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The therapeutic potential of dendritic cell (DC) cancer
vaccines has gained momentum in recent years. However,
clinical data indicate that antitumor immune responses
generally fail to translate into measurable tumor regression.
This has been ascribed to a variety of tolerance mechanisms,
one of which is the expression of immunosuppressive factors
by DCs and T cells. With respect to cancer immunotherapies,
these factors antagonise the ability to induce robust and
sustained immunity required for tumor cell eradication. Gene
silencing of immunosuppressive factors in either DCs or
adoptive transferred T cells enhanced anti-tumor immune
responses and significantly inhibited tumor growth.
Therefore, engineered next generation of DC vaccines or
adoptive T-cell therapy should include immunomodulatory
siRNAs to release the “brakes” imposed by the immune
system. Moreover, the combination of gene silencing, antigen
targeting to DCs and cytoplasmic cargo delivery will improve
clinical benefits.

Introduction

Dendritic cells (DCs) are essential components of vaccination
through their ability to capture, process, and present antigens to
T cells.1 They display functional plasticity in that they can either
mediate immune tolerance or induce immunity.1,2 Their capacity
to respond to so many stimuli is reflected by the expression of a
large panel of molecular sensors. Indeed, DCs not only express
multiple pattern-recognition receptors including cell surface C-
type lectins, and endosomal Toll-like receptors, but also a diversi-
fied array of cytokines/chemokines and other regulatory mole-
cules.2 Activation of PRRs by pathogen-derived products induces
DC maturation and serves as the critical switch from the mainte-
nance of self-tolerance to the induction of immunity. Subsequent
to antigen capture and activation, DCs induce the differentiation

of antigen-specific T cells into effector T cells that display unique
functions and cytokine profiles.2 DCs regulate T-cell differentia-
tion through a variety of molecules that belong to 3 major fami-
lies, interleukin 12, tumor necrosis factor, and B7. The B7
family includes members that can stimulate immune responses
and others that can inhibit them. For instance, the
T-lymphocyte-associated antigen 4 (CTLA4) and the co-stimula-
tory receptor CD28, although they bind to the same ligands
(CD80/CD86), CD28 delivers stimulatory signals for T cells to
become effector cells, whereas CTLA4 delivers inhibitory signals
that suppress their function.3,4 The level of CTLA4 induction
subsequent to T cell activation depends on the amplitude of the
initial T cell receptor antigen (TCR) signals from contact with
peptides bound to major histocompatibility complex (MHC)
molecules. High-affinity TCR-binding peptides induce elevated
levels of CTLA4, which dampens the amplitude of the initial
response, both by out-competing CD28 for ligands (CD80/
CD86) binding and through the recruitment of serine/threonine
or tyrosine phosphatases, including the phosphatases Src homol-
ogy (SH2) domain-containing phosphatase1 (SHP-1), SHP2,
and protein phosphatase 2A (PP2A).3 The net result of CTLA4
engagement is decreased production of cytokines (e.g., IL2) and
cell cycle arrest of T cell in G1.

Each step of T-cell activation by DCs is regulated by counter-
balancing co-stimulatory and co-inhibitory signals that fine-tune
the immune response and thus protect tissues from damage when
the immune system is responding to pathogens (Fig. 1). The
expression of these co-inhibitory molecules is part of the normal
function of the immune system. However, in the case of cancer
immunotherapies, such negative feedback mechanisms might
suppress antitumor immune response.1 Several inhibitory signals
such as those delivered by CTLA4 and programmed cell death
protein 1 (PD1) are initiated through membrane receptors
involving cell-cell interactions. When engaged by one of its
ligands, expressed by DCs or tumor cells, PD1 induces the inhi-
bition of T-cell activation and proliferation resulting in cell-cycle
arrest.3 PD1 expression on T cells is induced subsequent to acti-
vation. As CTLA4, PD1 is also highly expressed on regulatory T
(Treg) cells and it is involved in their immunosuppressive

*Correspondence to: Mouldy Sioud; Email: Mouldy.Sioud@rr-research.no
Submitted: 04/18/2014; Revised: 06/15/2014; Accepted: 06/26/2014
http://dx.doi.org/10.4161/hv.29754

www.landesbioscience.com 3165Human Vaccines & Immunotherapeutics

Human Vaccines & Immunotherapeutics 10:11, 3165--3174; November 2014; © 2014 Taylor & Francis Group, LLC
REVIEW



activity.5,6 In addition to cell-surface receptors, another class of
inhibitory factors includes certain intracellular kinases, cytokines,
and metabolic enzymes, which are expressed by immune cells
and tumor cells.7,8 Notably, a number of the inhibitory effects
can occur at the initiation of T cell responses in lymph nodes,
supporting the necessity and importance of regulating the extent
and duration of antigen presentation by mature DCs.

To induce effective immune responses against tumors, there is
a need of inhibiting the expression of factors that dampen the
immune responses in patients. A promising strategy for reprog-
ramming DC function is through the use of RNA interference
(RNAi). This strategy was proven successful both in vitro and in
vivo and holds promise for inclusion in immunotherapeutic strat-
egies such as cancer vaccines and adjuvant therapies.9,10 More-
over, the combination of antigen targeting to DCs, endosome
escape, and gene silencing might improve immune therapies.
Hereunder, I present some examples how RNAi can improve
cancer immunotherapies and highlight future directions.

Enhancing DC Immunogenic Function via RNAi

RNAi-based therapeutics promise to overcome the major lim-
itation of existing medicine, which can currently only target a
limited number of proteins involved in disease pathways.9,10 As
compared to other nucleic acid-based strategies, small interfering
(si) RNA benefits from harnessing endogenous RNAi pathways
to trigger gene silencing.11 Virtually all genes involved in
immune responses can be silenced by siRNAs (Table 1). To
achieve effective immune responses against tumors, there is a
need of blocking the signals that dampen the immune responses
in patients. As indicated above, DCs and T cells are generated
with inherent negative regulation mechanisms which attenuate
their immune stimulatory activity. Among the inhibitory factors

expressed by DCs are trans-
forming growth factor-b,
interleukin-10, PD1 ligand
1 and 2, suppressor of cyto-
kine signaling (SOCS) 1,
indoleamine 2,3-dioxyge-
nase (IDO), and interleu-
kin10 (IL10) (Fig. 1).12

The potential value of these
inhibitors in suppressing
immune responses is best
exemplified by the signifi-
cant enhanced immunity
in mice lacking these
factors.13-15

IDO is a cytosolic
enzyme that catalyzes the
limiting reaction in the deg-
radation of tryptophan, an
essential amino acid
required for T-cell prolifera-
tion and survival.16-18

Depletion of tryptophan by IDO together with an increase in the
production of active Trp metabolites (kynurenine) inhibit effec-
tor T cells and induces immune suppressive Treg cells
(Fig. 2).16,18 These observations indicate that the regulation of
tryptophan metabolism by IDO in DCs is a highly adaptable
modulator of immunity. Indeed, injection of IDO-positive DCs

Figure 1. Various co-stimulatory and co-inhibitory molecules regulate T cell activation. Indicated are multiple mole-
cules that are involved in the regulation of T-cell responses under physiological conditions. One important family
of membrane-bound molecules that bind co-stimulatory and co-inhibitory receptors is the B7 family (e.g., CD86,
DC80). Although B7-CD28-specific signaling is a critical component of T cell priming, signaling through others
receptors, including OX40 and ICOS is often required to further enhance CD4 and CD8 T cell priming and genera-
tion of memory cells. Strong signaling through the TCR and CD28 upregulates both co-inhibitory (e,g. CTLA4 and
PD1) and co-stimulatory molecules (e.g. OX40, ICOS) on T cells. Inhibition via CTLA4 and PD1 in the context TCR sig-
naling is likely of central importance in controlling immunity (see main text).

Table 1. Preclinical and clinical development of siRNAs targeting inhibitory
molecules

Target Function

Cbl-b

CCR5
CD204

CTLA4
GAL1
GAL3
IDO

IL10
PD1
PD-L1
PD-L2
SHP1
SOCS1
SOCS3
STAT3

E3 ubiquitin ligase involved in the degradation of TCR and
signaling molecules
Chemochine receptor
Cell surface C-type lectin expressed by DCs involved in
endocytosis
Inhibitory receptor that blocks the activity of T cells
Mutifunctional b-galactoside-binding lectin
Mutifunctional b-galactoside-binding lectin
Enzyme that degrades tryptophan within the kynurenine
metabolic pathways
Immunosuppressive cytokine
Inhibitory receptor that blocks the activity of T cells
Ligand for PD1
Ligand for PD1
Tyrosine phosphatase involved in TCR signaling
Inhibitor of cytokine signaling
Inhibitor of cytokine signaling
Transcription factor that becomes activated in response to
cytokines and growth factors

Abbreviations: CTLA4, cytotoxic T-lymphocyte antigen 4; PD1, programmed
death 1 receptor; IDO, indoleamine 2,3-dioxygenase; SOCS1, suppressor of
cytokine signaling1; IL10, interleukin 10; Cbl-b, casitas b-linage lymphoma
proto-oncogene b; Gal, galectin; STAT3, signal transducer and activator of
transcription; SHP1, src homology region 2 domain-containing phospha-
tase-1; CCR5, human chemokine receptor 5; CD204/SRA, scavenger receptor
A.
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into mice suppressed the
activation of antigen-spe-
cific T cells in the lymph
nodes draining the injection
site.17 Effector T cells
starved of tryptophan were
unable to proliferate and
enter into G1 cell cycle
arrest. In addition, several
studies indicated that IDO
is essential for successful
allogeneic pregnancy sug-
gesting that it is important
in suppressing immune
responses under normal
physiological conditions.16

In general, DCs control
the quality of a T-cell
response, particularly
CD4C T-cell differentia-
tion. Once T cells are effec-
tively primed, pro-
inflammatory cytokines
such as interferon (INF)-g,
and Treg cell signals such as
CTLA4, induce IDO
expression in DCs.16,19

This will lead to their con-
version into tolerogenic
DCs that can inhibit T-cell
expansion as well as the
induction of adaptive Treg
cells, which suppress T-cell
responses, including those
against tumors (Fig. 2).
Reverse signaling via B7
molecules (CD80/86) after
interaction with CD28 on T cells can also induce IDO expres-
sion in DCs.16 In the case of cancer vaccines, IDO expression
can occur during in vitro maturation of DCs as well as in vivo
after T-cell activation.20,21 A promising strategy for enhancing
the potency of DC cancer vaccines would be the blockade of
IDO expression in these cells. In this respect, we have developed
several super-active siRNAs that exhibited a silencing potency at
nanomolar concentrations.21 Importantly, IDO gene silencing
enhanced the ability of human DCs to stimulate T cells. Recently
Zheng and colleagues showed IDO silencing in mouse DC vac-
cine can inhibit tumor growth in a syngeneic mouse breast cancer
model.22 Moreover, the vaccine induced tumor antigen-specific
cytotoxic T cells and decreased the number of Treg cells. More
recently, we have assessed the feasibility, safety and immunoge-
nicity of IDO-silenced DC cancer vaccine in patients with ovar-
ian cancer.23 Fast DC preparations from patients were
transfected ex vivo with IDO siRNA along with mRNA encoding
tumor antigen human telomerase reverse transcriptase (hTERT)
or survivin using square wave electroporation.24 Subsequent to

overnight culture, the cells were cryo-preserved into separate vac-
cine doses until use. The clinical data revealed that IDO-silenced
DC vaccine is safe, well tolerated and has therapeutic potential
even in advanced stage ovarian cancer when compared to unmod-
ified DCs. For example, a patient with metastatic ovarian cancer
never achieved a complete tumor free interval on chemotherapy
since 2007. However, when the patient was given the IDO-
silenced DC vaccine she obtained a partial remission and contin-
ued to decline in tumor volume and markers and she is still alive.
Fig. 3 illustrates the treatment schedule and clinical outcome of
this patient. In conclusion, our developed IDO siRNA holds
promise for inclusion with immunotherapeutic strategies such as
cancer vaccines and adjuvant therapies. It should be noted that
one of the major disappointments in the field of ovarian cancer is
the failure of currently established therapies to induce a cure at
diagnosis, even in chemosensitive tumors.25

In addition to IDO, suppressor of cytokine signaling
(SOCS1), a member of the SOCS and cytokine-inducible SH2
family of intracellular proteins, has emerged as a critical

Figure 2. Conversion of IDO negative DCs to IDO positive DCs. Subsequent to T-cell activation, IFN-g produced by T
cells induces the expression of IDO in DCs resulting in their conversion into tolerogenic DCs. This counter-regulatory
mechanism is expected to control the magnitude and duration of adaptive immune responses. Activation of na€ıve T
cells by IDO positive DCs leads to the generation of adaptive Treg cells, a population of CD4C T cells that inhibit,
rather than promotes, immune responses. Moreover, IDO positive DCs convert tryptophan into several metabolites
with general immunosuppressive activity on lymphocytes.
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inhibitory molecule for controlling the response to cytokines and
antigen presentation by DCs.26 A number of studies in mice
have documented the important role of SOCS1 in modulating
the magnitude of immune stimulation by DCs suggesting that its
inhibition may be a potentially useful strategy to enhance vac-
cine-induced immune responses.14 In this respect, SOCS1 silenc-
ing in DCs improved antigen-specific CD8C T cell
responses.27,28 A short stimulation with SOCS1-silenced DCs
was enough to generate a strong primary response, suggesting
that inhibition of SOCS1 expression in DCs could be exploited
as a novel adjuvant strategy to boost the potency of vaccine-
induced CD8C T-cell responses.28 In addition to SOCS1, the
induction of signal transducer and activator of transcription 3
(STAT3) in DCs by tumors-derived factors induced their conver-
sion into tolerogenic DCs.12 Therefore, silencing STAT3 in DCs
should also be beneficial for cancer immunotherapies. Indeed,
STAT3 gene silencing restored DC maturation and enhanced
CD8C response to tumors.29 Likewise, silencing of the

immunosuppressive scaven-
ger receptor A (CD204) in
DCs enhanced the therapeu-
tic potency of local radiother-
apy. In these experiments,
CD204-silenced DCs were
injected into the tumors fol-
lowed by local
radiotherapy.30

PD1 is a co-inhibitory
receptor that is expressed by
T cells and B cells upon acti-
vation. As opposed to
CTLA4 signaling which
occurs early, during T cell
activation in lymphatic
organs, PD1 signaling takes

place during the effector phase of T-cell functions. PD1 receptor
engagement with either of its ligands, PD-L1 (B7-H1) and PD-
L2 (B7-DC) in the tumor microenvironment inhibit TCR sig-
naling by recruiting the SHP1 and SHP2 phosphatases, which
induce a TCR stop signal that limits T cell interactions with
DCs. In addition to tumor cells and macrophages, PD-L1 is also
expressed by DCs and was linked to their ability to induce toler-
ance.5 Notably, antibodies that bind to either CTLA4 or PD1
receptor, and thereby alleviate the immune inhibition, have gen-
erated promising clinical data in melanoma and other tumor
types.31,32 However, the responses are only seen in a subset of
patients and it is unclear why some tumors respond and others
do not. Thus, additional strategies designed to block the expres-
sion of these 2 receptors are warranted. In this respect, Hobo
et al. used RNAi to block the expression of PD1 ligands in
DCs.33 PD-L1 and PD-L2-silenced DCs enhanced T-cell prolif-
eration in-vitro. Since IDO and PD-L1 are expressed by DCs,
their simultaneous inhibition might further enhance the efficacy

of DC cancer vaccine
potency. In line with this
notion dual inhibition of
IDO and PD-L1 or PD1 in
T cells resulted in more
enhanced T cell-response
in-vitro when compared to
mono-silencing using IDO,
PD-L1, or PD1 siRNA
(Fig. 4). As with previous
standard-of-care therapies, it
will be necessary to develop
combination therapies to
improve clinical benefits.

Several studies have dem-
onstrated that members of
the galectin (Gal) family of
b-galactoside-binding pro-
teins are directly involved in
regulating leukocyte func-
tion and turnover.34 Gal1,

Figure 3. Timeline for the treatment and clinical development. The figure illustrates the treatment schedule for a
patient with metastatic ovarian cancer. After surgery, the patient has received 4 combinations of chemotherapy
prior to IDO-silenced DC vaccine. Chemo 1: Carboplatin, Taxol, Avastin; Chemo 2: Carboplatin, Caleyx; Chemo 3:
Taxol; Chemo 4: Taxol, Avastin; SD, stable disease; PD, progressive disease; PR, partial remission.

Figure 4. Simultaneous suppression of inhibitory signals enhanced T-cell proliferation. (A) Untransfected DCs or DCs
transfected with IDO, PD-L1, or the combination IDO/PD-L1 siRNA for 24 h were co-cultured with allogeneic CD4C T
cells for 6 d at DC:T cell ratio 1:10. T cell proliferation was measured by thymidine incorporation as described previ-
ously.37 (B) As in A, except that allogeneic CD4C T cells were transfected with PD1 siRNA. The results are repre-
sented as means of triplicate samples from the same experiment.
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one of the most widely studied members, has a broad range of
immunomodulatory functions involving innate and adaptive
immune cells. It controls the proliferation and survival of T
cells.35 On the other hand, Gal3 influences adaptive immune
responses but does not directly affect the development and matu-
ration of lymphocytes.36 Specific gene silencing of Gal1 and
Gal3 in DCs enhanced their capacity to stimulate T cell activa-
tion and IFN-g production.37 Therefore, DC-expressed Gal-1
and Gal-3 may function as a negative regulator of T cell activa-
tion, more likely, by increasing the TCR activation threshold as
illustrated in Fig. 5. The effects of Gal1 and Gal3 may happen at
the level of immunological synapse formation, as both proteins
have been shown to interact with CD45, CD7, and CD3 mole-
cules.34 Notably, T cells undergo a process of TCR desensitiza-
tion before entering the secondary lymphoid tissues.38 This TCR
tuning modulates the intensity of TCR signaling and is thought
to be especially important for cells with relatively high self-reac-
tivity. Such immune regulatory mechanism is also prevalent for
the regulation of T cell activation after antigen encounter in the
periphery.

Activation signals mediated by Toll-like receptor (TLR)
ligands are necessary for DC activation and antigen

presentation.2 Although TLR ligands such as CpG and RNA oli-
gonucleotides induce DC maturation, they also induce the
expression of immunosuppressive cytokines such as IL10, which
can influence T cell-mediated immunity.39 IL10, whether pro-
duced by DCs themselves or present in the microenvironment,
favors the capacity of DCs to stimulate a stronger Th2 response
to the detriment of Th1 response that is essential for tumor cell
eradication.40,41 Therefore, the development of agents that stim-
ulate DC maturation through TLRs and simultaneously inhibit
the expression of immunosuppressive cytokines may thus facili-
tate the design of effective vaccines. We and others have shown
that chemically made siRNAs can activate innate immunity via
TLR7/8 when delivered to the endosomes.42-44 While this off-
target effect of siRNA is unwanted in many instances, cancer and
infectious diseases may profit greatly from the activation of
TLRs. For example, a combinatorial strategy that block the
expression of immunosuppressive factors and simultaneously
activate innate immunity could lead to more effective cancer
treatments as illustrated in Fig. 6. In this respect, we have shown
that targeting IL10 expression by a dual siRNA can block IL10
expression and activate TLR7/8 signaling in human monocytes
and DCs.45 More recently, we applied a novel DC-based vaccine

Figure 5. Galectins 1 and 2 control T cell receptor (TCR) activation threshold. (A) Under steady-state conditions, DCs maintain an immature state (iDCs).
Upon activation through inflammatory cytokines or pathogen-derived products, they mature (mDCs) and upregulate the expression of co-stimulatory
molecules, such as CD80, CD86, and CD40. The lower expression of costimulatory molecules has been proposed to account for poor capacity of iDCs to
stimulate T cells. (B) Gal1 and Gal3 gene silencing in iDCs enhanced T cell activation, despite low expression of costimulatory molecules. Also, gene
silencing in mDCs enhanced T-cell activation. This enhancement is more likely due to a drop in TCR activation threshold.37 Endogenous or secreted Gal1
and Gal3 might interact with immunological synapses indicated by the circles. MHC Dmajor histocompatibility complex.
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(i.e., DC loaded with leukemia antigens that have been trans-
fected with a dual IL10 siRNA capable of co-ordinately activating
DCs via TLR7/8 and silencing IL10 expression) in a syngeneic
rat model of acute myeloid leukemia (AML).46 Leukemic rats
treated with this new vaccine had less leukemic cell mass in their
bone marrows and less extramedullar dissemination of the leuke-
mic cells compared with rats given the control vaccine. The rat
model that we have used harbours many characteristics of human
AML and therefore is highly relevant to test immune stimulatory
strategies before implementation in the clinic. More recently,
Pradhan and colleagues showed that CpG-induced IL10 secre-
tion in DCs can be inhibited by co-delivery of IL10 siRNAs.47

Interestingly, simultaneous immunotherapy with CpG oligonu-
cleotide and IL10 siRNA enhanced immune protection of an
idiotype DNA vaccine in a prophylactic murine model of B cell
lymphoma when compared to control formulations. Thus,
siRNA-mediated silencing of CpG induced IL10 production
could be an attractive strategy to improve anti-tumor immune
response of TLR9 driven immunotherapies. Similarly, it was
shown that IL-10 gene silencing in DCs can generate a better
cytotoxic T cell response against the human melanoma antigen
MART-1 when compared to unmodified DCs.48

In situManipulation of DC Function
Generation of DC with superior immunogenic potential is

essential for developing effective immunotherapeutic strategies
against infectious agents and cancer. In addition to the ex vivo
siRNA-based approach that depletes suppressive factors in blood
monocyte-derived DCs, strategies to activate natural DCs in situ
may hold strong potential for cancer vaccines. Targeted activa-
tion of DCs in situ strategies should benefit from reaching multi-
ple DC populations in their natural environment. In this respect,
siRNA containing a 50-triphosphate was used as activator of DCs

in-situ leading to antitumoral
efficacy through activation of
the retinoic acid-inducible
gene-1 (RIG-1) receptor
(Fig. 6).49-51 In addition to
antigen-specific immune
responses mediated by cyto-
toxic CD8C T cells, a major
component of antitumoral
immunity is the innate NK
cell response. Cytokines pro-
duced by DCs in response to
immunostimulatory siRNAs
activated NK cells, which
killed tumor cells.50 Overall,
the concept of activating
TLRs and/or RIG-1 with
dual siRNAs is novel and can
be broadly used to improve
anti-tumor innate immunity
and DC vaccination.

Today, the most used
strategy for DC cancer vac-

cines is based on isolating monocytes from the blood of patients
and exposing them to maturation stimuli. Subsequently, these
monocyte-derived DCs are loaded with tumor antigens or
mRNA and then re-infused to the patient.1 Although some clini-
cal data were obtained with this standard protocol, the ex vivo
generated DCs from blood monocytes migrate poorly in vivo
and express immunosuppressive factors such as IDO and IL10
affecting the efficacy of the vaccine as discussed above.21 More-
over, the process used to create monocyte-derived DCs is a labor-
intensive procedure for each individual patient and costly. Recent
studies also indicated that various DC subsets are needed for the
induction of potent cytotoxic T lymphocytes against tumor
cells.52 Notably, most potent vaccines generated against, for
example, yellow fever and smallpox activate multiple DC subsets.

Studies from Ralph Steinman and Michel Nussenzweig dem-
onstrated the principle of targeting antigens to DCs in situ
through the coupling of antigens to antibodies that target DC
surface receptors involved in uptake such as members of the C-
type lectin receptor family including CD205, Fc receptors, and
the mannose receptor.53 Importantly, in the absence of adju-
vants, targeting antigens to CD205 positive DCs in-vivo indu-
ces antigen-specific tolerance, which can be used as treatment
against autoimmune diseases. Similarly, several studies have
shown that the coupling of DC-receptor-specific antibody to
the antigen of choice enhanced immunity when compared to
that obtained with free antigen.54,55 Although immune
responses have been achieved in most studies, antibody targeting
may provide additional activation signals that may negatively
affect DC function. Furthermore, large antigen-antibody conju-
gates may have disadvantages such as reduced tissue penetration.
Also, the use of mouse antibodies in humans is expected to
induce immunogenicity although some humanized antibodies
were also developed.56

Figure 6. Dual siRNA can function as TLR activator and gene silencer. A dual siRNA can activate innate immunity via
either endosomal TLRs or cytoplasmic RIG1 leading to cytokine production and eventually DC maturation. In addi-
tion, it is able to silence the expression of immunosuppressive factors (e.g., IL10, IDO, and SOCS1). Combination of
gene silencing and induction of DC-maturation should enhance anti-tumor or anti-viral immunity.
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With the aim of developing small targeting molecules, we
have biopanned peptide phage libraries on human DCs and
selected new specific binders.57 In contrast to antibodies, small
peptides are easy to conjugate to antigens and are invisible to the
immune system. One of the selected peptides named NW peptide
bound with high affinity to a single receptor expressed by several
human DC subsets.57 Peptides that recognize their targets with
high specificity and affinity such as the NW peptide should have
potential for both clinical vaccine development and cancer immu-
notherapy. Targeting long peptides from human cytomegalovirus
(CMV) pp65 protein to DCs via the NW peptide resulted in acti-
vation of T cells from CMV positive donors in the context of
both MHC class I and II molecules. In addition to antigen target-
ing, the NW peptide mediated siRNA delivery to DCs and signif-
icant gene silencing was obtained relative to free siRNA
molecules.57 Using streptavidin-biotin technology and an
endosome-escaping peptide, we were able to co-deliver antigens
and siRNA to DCs. The histidine-rich peptide was able to desta-
bilize endosome membrane at acid pH, leading to cytoplasmic
delivery. Notably, among the carriers that have been developed,
complexes based on streptavidin-biotin interaction have attracted
a lot of attention because of safety and ease of construction. The
combination of antigen targeting, endosome escape, and the
blockade of immune inhibitory factors in DCs are expected to
further enhance anti-tumor immunity.

Although more developments are needed, systemic delivery of
siRNA formulations can also be used to silence immunosuppres-
sive factors in tumors and immune cells. In this respect, Korty-
lewski and colleagues developed a cell-specific delivery approach
of siRNA based on the use of CpG oligonucleotides, a TLR9
ligand.58 TLR9 expression and STAT3 activation often involve
both cancer cells and non-malignant immune cells such as DCs
and macrophages. Using a syngeneic murine model of dissemi-
nated AML, the authors demonstrated that systemic administra-
tion of CpG-Stat3 siRNA can alleviate the immunosuppressive
effects of persistent STAT3 signaling in both cancer cells and
immune cells. The targeted blockade of STAT3 coupled to the
activation of TLR9 resulted in systemic cancer-specific immune
responses that led to tumor eradication in multiple organs and
prolonged the survival of the majority of disease mice. Moreover,
the treatment increased the circulating levels of interferon g and
interleukin 12, both critical mediators of Th-1 immune
responses.58 Collectively, the data underscore the use of siRNA
as modulator of DCs and T-cell functions in the tumor
microenvironment.

Reprogramming T Cell Function

Similar to DCs, the activation of T cells are also under several
immunosuppressive mechanisms, including T-cell intrinsic (e.g.,
CTLA4, PD1, SHP1, PP2A) and extrinsic (e.g., B7 family,
IDO, IL10, T reg cells) regulators (Fig. 1).59 As for DCs, the
expression of these inhibitory proteins by T cells is critical for the
regulation of self-reactivity or exuberant responses to pathogens,
but it may limit T-cell responses to tumors, particularly if the

tumor antigens being targeted are self-proteins. Therefore, the
next generation T cell therapies must confront and address these
numerous inhibitory barriers that CD8C cytotoxic T cells face.

Notably, manipulation of T cells ex vivo and their infusion
back into patients is well characterized and may provide a poten-
tial therapeutic strategy for the treatment of immunological dis-
orders such as cancer, and infectious diseases.60,61 However, ex
vivo cultured T cells upregulate the expression of certain inhibi-
tory factors such as CTLA4 and PD1, which dampen their in-
vivo activation. It is therefore desirable to establish strategies that
enhance the function of adoptively transferred CD8C T cells. A
versatile method that could potentially be used for siRNA deliv-
ery to T cells for therapeutic purposes is an ex vivo route, whereby
T-cells could be isolated from a patient, transfected with siRNAs
and then infused into the same patient. In our experience, the
use of standard wave electroporation method can deliver siRNA
to human blood T cells with close to 95% transfection efficiency
and with a little effect on cell viability and function. With respect
to immunotherapy, knockdown of SOCS1 in CD8C T cells or
STAT3 in CD4C T cells using lentiviral vectors induced tumor
regression following adoptive transfer to tumor-bearing
mice.62,63 Moreover, silencing of SOCS3 expression in murine T
cells via nucleofection attenuated allergic airway responses when
the cells were adoptively transferred into recipient mice.64 There-
fore, depending on the target, siRNAs can be used to either
enhance or inhibit T-cell activation.

As mentioned above, certain molecules involved in TCR
tuning that limit TCR responsiveness are certainly the most
obvious potential targets for inhibition by siRNA. For example,
the E3 ubiquitin ligase Cbl-b, the tyrosine phosphatase SHP-1,
the serine/threonine PP2A phosphatase, all negatively regulate
TCR activation.65 PP2A phosphatase has also been shown to
interact with the cytoplasmic domains of CD28 and CTLA-4.
Cbl-b is a member of the highly conserved family of Cbl (casitas
b-lineage lymphoma) proteins and functions as a nonredundant
negative regulator of T-cell activation.66 Accordingly, cblb-defi-
cient mice are highly susceptible to spontaneous and antigen-
induced experimental autoimmune diseases.66 Interestingly,
silencing of Cbl-b gene expression in primary murine CD8C T
cells with siRNAs via nucleofection, followed by adoptive trans-
fer of the cells into recipient mice potentiated the effects of a
cancer vaccine in B16 melanoma model.67 Gene silencing
increased effector functions and infiltration rates of adoptively
transferred CD8C T cells, resulting in substantial suppression
of tumor growth and increased survival rates of tumor-bearing
mice. Therefore, genetic modification of cbl-b expression in
adoptively transfected T cells via siRNA should have clinical
application. RNAi inhibition of SHP-1 in tumor-specific T cells
also led to improved therapy of disseminated leukemia cells.68

SHP-1 adaptor protein functions as a rheostat for regulating
TCR signaling after antigen encounter in part by diminishing T
cell/DC interactions.69 The finding by Mantei et al. that siRNA
chemical modifications can prolong gene silencing in T cells
will facilitate the use of chemically made siRNAs in T cells
where long-lasting gene silencing is needed.70 Transfected T
cells remain functional and maintain siRNA-induced CD4
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knockdown for up to 2 weeks after transfer into recipient mice.
Overall, the encouraging data obtained with adoptively trans-
ferred T cells suggest that RNAi may be an effective and avail-
able therapeutic method for reprogramming T-cell function in
cancer patients.

It should be noted that several investigators have successfully
silenced gene expression in T cells. For example, silencing of viral
and host cell factors in T cells using siRNA or shRNA technology
has been shown to inhibit HIV infection and replication.71 Anti-
body-conjugated peptide delivery systems have been used to
deliver siRNA into tumor T cells.72 Systemic delivery of CCR5
chemokine receptor siRNA to T cells via intravenous injection
resulted in silencing of CCR5 in T cell population and blockade
of HIV infection.73 Moreover, advances in lentiviral vector
design have led to significant improvement for shRNA expression
in T cells.74 Collectively, these developments in siRNA delivery
to T cells would be clinically relevant in adoptive T cell therapy
for cancer.

Conclusions and Perspectives

Since the immune responses induced by current DC cancer
vaccines are not optimal, it is important to explore alternative
DC formulations and novel adjuvants to generate protective
immune response that is superior to the natural immunity against
persistent infections or tumor cells. Among the most promising
approaches for inhibiting gene expression in DCs and T cells is
the use of siRNAs. Although neutralization of some inhibitory
factors by antibody has improved cancer immunotherapy despite
severe side effects,31 siRNA based knockdown of endogenous
inhibitory factors is a viable method to make DCs more effective
for therapeutic strategies such as active immunization. SiRNA-
approach is also assumed to greatly improve the killing function
of adoptively transferred T cells or NK cells.

One of the major challenges to the clinical development of
gene silencing by siRNA has been in-vivo delivery in general, and
particularly the ability to selectively target siRNA molecules to
specific cell types. The use of siRNA in ex vivo setting as discussed
in this review would overcome the delivery and targeting prob-
lems. Also, ex vivo delivery method of siRNA via electroporation

would overcome the potential off-target effects due to systemic
delivery of siRNAs. The experimental success of using short pep-
tides to target antigens to DCs in situ in conjunction with gene
silencing will have an interesting potential for the design of can-
cer vaccines. A greater understanding of the interplay between
positive and negative signals regulating the function of the
immune system as well as the interactions between tumor cells
and immune cells will be crucial to guide the targeting choice;
mono or combination therapies. With respect to cancer immu-
notherapy, inhibition of a single immunosuppressive factor will
succeed when the inhibition is combined with a vaccine as dem-
onstrated for IDO-silenced DCs. However, it is thought that
combination therapies have the potential to establish synergistic
anti-tumor immunity. As shown by Guo et al.,30 CD204-
silenced DC vaccine showed preclinical synergistic effects when
combined with radiotherapy. Also, we have found a synergistic
effect when combining IDO-silenced DC vaccine with certain
chemotherapeutic drugs. Moreover, the combination of CTLA4
blockade using Ipilimumab, a monoclonal antibody, and IDO-
silenced DC vaccine enhanced tumor immunity in a patient with
melanoma, thus our strategy holds promise for combination ther-
apies (Sioud et al. in preparation). However, one should keep in
mind that co-manipulation of various inhibitory signals could
trigger autoimmunity, as a result of simultaneously loosing too
many immunological “brakes." Therefore, it is important to
select the correct therapeutic combinations. Comparable to
monoclonal antibodies, siRNA provides a drug that transiently
silences genes in specific cell types and may be particularly suited
for blocking immunonosuppressive factors on a time-limited
basis. In addition to the ex-vivo delivery route, continued
research in diverse delivery technologies will help to facilitate the
systemic delivery of siRNA therapeutics to patients.75
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