Phase 1
PSA, TRICOM Vaccinia/Fowlpox NCT01322490 Phase 3
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cancer vaccine to prostate cancer based
on a replication-competent vaccinia
prime and a replication-incompetent
fowlpox boost. Each vector contains
transgenes for PSA and 3 costimulatory
molecules (CD80, CD54 and CD58),
designated TRICOM.182 In 2 indepen-
dent phase II trials, PROSTVAC
improved median overall survival relative
to the control vector183,184 and a phase
III trial is currently ongoing
(NCT01322490).

The MVA vector-based cancer vac-
cine TG4010 targeting the MUC1 anti-
gen has been tested in a phase II trial for
renal cell carcinoma combined with
interferon-a2a and IL-2, resulting in
improved overall survival.185 A separate
phase II trial of TG4010 combined with
first-line chemotherapy (cisplatin plus
gemcitabine) in advanced NSCLC dem-
onstrated a significant 6 months increase
in median survival.186 A confirmatory
phase IIb/III trial of TG4010 for treat-
ment of advanced stage (IV) NSCLC is
ongoing (NCT01383148).

A phase III clinical trial has been conducted and terminated
to evaluate the efficacy of PANVAC-VF, a vaccine composed of
recombinant vaccinia virus and fowlpox virus expressing CEA,
MUC1, and TRICOM, in patients with advanced pancreatic
cancer (NCT00088660). Vaccinated patients failed to show an
advantage in overall survival over standard palliative
chemotherapy.187

Adenovirus vectors expressing various TAAs (PSA, HER-2/
Neu) are currently being tested for their immunological and clin-
ical efficacy (NCT00583024,
NCT00197522). Moreover, an adenovi-
rus expressing the extracellular and trans-
membrane domains of HER2 is
currently evaluated in patients with any
HER2-expressing tumor, aiming at
inducing neutralizing antibodies against
HER2, not T cells (NCT01730118).

Conclusions and Future
Directions

Several cancer vaccines clinical trials
have been conducted in the last years
based on the different type of antigens
described in the present review (peptide
vs. genetis vs. viral vectors). The vast
majority of such clinical trials have been
based on peptides mostly targeting mela-
noma (Fig. 1). The prevalence of

peptide-based clinical trials is observed also in the different
phases of clinical trials (Fig. 2). To date, only few clinical trials
have reached the efficacy Phase III evaluation, based only on pep-
tides and viral vectors. Evaluation of cancer vaccines on an
increased number of target cancers using diverse vaccine strategies
would definitely be highly beneficial to improve the knowledge in
the field and, ultimately, clinical outcome in cancer patients.

Indeed, the first therapeutic cancer vaccine approved by FDA
for the treatment of asymptomatic metastatic castrate-resistant
prostate cancer (Sipuleucel-T (ProvengeTM), represents a

Figure 1. Cumulative numbers of cancer vaccine clinical trials for each cancer and each vaccination
strategy.

Figure 2. Number of cancer vaccine clinical trials in each experimental phase for each vaccination
strategy.
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landmark. However, Sipuleucel-T shows a modest increase in
overall survival and other large scale clinical trials do not prove
yet to be as efficacious as needed for complete tumor regression.

Several reasons account for these disappointing results. Identi-
fication of the appropriate target antigens, represents one the
most relevant aspects and currently available high – throughput
strategies make this goal accomplishable.

Along this path, identification of peptides naturally processed
and presented by HLA molecules (HLA ligandome) on tumor
cells as well as the personalized immunotherapy, to identify target
tumor-associated antigens specific for each individual cancer
patient, is further raising the bar in the quest of eliciting tumor
specific immunity.

Efficacy in clinical application of cancer vaccine approaches
based on cocktails of specific epitopes identified with high –
throughput technologies is very promising and is currently being
further evaluated in a broader range of tumors.

In general, besides target antigen identification, chances of
success may increase only if a multi-faceted strategy is under-
taken, including 1) addressing the tolerogenic environment
and tumor suppressive mechanisms by combinatorial

immunotherapy; 2) selecting optimal antigen presentation and
delivery system; 3) adding a potent immune modulator able to
increase the immunogenicity of the vaccine and to specifically
elicit the more appropriate arm of the immune response (i.e.
Th1 vs. Th2); and 4) employing multiparametric analyses to
identify prediction markers of immunogenicity for selection of
best responding vaccinees.

The combination of all such approaches will represent a great
advancement in cancer vaccinology, enabling the development of
vaccines with enhanced therapeutic efficacy to hopefully improve
the quality of life of cancer patients.
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