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Autologous dendritic cells (DCs) loaded with tumor-
associated antigens (TAAs) are a promising immunological
tool for cancer therapy. These stimulate the antitumor
response and immunological memory generation.
Nevertheless, many patients remain refractory to DC
approaches. Antigen (Ag) delivery to DCs is relevant to
vaccine success, and antigen peptides, tumor-associated
proteins, tumor cells, autologous tumor lysates, and tumor-
derived mRNA have been tested as Ag sources. Recently, DCs
loaded with allogeneic tumor cell lysates were used to induce
a potent immunological response. This strategy provides a
reproducible pool of almost all potential Ags suitable for
patient use, independent of MHC haplotypes or autologous
tumor tissue availability. However, optimizing autologous
tumor cell lysate preparation is crucial to enhancing efficacy.
This review considers the role of cancer cell-derived lysates as
a relevant source of antigens and as an activating factor for ex
vivo therapeutic DCs capable of responding to neoplastic
cells. These promising therapies are associated with the
prolonged survival of advanced cancer patients.

Introduction

Standard treatments for disseminated tumors, through the use
of surgical or radio/chemotherapy procedures, provide limited
results that rarely change the disease outcome. During the last 2
decades, several immunotherapy approaches have been tested as

alternative treatments against solid and hematological malignan-
cies.1 The use of recombinant cytokines such as IL-2 and IFN-a,
T cell-mediated adoptive therapies, monoclonal antibodies, and
dendritic cells (DCs)-based vaccines, among others, have pro-
vided improvements in the control of tumor growth and patient
survival.1 However, despite the relative effectiveness of these
treatments, disadvantages are still prevalent in a large proportion
of cases in regards to the percentage of refractory patients and
side effects.

Although the adoptive transfer of tumor-specific CD8C

T cells with or without systemic immune suppression has been
used in different clinical trials and has resulted in significant
reductions of tumor size, some relevant adverse reactions were
observed in treated patients.2-4 More recently, the re-infusion of
ex vivo, genetically manipulated, autologous CD8C T cells that
express high-affinity T cell receptors (TCRs) for melanoma-spe-
cific antigens has shown promising results in relation to tumor
regression.5 In this context, the identification of new therapeutic
targets in melanoma and immune cells has enabled the develop-
ment of a wide range of monoclonal antibodies aimed at modu-
lating the antitumor T cell-mediated immune response and at
eradicating tumors.6,7 In 2011, the United States Food and Drug
Administration and the European Medicines Agency approved
Ipilimumab, an anti-CTLA-4 monoclonal antibody, for the
treatment of patients with advanced melanoma.8 Furthermore,
an anti-PD1 monoclonal antibody which targets a co-inhibitory
molecule expressed in activated T lymphocytes has shown prom-
ising results in phase I and II clinical trials.9-11 Immunotherapy
based on monoclonal antibodies (mAbs) is effective in up to
30% of treated patients. However, this type of treatment is fre-
quently limited in duration. Additionally, some types of cancers
are not responsive to mAb-based immunotherapy. Currently,
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little is known about the mechanisms underlying the differential
clinical responses of patients to mAb-based immunotherapy.12

An additional strategy for cancer immunotherapy is the use of
DCs as cell-based vaccines. DC-based vaccination strategies are
likely to be safe and, most importantly, capable of providing
long-lasting protective immunity.13, 14 Nevertheless, although
this strategy has been applied with success in clinical trials, an
important percentage of treated patients remain refractory to
these new approaches.

DCs are professional antigen presenting cells (APCs) that,
upon encountering antigens (Ags), efficiently trigger adaptive
immunity against pathogens and/or tumors,13,15-19 thus estab-
lishing a link between the innate and adaptive arms of the
immune system.20 In humans, DCs that are found in blood,
lymph nodes, and tonsils can be subdivided into plasmacytoid
DCs and resident BDCA1C DCs and BDCA3C DCs.21 The lat-
ter of these share similarities with CD8aC DCs that are found in
mice and that excel at antigen presentation to CD8aC T cells.22

In the skin, Langerhans cells, CD1aC dermal DCs, and CD14C

dermal DCs can be found, with these having the ability to
migrate to skin-draining lymph nodes.21 In addition, DCs resid-
ing in the periphery may also originate from peripheral blood
monocytes when they are recruited to these tissues by pro-inflam-
matory signals.23 In fact, human DCs can be differentiated in
vitro from several cellular sources, including bone marrow,
umbilical cord blood, and peripheral blood mononuclear cells
(PBMCs), by using a variety of cytokines and activating factors
such as the granulocyte and macrophage colony stimulating fac-
tor (GM-CSF) and IL-4.24-26

With respect to the application of DC-based immunother-
apy, our group has performed a series of clinical trials in
advanced malignant melanoma (MM) and prostate cancer
patients using ex vivo-generated DC-like tumor antigen pre-
senting cells (referred to as TAPCells). TAPCells are generated
from autologous cytokine-activated monocytes (AM) using
allogeneic cell lysates (referred to as TRIMEL and TRIPRO)
derived from 3 melanoma and prostate cancer cell lines,
respectively.14,27-30 In these studies, we reported a correlation
between the positive immune response induced by DC-vacci-
nation, as established by a patient tumor-specific delayed-type
IV hypersensitivity (DTH) reaction, and improved long-term
patient survival in late-stage MM, which is an excellent predic-
tor for clinical response.14,27,28 Additionally, in prostate cancer
patients, TAPCell-based immunotherapy is a safe approach
capable of inducing memory T lymphocytes, which might be
associated with clinical responses, including decreased serum
Prostate Specific Antigen (PSA) levels and increased PSA dou-
bling time.31 Despite these positive outcomes, a large propor-
tion of treated patients (»40%) do not respond to the therapy
and present the same survival rate as non-treated
patients.14,27,28 This lack of response could be explained, at
least in part, by absence of sufficient immunogenic danger sig-
nals, either during DCs ex vivo generation or immunization
and/or to deficiencies in antigen processing and presentation
by injected DCs, which might also be related to a deficient
delivery of danger signals to DCs.28

Several factors impact the efficacy of vaccination protocols
using ex vivo-generated DCs. One of the most relevant aspects
includes the expression and biological properties of specific recep-
tors activated during DCs stimulation, mainly pattern recogni-
tion receptors (PRRs), in addition to the subsequent process of
DCs maturation and activation in response to PRR triggering.
Given this context, cancer vaccine approaches need to include a
strategy for efficiently activating ex vivo-produced DCs32 and,
more importantly, for ensuring that this process results in a clini-
cally effective and reproducible anticancer response in vivo.
Taken together, these constraints support the imminent necessity
to develop more tolerable, less expensive, and more effective ther-
apeutic approaches that could particularly help patients with
advanced metastatic disease.

The present report discusses the role of stressed, cancer cell-
derived lysates as a strong immunological stimulus for therapeuti-
cally used ex vivo-generated DCs, in addition to exploring the
potential contribution of these in developing more efficient DC-
based immunotherapies against cancer.

Allogeneic tumor cell lysates as a source of antigens
for loading of DCs

An effective antigen presentation from DCs for initiating spe-
cific anticancer cellular immunity requires optimal activation and
migration to secondary draining lymphoid organs13 where they
can engage Ag-specific, na€ıve CD4C and CD8C T cells. This pro-
cess results in T-cell activation, proliferation, and mobilization to
peripheral tissues where these cells carryout effector func-
tions.13,27,33-35

Remarkably, DCs are the main cell type able to present exoge-
nous peptides loaded onto major histocompatibility complex
(MHC) class I molecules to na€ıve CD8C T cells in a process
denoted cross-presentation.36,37 The cross-presentation process
has proved essential for the generation of cytotoxic T lympho-
cytes (CTLs) against viruses, transplanted cells, and tumor
cells.38,39 During an antitumor immune response, DC-mediated
cross-presentation subsequent to the uptake and processing of
material derived from apoptotic, necrotic, or even live cancer cells
constitutes a relevant natural mode of TAA-presentation, thereby
contributing to an efficient triggering of immunity against
tumors.40

Optimal delivery of tumor Ags is also a crucial aspect in
DC-based immunotherapy success. Several methods for Ags
preparation/delivery to DCs have been developed to improve
capturing and presentation of Ags by DCs.41 These methods
include the use of RNA and DNA derived from tumor cells;
TAA-derived synthetic peptides; the generation of recombinant
proteins; tumor-derived apoptotic bodies; and transfection of
DCs with vectors codifying for TAAs, among others. Synthetic
peptide-based vaccines require knowledge of the patient’s haplo-
types and specific epitopes suitable for binding the MHC. Most
clinical trials using synthetic peptide-induced immunological
responses mediated by CD4C and CD8C T-cells have failed to
produce objective clinical responses or improvements in patient
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survival.42-45 One possible explanation may be due to the proba-
ble induction of tolerance through high affinity peptides, the lim-
ited persistence of peptide-MHC complexes on DCs, tumor
escape by clones lacking antigen expression, or the absence of
immunological danger signals associated with Ags.28 The
combined results of these studies suggest that peptide-loaded
DC immunization could be a highly specific strategy, but further
efforts are required to produce significant therapeutic effects.42-
44,46 Related to this, longer peptides (28–35 amino acids long)
have been recently tested in cervical cancer patients and have
been shown safe and immunogenic.47-49 These peptides are
unable to directly bind MHC molecules, and must be internal-
ized and processed by DCs for presentation.50 To date, one of
the most successful immunotherapeutic approaches has been
sipuleucel-T (Provenge�, Dendreon), which is the first FDA-
approved cell-based therapy for the treatment of hormone-refrac-
tory prostate cancer patients.51 Sipuleucel-T consists of autolo-
gous PBMCs, including DCs, B cells, monocytes, and natural
killer (NK) cells, that have been activated ex vivo with a recombi-
nant fusion protein containing prostatic acid phosphatase, a pros-
tate cancer associated antigen, fused to GM-CSF. Sipuleucel-T
has shown overall, prolonged survival with moderate side effects
among men with metastatic castration-resistant prostate cancer.51

Transfection of DCs with tumor-derived cDNA or mRNA
appears to be an interesting approach for TAAs delivery. Further-
more, the mRNA coding for co-stimulatory molecules could be
co-transfected to ensure the induction of a mature phenotype on
DCs. Nevertheless, this technique allows the delivery of a limited
amount of antigens due to a damaged integrity and viability of
DCs.52

Another tested method consists in loading DCs with attenu-
ated pathogenic particles (derived from bacteria or viruses) con-
taining genes encoding for TAAs with the purpose of inducing
their expression coupled with pathogen associated molecular pat-
terns (PAMPs).52 Despite being an interesting concept, it is
important to evaluate the immune response developed against
DNA or proteins from the vector, which could limit the clinical
efficacy of this approach.

Additionally, autologous tumor cell lysates, whole tumor cells,
and tumor-derived mRNA have also been tested as antigen pro-
viders for DCs.53-56 When fused or loaded with autologous
tumor cells or tumor lysates, these cells induce a stronger and
more extensive immunological response against tumors.53-59

Still, these therapies are limited to a reduced proportion of
patients that have tumor masses at surgically accessible sites,
therefore ensuring the possibility of obtaining the amount of bio-
logical material required.

One of the simplest and most promising sources of tumor Ags
is the preparation of allogeneic cancer cell lysates.14,28-30,60-62 An
advantage of this strategy is that it provides a standardized, appli-
cable source of tumor-specific Ags, which is also useful in high-
risk, tumor-free patients. Furthermore, allogeneic cancer cell
lysates constitute a valuable alternative for obtaining immuno-
genic DCs (Table 1).28,60,63,64

Tumor cell lysates are excellent sources for delivering of a wide
variety of Ags associated with MHC class I/II molecules, induc-
ing a more integral immune response. Importantly, the method
for inducing cell death or chemical protein modifications during
whole tumor lysate preparation could impact the immunogenic-
ity and efficacy of the therapy. Studies in murine models using
DCs pulsed with tumor lysates have shown significant results in
the induction of potent immune responses, as evidenced by the
generation of specific CTLs against tumor Ags and a significant
reduction of tumors in these animals.65-67 Moreover, several
studies using DCs loaded with mainly autologous, but also allo-
geneic, tumor lysates have been performed with positive results
in mice and humans.68-71 Likewise, positive results using alloge-
neic lysates from a variety of human tumor cell lines have been
obtained in several clinical trials for the treatment of different
types of cancer.14,28, 72,73 However, a potential problem lays in
the fact that some cancer cells are able to secrete immunoregula-
tory cytokines such as IL-10 and TGF-b during the cell culture
process, thus inducing a more tolerogenic phenotype on DCs.
Related to this, the majority of protocols designed to produce
tumor cell lysates for DC loading include several washing steps,
which result in a minimal amount of these cytokines present in

Table 1. Comparison of different strategies for antigen-delivery to DCs

Loading methods Advantages Disadvantages

Tumor cell lysates Allows the loading of a wide variety of antigens.
Capable to induce both CD4C and CD8C T-cell
response.
Gives different DAMPs to DCs to ensure
maturation. (6)

Can provide immunoregulatory cytokines to dendritic cells
that could induce a tolerogenic transformation. (6)

Purified Tumor-associated antigens Activates antigen-specific T cell response
Capable of inducing both CD4C and CD8C T-cell
response. (1–4)

Requires the knowledge of the patient’s HLA haplotype if
short peptides are used. (3)
Gives a small amount of different antigens.
Does not induce maturation on dendritic cells.

Tumor-derived mRNA Allows the transfection of TAAs and co-stimulatory
molecules.
Ensure presentation in MHC class I without requiring
cross-presentation. (5)

Could not induce a potent CD4C immune response.
Gives a small amount of different antigens.

Tumor-associated antigen
transfected vectors

Gives specific TAAs in a pro-inflammatory way.
Could be used to load DCs both in vivo or in vitro. (3)

Requires the use of vectors
Could reduce effectiveness by inducing anti-vector
immune responses. (3)
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preparations.27 Taken together, these studies show that DCs
pulsed with tumor lysates or apoptotic bodies are safe and capa-
ble of inducing immune responses in a broad vaccinated popula-
tion, thus representing a promising approach for future studies.
In this same line, TRIMEL, a tumor lysate generated from a mix-
ture of 3 established metastatic melanoma cell lines, contains the
majority of the currently described MAAs (Table 2).28 In fact,
we have previously shown that TAPCells induced IFN-g release
by an HLAA2C-restricted/MART-1–specific CD8C T-cell clone
(epitope MART-127-35), therefore highlighting the ability of
TAPCells to cross-present exogenous MAAs in the context of
MHC class I to melanoma-specific CD8C T lymphocytes.28

Tumor-associated danger signals derived from the lysate may be
responsible for an efficient Ag cross-presentation process medi-
ated by TAPCells.28 Related to this, it is important to distinguish
between the capacity of cancer cell lysates to provide a wide spec-
trum of TAAs from their capacity to provide danger signals that
trigger the optimal maturation and activation of APCs.

Tumor cell lysates as immune activators
in DC-based vaccines: Interplay of damage-

associated molecular patterns (DAMPs), PRRs,
and tumor immunogenic cell death (ICD)

Recent studies suggest that DCs, through their PRRs, inter-
pret signals from peripheral physiological or pathological micro-
environments. Depending on the nature, amount, and
combinations of these stimuli, DCs acquire different functional
capabilities.26,74

Several endogenous factors are translocated to the cell mem-
brane or are released into the extracellular milieu by dying,
stressed, or injured cells. These signals can alert the immune sys-
tem and initiate repair and remodeling mechanisms in damaged
tissues.75 These so-called damage-associated molecular patterns
(DAMPs) can function as either as adjuvants or danger signals
for immune cells or can also play an important role in homeo-
static mechanisms. A remarkable characteristic of DAMPs is that
the majority of these molecules have completely distinct, non-

immunological related functions under normal physiological
conditions.76

DAMPs are normally absent or found in very low concentra-
tions in the extracellular matrix of any given tissue, but in condi-
tions of tissue damage, these molecules are either exposed or
secreted and can interact with almost all types of immune cells,
such as DCs, through PRRs on their surface. This interaction is
primarily mediated by Toll-like receptors (TLRs), which com-
pose a family of membrane-spanning proteins that recognize
structurally conserved self- and pathogen-related molecules.77 To
date, 10 different TLRs have been described in humans that rec-
ognize different DAMPs78 and PAMPs.79 These receptors medi-
ate the interaction between immune system cells and pathogens
and play a central role in the innate immune response.80 The sig-
nals mediated by different TLRs also have a crucial impact on
the induction and regulation of effective adaptive immune
responses against pathogens and tumors.29, 81-83 In addition to
TLRs, several PRRs have been found involved in sensing
DAMPs. These include receptors belonging to the family of
C-type lectins, such as CLEC9a and Mincle,84 and cytosolic
PRRs, such as DAI, AIM, RIG-I, MDA-5, and NLRP3.85

In fact, the events associated with DCs maturation and migra-
tion are partly the result of PRR activation expressed on the cell
surface,86 the synthesis of which is regulated by the environment
where these cells reside.87,88 Due to this aspect, it is important to
recognize that adequate PRRs stimulation during the ex vivo-gen-
eration of DCs can minimize the possibility of obtaining a tolero-
genic phenotype, ensuring instead an immunogenic DC
phenotype with effective priming CD4C and CD8C T lympho-
cytes that could trigger an in vivo cellular response against neo-
plastic cells.

Recent evidence suggests that the way in which tumor cells die
could be a key factor in triggering an appropriate anti-tumor
immune response.89,90 It is therefore relevant to identify danger
signals induced during the cell death process that could be
involved in both antigenicity and adjuvanticity. Recent studies
have suggested that radiation and certain chemotherapeutic
agents are able to induce a variety of stress signals, such as Heat
Shock Proteins (HSPs), the translocation of calreticulin (CRT, a
well described “eat-me” signal), and the chromatin-associated
protein high-mobility group box 1 (HMGB1) that can act as an
adjuvants in Ag delivery.65,91-95

Immunogenic cell death (ICD) of cancer cells is a novel con-
cept that has emerged during the last decade, and it underlines
the fundamental role of the immune system in cancer biology in
regards to the identification of DAMPs released by tumor cells
during ICD.75 In an attempt to differentiate the specific origin of
DAMPs between distinct mechanisms, specific danger signals
exposed or released during ICD have been referred as to cell
death-associated molecules (CDAMs).85 Several studies have
reported that cancer cell lines treated ex vivo with chemothera-
peutic drugs, photodynamic therapy, or gamma-irradiation and
implanted subcutaneously into syngeneic immunocompetent
mice work as a cancer vaccine, even in the absence of any adju-
vant.92,96-98 Additionally, a proportion of these mice are pro-
tected against subsequent challenges with untreated live cancer

Table 2. MAA expression of the 3 melanoma cell lines that compose the
TRIMEL lysate.

Cell line

Antigens Mel1 Mel2 Mel3

MART-1/MelanA# C C C
Gp100* C C C
MC1R# C C C
MCSP# C C C
S-100* C C C
NY-ESO-1{ C C C
Her2/Neu# C ¡ C
MAGE1x C ¡ ¡
MAGE3x ¡ C C

(*) Immunohistochemistry, (#) flow cytometry, (x) RT-PCR, and ({) Western
blot.
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cell lines. Moreover, tumor cell death caused by radiotherapy also
promotes cross-presentation.83,99,100 In this context, specific
DAMPs such as surface exposed CRT, secreted ATP, and pas-
sively released HMGB1 and subsequent interactions with phago-
cytosis receptors, purinergic receptors, and PRRs, respectively,
are required for ICD, and this ultimately leads to the activation
of potent anticancer immunity (Table 3).85,96,101-105

Additionally, radio- and chemotherapy ICD are 2 well-
described and important factors in patient response to treat-
ment. In other words, the release of danger signals during
cancer cell death, as induced by these anticancer therapies, is
relevant to increase patient survival.83 Interestingly, ICD of
cancer cells appears to not only play a role in the in vivo
response to gold standard anticancer therapies, but it is also a
fundamental mechanism that can be exploited during DC-
based immunotherapy.

Tumor ICD depends, at least in part, on the specific
DAMPs released by dying/stressed cells and the danger signal-
ing response triggered by these on immune cells.75 By far,
most of the studied ICD inducers are chemotherapeutical
agents. Enhanced immunogenicity of tumor cell death
depends, at least in part, on the death-initiating stimulus. In
this context, some but not all cancer cell death inducers cause
exposure of danger signals on the cell surface (such as ecto-
CRT and ecto-HSP70) or release into the extracellular space
(such as HMGB1 or ATP).106 In fact, Gamma and UVC-irra-
diation are able to trigger CRT exposure, an “eat me” signal
for APCs, on apoptotic cancer cells.92,107 Recently, the use of
hypochlorous acid before lysate purification was examined as a
way to improve the immunogenicity of ovarian cancer lysates
through oxidation.108,73

Interestingly, heat shock is another strong stimulator of
ICD. In an in vitro study, it was shown that human DCs
loaded with melanoma cells that were heat-treated at 42�C
prior to cell lysis were more efficient at cross-priming na€ıve
human CD8C T cells than DCs loaded with unheated, killed
melanoma cells.109 These heat-treated melanoma cells
expressed enhanced amounts of HSP70, and the enhanced
cross-priming could also be reproduced by overexpressing
HSP70. In the lysate generation protocol used by our group,
the ICD of cancer cells was induced in vitro by heat shock at
42�C for one hour followed by an additional 37�C for
2 hours.14 Importantly, heat-shock conditioning of cancer
cells increased their CRT plasma membrane translocation

and induced the release of HMGB1 protein.28 CRT and
HMGB1 mobilization were associated with enhanced matura-
tion of DCs and efficient Ag cross-presentation capacity,
respectively.28

Additionally, HMGB1 co-localizes with TLR4 in monocytes,
therefore the blockage of TLR4 inhibits the expression of matu-
ration-associated markers, pro-inflammatory cytokines, and the
CCR7 chemokine receptor induced by tumor cell lysates.29 Inter-
estingly, TLR4 gene-specific single nucleotide polymorphisms
(SNPs) are thought to be related with a diminished immune
response in TAPCell-vaccinated MM patients and in breast can-
cer patients treated with radiotherapy and chemotherapy.29,83

The ability of DCs to migrate in vivo to draining lymph nodes, a
relevant pre-requisite for its clinical efficacy, is also increased
through tumor cell lysate stimulation.110 In summary, accumu-
lated evidence supports the notion that heat conditioning is able
to induce ICD in cancer cells and, in turn, generate cancer cell-
derived lysates that establish proper conditions for ex vivo-gener-
ated antitumor-DCs.

Despite currently significant research in this field, there is no
consensus about whether the immunomodulatory effects of
DAMPs on APCs can be categorized based on their timing. In
fact, DAMP-mediated effects in the early stage, such as chemo-
taxis, phagocytosis, and pro-inflammatory cytokine production,
have not yet been defined in relation to late stage effects, such as
DCs migration to draining lymph nodes, the proper expression
of co-stimulatory molecules, and TAAs cross-presentation to
na€ıve CD8C T lymphocytes.

Furthermore, there is still debate in defining which ICD
inducers are more suitable for ex vivo and/or in vivo immune sys-
tem stimulation, or whether specific combinations of these are
more efficient in triggering an adaptive anticancer immune
response.

Concluding remarks

The biology of DCs and their interaction with other immune
cells is not completely understood. Several aspects of DCs genera-
tion and vaccination require optimization, including adequate
stimulation using specific signals through specific receptors for
DCs activation and maturation, correct antigen loading of DCs,
and an adequate delivery of DCs to ensure appropriate migration
to T lymphocyte areas in draining lymphoid tissues. The

Table 3. Danger signals (DAMPs) associated with cancer cell death and their immune effects.

DAMPs Best known immune effects References

HMGB1 Mediates inflammatory response; chemoattractant for immune
cells; DCs maturation; enhances Ags cross-presentation

33, 95, 105, 107, 117

CRT “Eat me” signal that contributes to DCs surface expression of MHC-
II molecules

33, 114, 117

HSP proteins
family (HSP70, HSP90)

Peptide carrier function; adjuvants in processing and presenting
Ags by DCs

92, 115–117

ATP “Find me” signal; IL-1bmaturation; inflammasome activation 88, 89, 125

www.landesbioscience.com 3265Human Vaccines & Immunotherapeutics



generation of cancer cell-derived lysates, after ICD induction,
seems to combine TAAs and proper danger signal to ensure a
committed phenotype of ex vivo-generated DCs. This process
results in an efficient polarization of T lymphocytes in an anti-
cancer-Th1/Th17 immune response, resulting in objective clini-
cal benefits for cancer patients (Fig. 1). Immunotherapeutic
approaches have been applied in a variety of tumors with differ-
ent clinical and immunological results. Implementing combina-
tion therapies that target distinct arms of antitumor immunity,
including immunization and checkpoint antibody therapy, might
be synergistic and may result in improved clinical benefits that
could accomplish stronger, more sustained responses and long-
lasting tumor destruction, therefore leading to better survival and
quality of life for patients.
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