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Despite considerable progress in the
development of immunocompetent

mouse models using different high end
technologies, most available small animal
models for HCV study are unsuitable for
challenge experiments, which are vital for
vaccine development, as they fail to mea-
sure the T cell response in liver. A
recently developed intra-hepatic chal-
lenge model results in HCV antigen
expression in mouse hepatocytes and
through the detection of the surrogate
marker, SEAP, in serum, the effect of
prior vaccination can be monitored
longitudinally.

Introduction

The development of an HCV vaccine
is impeded due to lack of a suitable ani-
mal model. To date, there is no conve-
nient small animal model to study the
entire life cycle of the virus. Furthermore,
studies on various aspects of HCV immu-
nity and pathogenesis are limited in those
models. The chimpanzee is the most
authentic model but is unavailable due to
ethical reasons and expense.1,6 Another
non-rodent animal model proposed at
one time was the Tree shrew (Tupaia
belangeri). These animals are native to
China and Southeast Asia and can sup-
port HCV replication, but have not
found widespread use due to low and var-
iable infection rates and low HCV titers.
The development of persistent infection
and evidence for chronic liver disease are,
however, advantageous features of this
model. The existing animal models5 for
HCV study can be largely divided into
2 broad categories-immunosuppressed

and immunocompetent models. Very
recently, an attractive alternative novel
intrahepatic challenge model has been
developed as a new addition to the
immunocompetent group.

Immunosuppressed Models

To introduce HCV into a small ani-
mal, the subject usually needs to be
engrafted with human liver tissue or
transplanted with human hepatocytes. To
achieve this, the animal has to be immu-
nosuppressed or immune-incompetent.
The first small animal model used to
study HCV was developed in 2001,22

based on urokinase-type plasminogen
activator (uPA-SCID) mice which over
express urokinase, causing necrosis of
murine hepatocytes that provides a signif-
icant survival advantage to transplanted
human hepatocytes. Other models devel-
oped include Trimera mice (lethally irra-
diated mice radioprotected by transp-
lantation of scid-mouse bone-marrow
cells)17 or Rag2 knockout mice,4 or
immunotolerized rats by perinatal expo-
sure to human hepatocytes.29 These mod-
els support HCV replication, but they are
not immunocompetent or there is a mis-
match between the rat immune system
and human major histocompatibility
complex (MHC) antigens on the trans-
planted human hepatocytes.29 For these
reasons, the immunosuppressed models
cannot be used for vaccine studies.

Immunocompetent Models

In 2011, an immunocompetent model
was proposed that was nevertheless based
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on immunodeficient Rag2¡/¡ gC-null
mice,28 but the immune system was
reconstituted by transplantation of human
haematopoietic stem cells (HSC). Cell
death induced by liver-specific expression
of fusion protein FK506 and Caspase 8
advantaged the co-transplantation of
human hepatocyte progenitors which led
to engraftment by human hepatocytes.
This model was probably the first small
animal model of HCV infection that
could be used to study adaptive immunity
and pathogenesis. After infection, HCV
RNA was detected in the livers of about
50% of the mice but not in blood. This
model was not used in vaccine studies
probably because it is restricted by limited
viral replication.

Another immunocompetent mouse
model was achieved by adenovirus trans-
duction of the mouse liver resulting in
expression of 2 human cellular receptors
for HCV (human CD81 and OCLN) in
hepatocytes of Rosa26-Fluc mice.9 In this
model, a bicistronic HCV genome encod-
ing CRE recombinase (HCV-CRE),
which activates a loxP-flanked luciferase
reporter in the mice was used. A reporter
signal in the liver indicates intracellular
expression of the HCV genome. The
model was later modified to generate
transgenic mice stably expressing the 4
human HCV entry factors.8 Further
attenuation of the host innate immunity
resulted in measurable viremia over several
weeks. Infected mice produced infectious
HCV particles de novo, which could be
used for antibody-related studies includ-
ing vaccine-induced neutralizing anti-
body. This model shows great promise,
but at this stage it is not practically useful
in challenge experiments to examine
HCV-specific cell mediated immunity.

Although, other established challenge
models can be used for studies of cell
mediated immunity these models fail to
evaluate trafficking of T cells to the liver,
the major site of HCV replication.10,11,13

Recent studies by Kumar et al. have
shown that a unique b turn sequence of
the human La protein if inserted into the
mouse La protein, facilitates replication of
the HCV genome in mouse cell lines
(NIH3T3 and H6).19 In general HCV
replication is not supported in the mouse
even if the viral RNA is introduced in

vivo. However, in the presence of the
humanized form of mouse La, HCV repli-
cation is more efficient. This observation
raises a possibility of creating an immuno-
competent HCV mouse model using
human specific cell entry factors and a
humanized form of La protein, which
could be more effective for vaccine
challenge.

The Intra-hepatic Challenge
Model

Recently, Yu et al. developed a novel
challenge model by specifically delivering
HCV genes linked to the gene for the
reporter molecule, secreted alkaline phos-
phatase (SEAP), to the mouse liver by
hydrodynamic injection.30 This model
has a number of merits. The HCV anti-
gen/SEAP is specifically expressed in
mouse hepatocytes as expression of the
gene is controlled by the mouse albumin
enhancer and promoter. As a result, the
model is able to measure the effect of the
immune response in the liver after prior
vaccination, especially the activity of intra-
hepatic effector T cells. The novel design,
to co-express SEAP with the HCV anti-
gen, allows convenient monitoring of
SEAP in mouse serum as a surrogate
marker for detection of intrahepatic HCV
antigen, and due to the short half live of
SEAP in serum, this reflects real time
expression of the HCV antigen. Even
when NS3 expression was too low to be
detected by immunohistochemical stain-
ing or immunoblotting, SEAP activity was
still detectable in the serum, showing that
SEAP detection is more sensitive than
detection of the HCV antigen in liver.
The detection of SEAP also allows longi-
tudinal analysis of the dynamics of
immune response without culling individ-
ual mice and the model represents for the
first time a mouse that can be used as an
intra-hepatic challenge model for HCV
vaccine studies.

Possible Expansion of Existing
Challenge Models

The above model developed by Yu et al
is convenient and cheap, and the ability

for longitudinal analyses represents a
major advantage. Furthermore, the model
is very versatile as any HCV antigen/
SEAP combination can be expressed. It
will also be possible to use HLA-A2.1
transgenic mice to study human HLA
restricted T cell responses and identify
specific T cell epitopes.3,23,25,26 A com-
parison of the immunogenicity of differ-
ent HCV proteins and vaccines in wild
type and transgenic mice could yield
important information on candidate
HCV vaccines, in terms of antigen opti-
mization, adjuvant selection and specific
host responses.

Inclusion of the HCV 4A gene in
DNA vaccine constructs is debatable,
since the NS3/4A protease cleaves MAVS
(IPS-1) which may attenuate the innate
immune response and therefore influence
the resultant adaptive immune
response,15,21 while it has been suggested
that the NS4A protein stabilizes the NS3
protein resulting in increased immunity.12

The model proposed by Yu et al can
determine any advantage of the use of
NS3 rather than NS3/4A. Other studies
also showed that additional HCV proteins
have roles to evade or suppress innate
immunity. The core protein inactivates
IFN signaling through regulating the
JAK-STAT pathway,2,16,20 NS5A and E2
regulate the PKR pathway.14,27 NS4B
interacts with STING7,24 and NS2 inhib-
its IKKe and TBK1 functions.18 Informed
decisions on whether to include these anti-
gens in vaccine constructs or to abrogate
the immunosuppressive function of the
antigen by mutation while retaining its
immunogenicity can be addressed by this
model.

Conclusion

The holy grail of a HCV animal model
is to capture the complete life cycle of
HCV and support high level virus replica-
tion in an immunocompetent small ani-
mal which can be used for drug and
immunological studies. The humanized
model is promising but there are still a
number of obstacles to overcome. The
intrahepatic challenge model uses well
defined technology which has acquired a
new life by including the SEAP reporter
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gene. The use of this animal model may
help define the optimum strategy to
induce effective T cell response.
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