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Research on innate immune signaling and regulation has
recently focused on pathogen recognition receptors (PRRs)
and their signaling pathways. Members of PRRs sense diverse
microbial invasions or danger signals, and initiate innate
immune signaling pathways, leading to proinflammatory
cytokines production, which, in turn, instructs adaptive
immune response development. Despite the diverse functions
employed by innate immune signaling to respond to a variety
of different pathogens, the innate immune response must be
tightly regulated. Otherwise, aberrant, uncontrolled immune
responses will lead to harmful, or even fatal, consequences.
Therefore, it is essential to better discern innate immune
signaling and many regulators, controlling various signaling
pathways, have been identified. In this review, we focus on the
recent advances in our understanding of the activation and
regulation of innate immune signaling in the host response to
pathogens and cancer.

Introduction

The innate immune system plays an important role as the first
line of defense against invading microbes by sensing pathogen-
associated molecular patterns (PAMPs) or danger-associated
molecular patterns (DAMPs). The initiation and regulation of
innate immune responses are orchestrated by several classes of
germline-encoded pattern-recognition receptors (PRRs), includ-
ing Toll-like receptors (TLRs), RIG-I-like receptors (RLRs),
Nod-like receptors (NLRs), AIM2-like receptors (ALRs), C-type
lectin receptors (CLRs) and other DNA sensors.1-3 Upon patho-
gen invasion, these PRRs trigger the activation of NF-kB, type I
interferon (IFN), or other inflammasome signaling pathways,
which, in turn, leads to the production of a variety of proinflam-
matory and antiviral cytokines and chemokines, subsequently
inducing adaptive immune responses.4,5

TLRs belong to a class of type I integral membrane glycopro-
teins that play an important role in host defense against patho-
gens by recognizing a wide variety of PAMPs. To date, 10 and
12 functional TLRs have been identified in humans and mice,
respectively. These receptors are expressed on the cell surface
(TLR1, TLR2, TLR4, TLR5, and TLR6) or in the endosome
(TLR3, TLR4, TLR7, TLR8 and TLR9). TLRs are expressed on
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various immune cells including macrophages, monocytes, neu-
trophils, master cells, eosinophils, dendritic cells (DCs), and T
cells.4 Since first being described in the fruit fly, TLRs have been
identified as a major component in inflammatory conditions,
antiviral responses, and several immune-related diseases.6

CLRs comprise a large family of receptors, consisting of one
or more carbohydrate recognition domains (CRDs), which rec-
ognize various carbohydrate ligands. CLRs play a major role in
shaping immune responses to microbial pathogens, especially
fungi.7 They can function directly as PRRs to induce specific
gene expression in macrophages and DCs, or to modulate the
functions of TLRs through signaling crosstalk.8,9

NLRs constitute a large protein family of intracellular sensors,
the members of which share a conserved central nucleotide-bind-
ing, oligomerization domain (NOD), a leucine-rich repeat
(LRR) region and a variable N-terminal effector domain.10

NLRs can be classified as receptors (Nod1 and Nod2), adaptors
(NLRP3, NLRC4, and NLRP6) and regulators (NLRX1,
NLRC3, NLRC5 and NLRP4) by their diverse functions. Much
work has been done to reveal the functions of NLRs as receptors
of PAMPs to sense microbial structures (e.g. peptidoglycan and
muramyl dipeptide for Nod1 and Nod2), and activate NF-kB
signaling, or as the adaptors to form different types of inflamma-
somes to regulate IL-1b and IL-18 secretion.11 However, accu-
mulating evidence suggests that NLRs can also function as the
negative regulators of innate immune responses, including
inflammation, antiviral immunity and autophagy.

Besides TLRs and NLRs, RLRs including retinoic acid-induc-
ible gene 1 (RIG-I), laboratory of genetics and physiology 2
(LGP2) and melanoma differentiation-associated protein 5
(MDA5) function as cytoplasmic receptors for RNA viruses.12

Recently, several DNA sensors, including absent in melanoma 2
(AIM2), interferon, gamma-inducible protein 16 (IFI16), DNA-
dependent activator of IRFs/Z-DNA binding protein 1 (DAI/
ZBP1), DEAD (Asp-Glu-Ala-Asp) box polypeptide 41
(DDX41), RNA polymerase III and the cyclic GMP-AMP syn-
thase (cGAS) have been identified to recognize viral DNA and
activate inflammasome or type I IFN signaling pathways to estab-
lish the antiviral state in the cell.3 Thus, TLRs, CLRs, NLRs,
RLRs, ALRs and other DNA sensors are critical in bridging
innate and adaptive immune responses by activating several key
signaling pathways and producing many important cytokines
and chemokines to mediate the immunological state of the host.

Innate Immune Signaling Pathways

Toll like receptor signaling pathways
TLRs are conserved membrane-associated receptors, which

contain a variable number of LRR motifs, a transmembrane
region and a Toll/IL-1 receptor (TIR) domain.13 Their LRR
region may recognize and bind to PAMPs as foreign ligands.
TLR4, the first identified TLR, recognizes lipopolysaccharide
(LPS), a unique cell wall component of gram-negative bacteria.
Specific members of the TLR family, including TLR1, TLR2,
TLR5 and TLR6, sense the protein, flagellin, or lipid

components on infectious microbes.14 On the other hand,
TLR3, TLR7, TLR8 and TLR9 detect single or double-strand
RNA (ssRNA or dsRNA) as well as unmethylated CpG
DNA.5,15-17

Upon ligand binding, TLRs have the ability to dimerize and
to undergo conformation changes, which lead to recruitment of
TLR domain-containing adaptor proteins. To date, 5 adaptors
with TLR domains have been identified, including myeloid dif-
ferentiation factor 88 (MyD88), TIR domain-containing adapter
protein (TIRAP)/MyD88 adaptor-like (Mal), TIR domain-con-
taining adaptor inducing interferon (IFN)-b (TRIF), TRIF-
related adaptor molecule (TRAM), and sterile a- and armadillo
motif-containing protein (SARM).18 Most TLRs, including
TLR1, 2, 4, 5, 7, 8 and 9 and excluding TLR3, use MyD88 as
the adaptor protein to activate the canonical NF-kB path-
way.19,20 Once the MyD88-interleukin-1 receptor-associated
kinase (IRAK) 1-IRAK4 complex is activated, it will recruit and
activate TNFR-associated factor (TRAF) 6. Next, TRAF6,
together with 2 ubiquitination E2 enzymes, UBC13 and
URV1A, catalyze the formation of a K63-linked polyubiquitin
chain on TRAF6, itself, and on NF-kB essential modulator
(NEMO), a regulatory subunit of IkB kinase (IKK) complex.
The polyubiquitin chain acts as a scaffold, recruiting TGF-
b-activating kinase 1 (TAK1) and its binding proteins, TAB1,
TAB2, TAB3, which leads to the phosphorylation and activation
of IKKa/b.21-23 Activated IKKa/b specifically phosphorylates
the inhibitory IkB protein, which, in turn, directly interacts with
and inactivates NF-kB. This phosphorylation results in the deg-
radation of IkB, allowing NF-kB nuclear localization, and subse-
quent synthesis of proinflammatory cytokines, such as TNF-a,
IL-1b and IL-6, which are critical mediators of inflammatory
responses.24 Interestingly, MyD88 may also directly interact with
interferon regulatory factor (IRF) 5 and IRF7 to induce IFN-a
production through TLR7/9 signaling.25,26 In addition, TLR4
and TLR3 can use another adaptor protein TRIF, to recruit
TRAF3, TRAF6 and receptor-interacting protein (RIP) 1, which
activates IKKa/b complex and TRAF family-member-associated
NF-kB activator (TANK) binding kinase 1(TBK1)/inducible
IkB kinase (IKKi), respectively. TBK1/IKKi directly phosphory-
lates IRF3 and IRF7 to activate type I IFN signaling path-
ways.14,27 These TLRs and their signaling pathways are
extremely important for initiating and propagating innate
immune responses, and for maintaining organism homeostasis.

Signaling pathways of Nod1 and Nod2
Nod1 and Nod2, the 2 most widely studied members of

NLRs, recognize bacteria-derived g-D-glutamyl-meso-diamino-
pimelic acid (iE-DAP) and muramyl dipeptide (MDP), respec-
tively.28 Upon ligand recognition, Nod1 and Nod2 oligomerize
and interact with RIP2, subsequently leading to the activation of
the canonical NF-kB and MAPK pathways.29,30 Nod1 and
Nod2 are also involved in the autophagic response to invasive
bacteria. Upon bacteria invasion, Nod1 and Nod2 recruit the
autophagy related 16-like (Atg16L) to induce autophagy in a
RIP2/NF-kB independent manner.31 Furthermore, Nod2 also
regulates antibacterial immunity through its interaction with
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Atg16L, Atg5 and Atg7 to induce autophagy and to generate
MHC class II antigen-specific CD4 T cell responses.32 In addi-
tion to their role in antibacterial immunity, a recent study
showed that Nod2 senses viral ssRNA, triggering the activation
of type I IFN signaling pathway through interaction with mito-
chondrial antiviral signaling protein (MAVS). However, it is not
known whether Nod2 directly binds to viral ssRNA or acts as an
adaptor protein.33 Regardless, it is clear that Nod1 and Nod2
function in response to microbial structures, and lead to the acti-
vation of NF-kB signaling for cytokine production.

Inflammasome activation by NLRs and ALRs
Several NLRs and ALRs, including NLRP1, NLRP3, NLRP6,

NLRP7, NLRC4 and AIM2, function as sensors or adaptors,
forming the ’inflammasome’, which regulates interleukin-1b (IL-
1b/ and IL-18 production and induces cell death via pyroptosis
in response to diverse microbial and endogenous danger sig-
nals.11,34 Inflammasomes are large protein complexes, consisting
of the central NLR or ALR protein, the adaptor protein apopto-
sis-associated speck-like protein containing a CARD (ASC) and
caspase-1. Activation of the inflammasome usually requires 2 sig-
nals: (1) transcriptional induction of pro-IL-1b, and NLRs or
ALRs; (2) specific, agonist-driven oligomerization of NLR/ALRs
to initiate inflammasome assembly. Recent studies demonstrated
that NLRP3 and AIM2 activation induces prion-like polymeriza-
tion of the adaptor, ASC, to activate caspase-1. This self-activa-
tion modality of ASC, initiated by NLRP3 or AIM2, may
represent a unified mechanism for inflammasome assembly.35,36

NLRP1 inflammasome is the first complex identified in the
activation of caspase-1. Human NLRP1 contains a C-terminal
caspase recruitment domain (CARD) domain, which is thought
to be the key component interacting with the CARD domain of
procaspase-1.37 Although several studies have shown that MDP
activates human NLRP1 inflammasome, the direct activator of
human NLRP1 is still unknown.38,39 There are highly polymor-
phic paralogs (Nlrp1a, Nlrp1b, and Nlrp1c) for mouse NLRP1,
which do not have a PYD domain. Mouse Nlrp1b mediates the
response to the lethal toxin (LT) of Bacillus anthracis,40 whereas
human NLRP1 does not. Like NLRP1, NLRC4 binds to cas-
pase-1 with its own CARD domain. NLRC4 may act as the
adaptor protein, downstream of neuronal apoptosis inhibitory
proteins (NAIPs) receptor. NAIPs appear to directly bind to
flagellin, T3SS rod, or T3SS needle, thereby, activating
NLRC4.41-44 NLRP3 is the most extensively studied inflamma-
some and is composed of NLRP3, ASC, and caspase-1. Human,
but not mouse, NLRP3 inflammasome also contains the cardinal
protein, whose function remains unclear.45 Notably, NLRP3
inflammasome is responsive to a wide array of stimuli, ranging
from microorganisms of both endogenous and exogenous origin
to inorganic entities including alum asbestos and silica.46

Whereas specific ligands have been identified for NLRP1,
NLRC4, and AIM2, little is known about the direct ligands of
NLRP3.47 A recent study reveals that a RNA helicase, DHX33,
senses cytosolic RNA and interacts with NLRP3 to trigger
NLRP3 inflammasome activation.48 This result indicates that

NLRP3 may act as an adaptor protein rather than a direct sensor
in innate immune signaling.

AIM2 is the most recently identified DNA sensor that inter-
acts with ASC and capase-1 to regulate IL-1b and IL-18 matura-
tion upon synthetic dsDNA stimulation or DNA virus infection
in a NLRP3-independent manner.49-52 Maturation of IL-1b and
IL-18 is essentially absent in AIM2-deficient macrophages in
response to Poly(dA:dT) or F. tularensis infection.53,54 Collec-
tively, these data demonstrate that these receptors act as nucleo-
tide sensors, mediating the innate immune response in an
inflammasome-dependent or -independent manner.

Type I interferon signaling pathways induced by RNA and
DNA viruses

Upon RNA virus infection, RLRs, including RIG-I (also
known as DDX58) and MDA5 (also known as IFIH1), recognize
cytoplasmic viral components and activate the mitochondrial sig-
naling adaptor, MAVS (also known as VISA, IPS-1 or Cardif).55

MAVS is a mitochondrial-associated adaptor protein, which pro-
vides the platform to recruit downstream kinases, such as TBK1
and IKKi, and leads to IRF3/IRF7 phosphorylation and to acti-
vation of type I IFN signaling pathways.56-59 Recent evidence
suggests that viral infection induces the formation of very large
MAVS aggregates, which are capable of activating IRF3. The
MAVS fibrils operate like prions, converting inactive MAVS into
its functional aggregates.60 These results suggest that a prion-like
conformational switch of MAVS may be a critical check- point
in antiviral signaling cascade initiation. Another member of
RLRs, LGP2, was originally believed to negatively regulate RIG-
I and MDA5, due to its lack of a CARD domain.61 However, a
recent study, using LGP2 knockout mice, indicates that LGP2
positively regulates type I IFN signaling in response to a variety
of RNA viruses,62 suggesting that LGP2 may enhance RIG-I/
MDA5-mediated recognition of viral RNA.

DAI (also known as ZBP1) was the first viral DNA sensor iden-
tified. It interacts with dsDNA and activates TBK1/IRF3 path-
way.63 Subsequent work has confirmed a role for DAI in type I
IFN activation against cytomegalovirus (CMV) infection in
human foreskin fibroblasts.64 However, it has been difficult to dis-
cern whether DAI is essential for DNA sensing in vivo.65 Recent
studies have shown that RNA polymerase III can also serve as an
intracellular sensor of viral DNA by transcribing AT-rich double-
stranded DNA into double-stranded RNA, which, in turn, acti-
vates RIG-I and initiates the MAVS-dependent signaling cas-
cade.66,67 Furthermore, IFI16 and DDX41 function as cytosolic
DNA sensors and interact with another adaptor protein, stimula-
tor of interferon gene (STING, also known as TMEM173 or
MITA), to activate TBK1 and downstream signaling.68,69

STING is a newly discovered adaptor protein, which plays a
central role in viral dsDNA responses by mediating TBK1-
dependent IRF3 activation.70,71 Inactive STING resides in the
endoplasmic reticulum (ER), but forms discrete punctate foci
with TBK1 in the perinuclear region of the cytosol after dsDNA
stimulation.71 Because several DNA sensors, such as DDX41
and IFI16, have been demonstrated to activate STING, the
STING-TBK1-IRF3 signaling axis is now known as the major
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pathway of cytosolic DNA-induced type I IFN signaling. In
addition, STING, itself, may work as a sensor, directly recogniz-
ing bacterial second messenger molecules called cyclic dinucleoti-
des (CDNs), such as cyclic di-GMP (c-di-GMP), and activating
type I IFN signaling.72,73 Notably, Z. Chen’s group demon-
strated that STING also senses cyclic-di-GMP-AMP (cGAMP),
leading to cytosolic DNA-induced type I IFN signaling. Further-
more, cGAMP can be generated in the presence of cytosolic
DNA by a cyclase enzyme called cGAS.74,75 The identification of
cGAS may provide the missing link between DNA sensing and
STING activation. Despite the fact that the cGAS-cGAMP sys-
tem is essential for type I IFN induction by DNA viruses in fibro-
blasts and monocytes,74,75 whether the cGAS-cGAMP system
operates similarly in in other cell types, as well as in vivo, needs
urgent resolution.

Regulation of Innate Immune Signaling Pathways
by Diverse Regulators

Because uncontrolled innate immune responses can be harm-
ful, even fatal, to the host,76 stringent regulation of these signal-
ing pathways is essential to maintain immune balance in the
host. In the last few years, many positive and negative regulators
have been identified to control innate immune signaling path-
ways at multiple levels through different mechanisms.

Regulation of TLR signaling pathways
Many molecules, ranging from membrane to cytosol, such as

helper cofactors, decoy receptors, or specific enzymes, regulate
TLR signaling. These molecules include co-receptors (CD14),
soluble receptors (sTLR), transmembrane proteins (ST2L,

Figure 1. A schematic representation of TLR signaling pathways. TLRs are activated by ligand binding, which leads to dimerization of TLRs and to recruit-
ment of TLR domain-containing adaptor proteins. Next, MyD88/IRAK1/IRAK4 or TRIF activates TRAF6, which, in turn, catalyzes the formation of a K63-
linked polyubiquitin chain on TRAF6, itself. The polyubiquitin chain acts as the scaffold, recruiting TAK1 and its binding proteins, which leads to IKK-a/b
activation. Activated IKKa/b specifically phosphorylates IkBa, resulting in IkBa degradation and NF-kB translocation into the nucleus. TRIF can also recruit
TRAF3 to activate TBK1 and IKKi. TBK1/IKKi directly phosphorylates IRF3/7 to activate type I IFN signaling pathways. Various molecules positively (green
arrow) or negatively (red blunt arrow) regulate TLR-induced signaling pathways.
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SIGIRR, TRAILR), and intracellular regulators (SOCS-1,
MyD88s, TOLLIP, IRAK-M, A20, CYLD (the familial cylin-
dromatosis tumor suppressor gene), Nrdp1, regulatory Nod pro-
teins, TRIAD3A, tripartite motif containing proteins (TRIMs)).
These molecules maintain the balance between activation and
inhibition of TLR signaling in response to diverse PAMPs
(Fig. 1 and Table S1).76,77

Co-receptors
Several co-receptors have been identified to modulate TLR

function. For example, CD14 is a glycosylphosphatidylinositol-
anchored protein, which forms a horseshoe-shaped structure sim-
ilar to TLR ectodomains. CD14 chaperones LPS from the LPS-
binding protein (LBP) to the TLR4–MD2 complex at the cell
surface and mediates TNF-a and IL-6 production in response to
TLR4 and TLR2–TLR6 ligands.78 Furthermore, CD14 is also
necessary for induction of proinflammatory cytokines by interact-
ing with TLR7 and TLR9.79

Decoy inhibitors
Some transmembrane proteins serve as the negative regulators

of TLR signaling. It is well established that soluble decoy recep-
tors negatively regulate cytokine and chemokine production. In
TLR signaling, soluble TLR4 (sTLR4) blocks the interaction
between TLR4 and MD2,80 whereas soluble TLR2 (sTLR2) acts
as an agonist of TLR2 by binding to CD14.81 Since MyD88 is
the major adaptor protein for most TLRs, MyD88s (a short form
of MyD88) antagonizes TLR signaling by inhibiting LPS- and
IL-1b-induced, but not TNF-induced, NF-kB activation.82

Although MyD88s strongly interacts with IRAK1, it does not
directly interact with IRAK4. MyD88s prevents the IRAK4-
mediated phosphorylation of IRAK1, which, in turn, inhibits
downstream NF-kB activation.83

Transmembrane proteins
Single Ig IL-1-related receptor (SIGIRR) is a membrane pro-

tein that is highly expressed in immature DCs and epithelial cells,
but not in macrophages. It interacts with IRAK and TRAF6 to
negatively regulate TLR4 and TLR9 pathway. SIGIRR¡/¡ mice
are more susceptible to LPS-induced septic shock.84,85 ST2L is a
type I transmembrane protein that inhibits TLR4-mediated acti-
vation and attenuates MyD88 and Mal functions. Macrophages
from ST2¡/¡ mice produce higher levels of proinflammatory
cytokines in response to a variety of TLR ligands, indicating that
ST2L is a potent negative regulator of TLR signaling.86 Another
receptor that inhibits TLR signaling is tumor-necrosis factor-
related apoptosis-inducing ligand receptor (TRAILR). TRAILR
does not have a TIR domain, but belongs to the TNF superfam-
ily. It negatively regulates NF-kB activation by stabilizing IkBa,
preventing its degradation.87

Ubiquitin E3 ligases
Protein ubiquitination is a reversible covalent modification,

regulating the stability, activity and localization of target pro-
teins. Recent work has shown that many ubiquitin ligases as well
as deubiquitinases regulate TLR signaling. In Drosophila, the

ubiquitin E3 ligase, Pellino, targets MyD88 for ubiquitination
and degradation.88 TRIAD3A is a member of the TRIAD3 fam-
ily of RING-finger ubiquitin E3 ligase. It binds to the cyto-
plasmic domain of TLR9 and TLR4, but not to TLR2, to
promote the ubiquitination and degradation of TLR4 and
TLR9.89 Another RING-finger E3 ligase, TRIM30a, is also a
negative regulator of TLR-induced NF-kB signaling. TRIM30a
is induced by TLR agonists and interacts with the TAB2-TAB3-
TAK1 complex, mediating TAB2 and TAB3 degradation.90

Nrdp1 acts as an E3 ligase and directly binds and polyubiquiti-
nates MyD88, leading to the degradation of MyD88 and subse-
quent inhibition of NF-kB activation and proinflammatory
cytokine production. Interestingly, Nrdp1 also promotes the acti-
vation of transcription factor, IRF3, and the production of IFN-
b by interacting with TBK1. These results indicate that Nrdp1
may function as a bio-switch to ’preferentially’ promote the
TLR-type I IFN axis.91

Deubiquitinases
A20 was initially identified as a TNF-induced zinc-finger pro-

tein that is rapidly induced by both TNF-a and LPS, and is
expressed in many cell types.92,93 A20 has been identified as a
key negative regulator, controlling both MyD88-dependent and
MyD88-independent TLR-signaling pathways. It acts as a deubi-
quitinating enzyme, removing K63-specific polyubiquitin chains
from TRAF6, thus, blocking NF-kB signaling.94 Recently, it is
reported that A20 inhibits the E3 ligase activities of TRAF6,
TRAF2, and cellular inhibitor of apoptosis protein 1 (cIAP1) by
disrupting their interactions with key E2 enzymes, either Ubc13
or UbcH5c.95 In addition, A20 removes the K63-linked ubiqui-
tin chains on RIP1 (an essential mediator of TNF signaling) and
supports E3 ligase activity by facilitating K48-linked ubiquitina-
tion of RIP1 for subsequent proteasomal degradation.96 Several
A20-interacting proteins, including TAX1BP1, RNF11 and Itch,
have been identified to regulate the diverse functions of
A20.95,97,98 A20¡/¡ mice are hypersensitive to both TNF-a and
LPS, develop severe inflammation, and die prematurely.99

Another deubiquitinase, CYLD, is also important for its inhibi-
tory function in TLR signaling. CYLD removes K63-linked
ubiquitin chains from TRAF2, and thus, inhibits NF-kB activa-
tion.100,101 It has been demonstrated that CYLD negatively regu-
lates TNF-a or TLR induced-NF-kB activation and type I IFN
signaling by targeting a variety of signaling proteins, including
TRAF2, TRAF6, RIP1, TAK1, NEMO, RIG-I, and TBK1, in T
cells and other immune cells.102-105

Regulatory NLRs
Although NLRs were originally believed to function as the

sensors of pathogens and cellular danger signals, recent evidence
suggests that several NLRs, known as regulatory NLRs, nega-
tively regulate TLR and RLR signaling. NLRX1 is the first NLR
family member shown to be targeted to the mitochondria. It is
ubiquitously expressed in a variety of tissues and cells.106 To
date, at least 4 distinct functions of NLRX1 have been identified:
(1) to negatively modulate RIG-I-mediated antiviral responses by
binding to MAVS and disrupting RIG-I-MAVS
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interaction;106,107 (2) to negatively regulate TLR-induced NF-kB
signaling by targeting TRAF6 and IKKa/b-NEMO com-
plex;107,108 (3) to potentiate TNF-a, poly (I:C) and Shigella
infection-induced reactive oxygen species (ROS) production,
which can further amplify NF-kB and JNK signaling as well as
proinflammatory responses;109 (4) to promote virus induced-
autophagy in cooperation with mitochondrial Tu translation
elongation factor (TUFM).110 NLRC5 is another member of the
NLR protein family, recognized as a novel regulator of both
adaptive and innate immune responses.111 Unlike NLRX1,
NLRC5 expression is upregulated by many cytokines, such as
IFNs and LPS.112-114 We, and others, have identified NLRC5 as
a negative regulator of both NF-kB and type I IFN signaling.
NLRC5 inhibits IKK phosphorylation and NF-kB signaling by
interacting with IKKa/b but not NEMO. Whereas, NLRC5
inhibits type I IFN signaling by targeting RIG-I/MDA5 after
viral infection and blocking the RIG-I–MAVS interaction.
Accordingly, knockdown of NLRC5 by siRNA enhanced the
secretion of proinflammatory cytokines (IL-6, TNF-a), and
TLR-stimulated antiviral responses in a variety of cell
types.112,113 Recently, we, and other groups, generated several
lines of NLRC5¡/¡ mice and found that NLRC5 deficiency
markedly enhanced proinflammatory and antiviral responses in
MEFs and peritoneal macrophages, but not in bone marrow-
derived macrophages (BMMs) or BMDCs. This suggests that
NLRC5 may regulate innate immune responses in a cell type-
specific manner in vivo.114-116 Other regulatory NLRs, such as

NLRC3 and NLRP6, have also been identified as negative regu-
lators of TLR-induced NF-kB and MAPK signaling.117,118

Other intracellular inhibitors
SOCS1 belongs to the suppressor of cytokine signaling

(SOCS) family and inhibits TLR-induced NF-kB signaling by
targeting IRAK1. In accordance, SOCS1¡/¡ mice have increased
susceptibly to LPS-induced septic shock.119,120 IRAKM is a
member of IRAK kinase family and is predominantly expressed
in peripheral blood cells. IRAKM¡/¡ mice produce markedly
enhanced levels of proinflammatory cytokines in response to LPS
and CpG DNA, suggesting that IRAKM is a negative regulator
of TLR-induced NF-kB activation.121 In addition to IRAKM,
Toll-interacting protein (TOLLIP) also targets IRAK1 to block
TLR2 and TLR4 signaling by inhibiting IRAK1
autophosphorylation.122

Regulation of inflammasomes
Recent studies have reported guanylate-binding protein 5

(GBP5) as a positive regulator of NLRP3 inflammasome. GBP5
stimulates NLRP3-ASC oligomerization by interacting with the
pyrin domain of NLRP3 via its GTPase domain, and GBP5 pro-
motes NLRP3 inflammasome activation induced by ATP, nigeri-
cin, and bacteria, but not crystalline agents.123 In addition,
MAVS, the key regulator of RLR signaling, has also been identi-
fied to facilitate NLRP3 inflammasome activation. Similar to
GBP5, MAVS selectively promotes NLRP3 inflammasome acti-

vation in response to ATP
and nigericin, but not to
crystalline reagents such as
silica and alum124 The
mitochondria-dependent
NLRP3 inflammasome
activation also requires the
functional microtubule sys-
tem and metabolic
signals.125

Numerous studies have
focused on the role of post-
translational modification
of inflammasomes. Several
reports reveal that activa-
tion of NLRP3 inflamma-
some is strongly inhibited
when NLRP3 is ubiquiti-
nated, indicating that
NLRP3 deubiquitination is
an essential posttransla-
tional protein modification
for NLRP3 activation.126-
128 To date, BRCC3, a
member of JAMM domain-
containing Zn2C metallo-
proteases, is the only
deubiquitinating enzyme
identified to activate

Figure 2. Activation and regulation of inflammasomes. The identified core components of inflammasomes belong
to 2 families: (1) the NLR family (such as NLRP1b, NLRP3 and NLRC4); (2) the PYHIN (PYD and HIN200 domain-con-
taining protein) family (such as AIM2). NLRs or AIM2, together with ASC, activate caspase-1, leading to downstream
effector functions such as pyroptosis and processing of pro-IL-1b and pro-IL-18. Multiple regulators exert rigorous
control on these pathways through their positive (green arrow) or negative (red blunt arrow) regulation. CARD, cas-
pase recruitment domain; FIIND, domain with function to find; LRR, leucine-rich repeat; NACHT, nucleotide binding
and oligomerization domain; NLR, Nod-like receptor; PYD, pyrin; HIN200, haematopoietic interferon-inducible
nuclear antigens with 200 amino-acid repeats.
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NLRP3 inflammasome by deubiquitination.128 Another report
demonstrates that an E3 ligase, TRIM30, negatively regulates
NLRP3 inflammasome activation by modulating reactive oxygen
species production.129 Whether other E3 ligases or deubiquiti-
nases are required for regulating the NLRP3 inflammasome
remains to be investigated. Furthermore, the AIM2 or NLRP3
inflammasome in macrophages triggers activation of the G pro-
tein, RalB, and formation of autophagosomes to eliminate active,
ubiquitinated inflammasomes through autophagy.130 Recently, a
study shows that NLRP3, but not AIM2, is negatively regulated
by NO-mediated S-nitrosylation.131 Besides NLRP3, the ubiqui-
tination of caspase-1 is also required for optimized inflamma-
some activity. cIAP1, cIAP2, and the adaptor protein, TRAF2,
interact with caspase-1-containing complexes and mediate K63-
linked polyubiquitination of caspase-1, thus, activating
inflammasomes.132

Phosphorylation is also a critical modification regulating
inflammasome activity. Phosphorylation of NLRC4 is critical for
the activity of NLRC4 inflammasome, and protein kinase C delta
(PKC-d) phosphorylates NLRC4.133 However, a recent study
resolved the structure of NLRC4 and found that inactive NLRC4
is also phosphorylated.134 Thus, the relationship between NLRC4
phosphorylation state and function needs further investigation.
The kinase, Syk, controls both pro-IL-1b synthesis and inflamma-
some activation after cell stimulation with Candida albicans.135

Lyn and Syk kinases also positively regulate malarial hemozoin-
induced NLRP3 inflammasome activation.136 In addition, Syk
and JNK are required for the activation of caspase-1 via the
NLRP3 and AIM2 inflammasomes by phosphorylating ASC.137

Double-stranded, RNA-dependent protein kinase (PKR) has
recently been shown to contribute to the activation of the NLRP1,
NLRP3, NLRC4, and AIM2 inflammasomes through direct
interaction with NLRs and AIM2. Loss of PKR in macrophages
results in attenuated IL-1b and IL-18 cleavage and HMGB release
in response to various stimuli.138,139 However, the exact role for
phosphorylation in PKR-regulated inflammasome activation still
needs further clarification (Fig. 2 and Table S1).

Regulation of type I IFN signaling pathway

Regulation of RLRs
RIG-I and MDA5 are key receptors for detecting viral RNAs

and inducing type I IFN signaling to establish the antiviral state
of the cell. Upon ligand binding, RIG-I undergoes a series of
posttranslational modifications, including de-phosphorylation
and ubiquitination, to form tetramers and, in turn, to activate
MAVS.12 The activity of RIG-I is tightly regulated by many posi-
tive and negative regulators. As an IFN stimulator, ZAPS associ-
ates with RIG-I to promote the oligomerization and ATPase
activity of RIG-I, which leads to robust activation of type I IFN
activation.140 K63-linked ubiquitination of the RIG-I CARDs,
as well as its CTD, is critical for RIG-I to elicit antiviral activ-
ity.141,142 The E3 ligase, TRIM25, interacts with the CARDs of
RIG-I and delivers Lys63-linked polyubiquitin chain at Lys172
of the RIG-I CARDs to enhance the interaction between RIG-I
and MAVS.141 Moreover, Riplet/RNF135/REUL promotes

RIG-I activation, independent of TRIM25, by catalyzing
K63-linked polyubiquitin chains of RIG-I on its CTD
domain.142 A recent study shows that ubiquitin-specific protease
15 (USP15) targets TRIM25 to prevent the LUBAC-dependent
degradation of TRIM25 and to promote RIG-I-mediated antivi-
ral signaling.143 It is also reported that an unanchored polyubi-
quitin chain can also facilitate RIG-I-mediated type I IFN
signaling.144 Most recently, a structural-based study demon-
strates that both TRIM25-mediated ubiquitination of RIG-I
CARD and non-covalent binding of K63-linked polyubiquitin
chains induce its tetramer formation, and hence, activate
MAVS.145 Ubiquitination is a reversible process. We, and others,
have identified 2 deubiquitinases, USP3 and USP21, which nega-
tively regulate RIG-I activity by specifically removing the
K63-linked ubiquitin chains on RIG-I.146,147 RIG-I activity is
also negatively regulated by RNF125 and Siglec-G-/SHP2/
c-Cbl-mediated K48-linked ubiquitination and protein degrada-
tion.148,149 Besides ubiquitination, RIG-I is also negatively regu-
lated by Ser-Thr phosphorylation on CARD domain. In
unstimulated cells, RIG-I is robustly phosphorylated at S8 and
T170 by protein kinase C-a/b .PKCa/b/,150-152 whereas the
phosphatases, PP1a and PP1g activate both RIG-I and MDA5
signal pathways by dephosphorylating RIG-I or MDA5 upon
viral infection.153 Furthermore, virus-induced upregulation of a
short RIG-I splice variant (RIG-I SV) negatively regulates RIG-I
signaling in a dominant-negative manner.154 In contrast to the
regulatory mechanisms controlling RIG-I signaling activity,
mechanisms controlling MDA5 signaling activity are less known.
DAK is a dihydroacetone kinase, which associates with MDA5,
but not RIG-I, and specifically inhibits MDA5-mediated IFN-b
induction.155 MDA5 can also be activated by the phosphatases,
PP1a and PP1g:153 Our group has identified NLRC5 as a nega-
tive regulator for both RIG-I and MDA5 via direct interaction
upon viral infection.112 Recent evidence shows that K63-linked
ubiquitin chains trigger MDA5 oligomerization and activate type
I IFN signaling.156 We found that the deubiquitinase, USP3,
negatively regulates MDA5-mediated signaling by deubiquitinat-
ing its CARD domain.146

Regulation of MAVS
MAVS is a critical adaptor protein for viral RNA-mediated

antiviral immunity. NLRX1 was reported to negatively regulate
type I IFN signaling by blocking RIG-I-MAVS interaction.106

The autophagic proteins, Atg5 and Atg12, also negatively regu-
late type I IFN signaling by interacting with RIG-I and
MAVS.157 The stability of MAVS protein is regulated by several
E3 ligases for ’fine tuning’ of antiviral innate immunity. PCBP2
was identified to degrade MAVS in cooperation with a HECT
domain-containing E3 ligase AIP4.158 Smurf2 and TRIM25 are
also negative regulators of type I IFN signaling by targeting
MAVS for K48-linked ubiquitination and degradation.159,160

Regulation of STING
STING has been identified as the most important adaptor

protein for DNA-mediated type I IFN signaling. STING is regu-
lated by both K48- and K63-linked ubiquitination. RNF5
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ubiquitinates STING with K48 lineage for protein degrada-
tion.161 By contrast, TRIM56 and TRIM32 positively regulate
STING function by interacting with STING and targeting it for
K63-linked ubiquitination. The K63-linked ubiquitination of
STING may prompt the interaction between STING and
TBK1, and thus, activate type I IFN signaling.162,163 On the
contrary, NLRC3 reduces STING-dependent innate immune
activation in response to cyclic di-GMP and DNA viruses by
impeding STING-TBK1 interaction.164 Recently, the autophagy
related serine/threonine UNC-51-like kinase (ULK1/Atg1) has
been identified as a novel, negative regulator of STING. After
autophagy-dependent delivery of STING to endosomal/lyso-
somal compartments and activation of IRF3 and NF-kB, ULK1
is free from its repressor, AMP activated protein kinase (AMPK),
and subsequently, phosphorylates STING to suppress its
function.165

Regulation of TRAF3
The tyrosine kinase, Syk, positively regulates type I IFN pro-

duction, in response to TLR4 ligand, by interacting with TRAF3
and TBK1. Syk-deficient macrophages exhibited decreased pro-
duction of type I IFNs.166 A recent study shows that linear, ubiq-
uitinated NEMO, mediated by the linear ubiquitin assembly
complex (LUBAC), interacts with TRAF3 and disrupts the
MAVS-TRAF3 complex to block type I IFN signaling.167 Deu-
biquitinating enzyme A (DUBA, also known as OTUD5) was
the first identified deubiquitinase to remove K63-linked poly-
ubiquitin chains of TRAF3 and negatively regulate type I IFN
signaling.168 Recently, HSCARG was found to inhibit TRAF3
ubiquitination via recruiting deubiquitinase OTUB1, therefore
negatively regulating RIG-I signaling.169 The protein stability of
TRAF3 is controlled by the E3 ubiquitin ligase, TRIAD3A,
which leads to K48-linked ubiquitination of TRAF3, and subs-
quent proteasomal degradation.170 In contrast, USP25 positively
regulates TLR4-dependent innate immune responses through
deubiquitinating TRAF3. USP25 specifically removes the K48-
linked ubiquitination of TRAF3, which is mediated by the E3
ubiquitin ligase, cIAP2, and enables a balanced innate immune
response.171

Regulation of TBK1
It is known that TBK1 has several binding partners, including

TRAF family member-associated NF-kB activator (TANK),
NAK-associated protein (NAP1), and similar to NAP1 TBK1
adaptor (SINTBAD), essential for its activation.172 Recently,
GSK3b was shown to interact with TBK1 during virus infection.
GSK3 enhances TBK1 self-association and autophosphorylation
at Ser 172, which is critical for IRF3 activation.173 The activity
of TBK1 is also regulated by a robust, reversible ubiquitination
process. TBK1 undergoes ubquitination with K63 lineage by
mind bomb (MIB) or Ndrp1 to promote interferon production
in response to RLR or TLR ligands, respectively.91,174 However,
ABIN1, TAX1BP1 and A20 blocks antiviral signaling by disrupt-
ing K63-linked polyubiquitination of TBK1/IKKi.175,176

Recently, we have found that NLRP4 serves as a negative regula-
tor of type I IFN signaling by targeting active TBK1 for

degradation. NLRP4-mediated type I IFN signaling is regulated
in a TBK1-IRF3-dependent manner, but has no effect on the
MyD88-IRF7-dependent pathway. After viral infection or TLR
stimulation, NLRP4 specifically interacts with TBK1 and recruits
the E3 ubiquitin ligase, DTX4, to promote K48-linked polyubi-
quitination and degradation of TBK1.177 Another group found
the E3 ligase, TRAF-interacting protein (TRIP), also promotes
proteasomal degradation of TBK1.178 Interestingly, we observed
that TRIP negatively regulates TBK1 in a NLRP4-dependent
manner, suggesting that NLRP4 is paramount in mediating
TBK1 stability (unpublished data).

Regulation of IRF3/IRF7
IRF3 and IRF7 are master transcriptional factors of the type

I IFN pathway. IRF3 and IRF7 can be activated by TLR3,
TLR4 or RLRs ligands in macrophages, MEFs and conventional
DCs (cDCs). Notably, IRF7 can also be activated by TLR7 and
TLR9 ligands through MyD88 signaling, and IRF7 is essential
for type I IFN production in plasmacytoid dendritic cells
(pDCs).179 Thus, the activity of IRF3/IRF7 must be tightly reg-
ulated. It has been reported that IRF7 is targeted for degrada-
tion by binding to the RTA immediate-early nuclear
transcription factor encoded by Kaposi’s sarcoma-associated her-
pesvirus (KSHV).180 In addition, an RTA-associated E3 ligase
RAUL (also known as KIAA10 or UBE3C) negatively regulates
type I IFN by targeting both IRF3 and IRF7 for K48-linked
ubiquitination and degradation.181 The N-Myc and STATs
interactor (Nmi), a Sendai virus-inducible protein, was also
found to promote the K48-linked ubiquitination and the pro-
teasome-dependent degradation of IRF7.182 Similarly, the E3
ligase, Ro52 (TRIM21), targets IRF3 for degradation.183 IRF3
can also be deactivated via dephosphorylation mediated by the
serine and threonine phosphatase, PP2A, and its adaptor pro-
tein, RACK1. PP2A-deficient macrophages show enhanced type
I IFN signaling with diverse TLR ligands and viral infections
(Fig. 3 and Table S1).184

Double-edged Sword Roles of PRRs and Innate
Immune Regulators in Cancer

Activation of the innate immune response through TLR- and
NLR- signaling pathways serves as a link between chronic inflam-
mation and cancer.185-188 It is well-demonstrated that chronic
inflammation is a major driving force in cancer develop-
ment.189,190 Chronic infection or chronic inflammation causes
about 20% of human cancers.189,191 Thus, chronic inflamma-
tion, primarily caused by abnormal NF-kB or inflammasome
activation, is tightly linked to cancer through PRRs-mediated
cytokine production186,192-194 Emerging evidence suggests that
PRRs and their regulators have both favorable and unfavorable
consequences on cancer cells. On the one hand, certain PRRs
induce an anti-tumor immune response to inhibit tumor progres-
sion. Conversely, uncontrolled innate immune signaling may
provide a microenvironment for cancer cell proliferation and
immune surveillance evasion.
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The role of TLRs and
their regulators in cancer

Several studies have
demonstrated a significant
association between pros-
tate cancer and TLR
sequence variants, includ-
ing TLR4, TLR1, TLR6
and TLR10. These studies
suggest that TLR sequence
polymorphisms are an
important risk factor for
prostate cancer.190,195,196

However, this may be
dependent on the specific
TLR, the tumor type, and
the types of cells expressing
the TLR. Functional analy-
ses show that the loss of
TLR4, due to polymor-
phisms, in human prostate
and breast tumor cell lines,
inhibits tumor cell prolifer-
ation and invasion, and
induces tumor cell apopto-
sis.197,198 In contrast,
TLR2¡/¡ mice develop sig-
nificant larger and more
colorectal tumors than
wild-type mice, suggesting
a protective role of TLR2
in colorectal tumors.199 In
addition, activation of
TLR3 signaling by poly (I:
C) inhibits tumor cell pro-
liferation and induces apo-
ptosis.200,201 Wang et al.
reported TLR9 activation
in non-small cell lung can-
cer cells sensitizes tumor cells to apoptosis, which, in turn, leads
to tumor growth arrest.202 Collectively, these results reveal anti-
tumor functions of certain TLRs. Alternatively, another report
demonstrates that specific ligand activation of TLR2, 3 and 4 on
human melanoma cells induces cell migration and promotes met-
astatic events, suggesting that the function of TLR signaling may
be tumor specific.203 Another possible interpretation of these
results is that TLRs are sensors of many immune cells, and the
activation of TLRs by PAMPs can stimulate diverse innate
immune pathways (e.g., the NF-kB pathway) to secrete proin-
flammatory cytokines.

Recent studies identify an important role for MyD88, a
molecule downstream in TLR-signaling pathways, in tumor
development. MyD88 deficiency reduces the incidence of
cancer in mice in an AOM-DSS-induced colon cancer
model.204 Loss of MyD88 also reduces chemically induced
skin cancer or liver cancer development.205,206 These studies

suggest that MyD88-mediated signaling plays a key role in
promoting tumor development and progression. However,
another study shows that loss of MyD88 increases tumor
incidence in AOM-DSS-induced model, due to the reduced
ability to heal ulcers and repair DNA damage.207 This further
reiterates the dual roles of TLR signaling in cancer.

The role of NLRs in cancer
Nod2 has been the focus of many studies because of its impli-

cation in Crohn’s disease.208 Notably, inactivating polymor-
phisms of Nod2 have been associated with increased
susceptibility to colorectal cancer in several patient cohorts.209

Similar to that observed in patients with Crohn’s disease, Nod2
deficiency leads to increased colorectal cancer development in
mice. Both Nod2-deficient mice and patients with Nod2 muta-
tions have intestinal dysbiosis.210 A recent report shows that
Nod2-deficient mice are susceptible to dysbiosis, and the

Figure 3. A schematic representation of cytosolic RNA and DNA-induced type I IFN signaling pathway and its regula-
tors. RIG-I and MDA5 recognize different groups of viral RNAs and initiate signaling cascades that begin with prion-
like polymerization of MAVS. MAVS recruits and activates TRAF2, TRAF3, TRAF5, and TRAF6. Polyubiquitin chains on
these ligases are sensed by NEMO through its ubiquitin-binding domains, in turn, recruiting IKK and TBK1 com-
plexes to phosphorylate IkBa and IRF3, respectively. LGP2 may function as a regulator to modulate the activity of
RIG-I and MDA5. Viral DNA could activate cGAS and other DNA sensors, which are all proposed to transduce signals
to the ER-localized adaptor protein STING. STING triggers TBK1‑dependent type I IFN response. RNA polymerase III
transcribes the DNA into 5’ppp-RNA, which triggers the RIG-I pathway. Most of the key molecules involved in the
RNA- and DNA-sensing pathways can be targeted by E3 ligases, deubiquitinases or regulatory NLRs, which nega-
tively (red blunt arrow) or positively (green arrow) regulate type I IFN responses.
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susceptibility to inflammation-induced colorectal cancer is trans-
missible to wild-type mice by co-housing.211

Emerging evidence implicates a pivotal role for NLR inflam-
masomes in tumor development. NLRP3 is highly expressed in
haematopoietic cells but not intestinal epithelial cells. NLRP3¡/¡

mice have increased colitis-associated cancer development.212

Similarly, ASC and caspase-1 deficient mice are susceptible to
DSS-induced tissue injury.213,214 Further, another study demon-
strates that NLRP3-dependent IL-18 production exerts a protec-
tive role against colorectal tumorigenesis through IFN-g
production and STAT1 signaling.214 NLRP6 is highly expressed
in intestinal tissue and has an important role in maintaining intes-
tinal homeostasis. NLRP6 inflammasome deficiency leads to aber-
rant inflammation within the colon and to colitis-induced
tumorigenesis.215 NLRP6 may function as a negative regulator of
colorectal tumorigenesis, partly through controlling epithelial cell
self-renewal upon injury.216 Flavell and his colleagues found that
the NLRP6 inflammasome in intestinal epithelial cells may play a
role in maintaining healthy gut flora.217 In addition, the NLRC4
inflammasome is also related to inflammation-induced colorectal
tumor formation in mice. Loss of the NLRC4 inflammasome
causes enhanced epithelial cell proliferation and reduced apopto-
sis.218 Therefore, NLRs and NLR inflammasomes are promising
therapeutic targets in inflammation-induced cancers.

Type I IFN regulators and cancer
A recent study demonstrated significant downregulation of

RIG-I expression in human hepatocellular carcinoma (HCC) tis-
sues, which was correlated with poorer patient prognosis and
diminished response to IFNa therapy. Mechanistically, RIG-I
enhances IFNa production by amplifying IFN-JAK-STAT sig-
naling via promoting STAT1 activation.219 It has also been dem-
onstrated that TBK1 plays a critical role in Kras-mediated tumor
development. Suppression of TBK1-induced apoptosis, specifi-
cally in human lung cancer cell lines, depends on oncogenic
KRAS expression.220 In addition, many negative regulators of
type I IFN signaling have been shown to be involved in cancer.
For example, A20 and CYLD have been identified as tumor sup-
pressors, and mutations in A20 and CYLD have been identified
in different tumor types.100,221,222

Conclusions

Since their discovery 20 y ago, TLRs and RLRs have been
shown to be essential for efficient innate and adaptive immu-
nity, and the mechanisms regulating TLR-mediated signaling
pathways have been extensively studied. In contrast, for many
NLRs and other viral DNA sensors, their recognized ligands
and their signaling pathways remain to be determined. This
review provides an updated overview of the rapidly evolving
field of PRR biology and PRR signaling pathways. These
innate immune receptors and their regulators are clearly
important in host defense against infectious diseases, in auto-
immune diseases as well as in cancer. However, challenges
still remain in the understanding of how the different activa-
tion pathways of PRRs converge or diverge, and how the dif-
ferent innate immune signaling pathways are regulated at the
molecular level. The exact roles of these PRRs in cancer
immunosurveillance also remain to be determined. Under-
standing the regulation of innate immune signaling, cytokine
production and their relationship to adaptive immune
responses in cancer will be critically important for the devel-
opment of cancer diagnostics and prognostics as well as effec-
tive cancer therapeutics.
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