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Oncolytic viruses are a relatively new class of anti-cancer
immunotherapy agents. Several viruses have undergone
evaluation in clinical trials in the last decades, and the first
agent is about to be approved to be used as a novel cancer
therapy modality. In the current review, an overview is
presented on recent (pre)clinical developments in the field of
oncolytic viruses that have previously been or currently are
being evaluated in clinical trials. Special attention is given to
possible safety issues like toxicity, environmental shedding,
mutation and reversion to wildtype virus.

Introduction

Oncolytic viruses (OVs), reported first halfway the previous
century, have undergone a tremendous evolution from anecdotal
experimental and clinical efficacy to state-of-the-art clinical trials
employing recombinant viruses in the last decade. With the
advent of reverse genetics techniques, modifications attributing
to efficacy and safety have marked the introduction of new gener-
ations of recombinant OVs. Most recent developments have
focused on conditional replication in tumor cells, expression of
(therapeutic) transgenes as well as targeting and/or delivery of
OVs.
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Submitted: 01/16/2015; Revised: 03/17/2015; Accepted: 03/29/2015
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In this review, an overview is given of the current state of
affairs concerning OVs that are being developed toward clinical
trials or that are used in clinical trials. Besides information on
(pre)clinical efficacy, special focus is given to the safety of these
new agents, specifically toxicity, environmental shedding and
mutation rates or reversion to wild type virus. A summarizing
overview is presented in Table 1.

Safety of OVs primarily relates to the toxicity of the adminis-
tration, especially when thinking about high dose intravenous
application. In addition, environmental shedding of infectious
viruses is also of concern, not only for perceived safety, but also
for regulatory purposes. To this end, in general, OVs should be
generated which preferably are tumor-specific and have low to no
shedding upon (systemic) administration.

Family Herpesviridae: Herpes Simplex Virus 1 (HSV)

HSV-1 causes herpes labialis (cold sores) in humans. HSV-1
was one of the first viruses to be developed into a recombinant
oncolytic virotherapeutic vector. The large HSV genome is easy
to manipulate and allows insertions of multiple additional trans-
genes. Furthermore, HSV infects and replicates in most tumor
cell types and spreads throughout the tumor. If needed, viral rep-
lication can be hampered with anti-HSV medication (Acyclovir).
Because HSV is neurotropic and causes a latent infection, most
genetic modifications of oncolytic HSV (oHSV) have first
focused on this potential safety issue.

To increase safety, tumor-specific oHSVs have been generated
using 3 main strategies, as reviewed earlier by Campadelli-Fiume
et al.1 These strategies include first attenuation by means of
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conditional replication in tumor cells through deletion of viral
genes that are essential for viral replication in non-dividing cells
(UL39), counteract the PKR response (g1-34.5) or contribute to
immune evasion (a47). Secondly, to increase the oncolytic effi-
cacy (and often co-incidentally improve safety), oHSVs have
been armed with immune stimulatory genes to boost local cyto-
toxic immune responses or other therapy enhancing transgenes.
Thirdly, targeting by tropism or transcription specificity has been
applied to limit virus infection even further to only tumor cells.

First generation oHSVs harboring the aforementioned genetic
deletions have shown to be safe regarding toxicity based on their
attenuation in normal cells. However, they are also attenuated in
tumor cells and thus less cytotoxic. Recent strategies have focused
on improving the targeting of less attenuated oHSVs by changing
tropism or transcription specificity. Glycoprotein D is the recep-
tor binding protein of HSV-1, and fusion of this glycoprotein
with a heterologous ligand can retarget the virus to the tumor-
specific receptor of choice. This tumor specific targeting is
enhanced by detargeting the normal receptor.2,3 Examples
include IL�13Ra2, HER2, and EGF-R.4-6 Using transcriptional
targeting, tumor specificity has been enhanced by placing viral
genes under the control of tumor-specific promoters. A promis-
ing example is rQNestin34.5, which has the expression of the
g1-34.5 gene under the control of the glioma-specific nestin pro-
moter, which restores viral replication and cytotoxicity only in
glioma tumors.7

Several early generation oHSVs (talimogene laherparepvec,
HSV1716, NV1020, G207, M032, rRp450 and others) have
already been evaluated in clinical trials.1 Most of these trials have
demonstrated a good safety profile and treatment benefits were
also observed. Talimogene laherparepvec (oHSV with deletions
in g1-34.5 and a47, armed with GM-CSF) has recently under-
gone evaluation in a phase III clinical trial in patients with
advanced or metastatic melanoma. Probably this will be the first
oncolytic virus to obtain FDA approval, while a marketing
authorization application for the European Union has just been
submitted to the EMA.8

Preclinical evaluation employing intra-organ (brain or pros-
tate) injection with oHSV in non-human primates demon-
strated no shedding of virus, which points to limitation of
oHSV replication to injection sites.9,10 This was confirmed by
early clinical trials in patients injected intratumorally (glioma)
with oHSVs: sporadic shedding of HSV in saliva was noted,
but this was shown to be wildtype virus as opposed to the
injected oHSV.11,12 Other studies have observed limited leakage
of oHSV from injection sites up to 2 weeks post treatment,
without other excreta containing viable oHSV.13-15 Intra-arterial
hepatic injection did not result in detectable environmental
shedding either.16 Thus oHSV fulfills the criteria for safety with
regards to shedding. A possible concern is that an oHSV recom-
bines with a wildtype endogenous virus. If the oHSV carries
heterologous genes, the recombinant would have to arise by ille-
gitimate recombination – an extremely rare event that cannot
be replicated in vitro.17 Spontaneous reversion of oHSVs with
deleted viral genes to wildtype virus is not possible. However,
compensatory mutations can arise, which can compromise

safety, but so far resulting HSV mutants have been highly atten-
uated.18 These compensatory mutations can be of concern when
evaluating the safety of newer generation oHSVs, because more
virulent oHSVs could arise.

Family Adenoviridae: Human Mastadenovirus
(HAdV)

HAdVs can be associated with different diseases in
humans: (upper) respiratory tract infection (mainly species B
and C), conjunctivitis (species B and D) and gastroenteritis
(species F and G). Sporadically, HAdVs can cause viral men-
ingitis, encephalitis or hemorrhagic cystitis.19

Because of its association with mild disease and a relatively
easy to manipulate genome (as compared to other HAdV types/
species), most work on HAdV as vector for (cancer) gene therapy
has been done with serotype 5 of species C. HAdVs have distinct
advantages as a gene transfer vector, including high transfection
efficiency of cells irrespective of their growth status. The genome
of HAdVs is easy to manipulate for retargeting and insertion of
transgenes, and efficient production of high titer virus stocks is
possible. Disadvantages include high immunogenicity of preva-
lent serotypes with pre-existing immunity, and transient expres-
sion of the transgene due to dilution of replication-deficient
HAdV (rdHAdV) episomes upon cellular division.20

In case of oncolytic HAdV vectors, replication of the virus is
thought to be advantageous because of direct cancer cell killing
induced by viral replication, and due to which the number of
administrations needed for effective treatment can be reduced.
Efforts to improve safety have been made in developing condi-
tionally replicating HAdVs (crHAdVs), with specific and higher
replication in cancer cells. Early examples are ONYX-015
(dl1520) and H101, which have a deletion of E1B-55kDa (and a
deletion in E3 for H101), normally responsible for p53 binding
and inactivation.21 The tumor specific replication of ONYX-015
was later shown to be due to loss of E1B-55kDa-mediated late
viral RNA export, rather than p53-inactivation.22 In a similar
approach, newer crHAdVs have been created exploiting the
defects in Rb pathways in cancer cells by deleting the Rb-binding
E1A-CR2 region, creating dl922–947, also known as Delta24.23

Additional modifications in Delta24 have been created and suc-
cessfully evaluated for oncolytic efficacy,24,25 as well as oncolytic
crHAdVs which target cells with an (hyper)active KRAS path-
way,26 or with YB-1 overexpression,27 limiting crHAdV replica-
tion to cancer cells. A different approach for creating crHAdVs is
using cancer- or tissue-specific promoters to limit expression of
essential early HAdV genes to specific celltypes and/or
tissues.28,29

Like other oncolytic viruses that have undergone extensive
development, crHAdVs have also been armed with transgenes,
often under the control of a tissue/cancer-specific promoter.
Examples include i.e. immunomodulatory, pro-apoptotic or pro-
drug converting enzyme genes.30-33

Despite their capacity to achieve tumor infection in animal
models and in clinical trials, the therapeutic efficacy of rdHAdVs

www.tandfonline.com 1575Human Vaccines & Immunotherapeutics



in clinical trials has been disappointing; Advexin and Cerepro
have not been approved by the FDA and EMA, although a simi-
lar agent called Gendicine has been approved for cancer therapy
in China.34,35 The discrepancy between preclinical and clinical
studies using HAdV-5 could be explained by the differences in
expression of CAR in primary tumors compared to established
laboratory cell lines.36 In addition, off-target toxicity by seques-
tration in mainly the liver is a serious concern, even when HAdVs
are blinded for CAR, because this can lead to serious liver dam-
age.37-39 Hexon mutations or even complete exchange of hexons
have been shown to reduce liver sequestration and transduction
dramatically.40,41 Other strategies used to circumvent liver
sequestration include PEGylation or polymer/dendrimer coating
of HAdV virions, and cell-based or magnetic/liposomal nanopar-
ticle delivery. To circumvent the limitation of low CAR expres-
sion in (tumor) cells, retargeting has also been applied to
HAdVs, permitting CAR-independent infection.42 The retarget-
ing strategy can also circumvent existing humoral immunity for
HAdV-5 in the general population, and contributes to the pre-
vention of liver sequestration as described above. Other examples
include conjugation with anti-knob or anti-penton/hexon anti-
bodies or adapters with retargeting ligands, pseudotyping or xen-
otyping with (chimeric) fiber knobs or capsids, peptide
presentation (RGD or other), Affibody targeting, knob-less
HAdVs and genetically modified capsids and/or fiber knobs.20

More recently, efforts have also been made to develop HAdVs
fully based on other serotypes, most notably HAdV-3, or even
non-human AdVs.43-45 Using ‘directed evolution’ or ‘accelerated
evolution’ strategies, ColoAd1 and other crHAdVs have been
generated which appear to be more potent than their parental
HAdV-5 based vectors.46,47

A total of 458 clinical trials employing HAdV-mediated gene
therapy have been reported to date. ONYX-015, H101 (Oncor-
ine) and other first-generation oncolytic crHAdVs have gone
through several phase I/II trials without relevant signs of high
grade toxicity but also without significant therapeutic effects,
resulting in discontinuation of further trails.48 More recent clini-
cal trials employing new generations of crHAdVs like RGD retar-
geted oncolytic crHAdVs,20,49,50 crHAdV-5/3 chimeric
vectors,32,51-54 ColoAd1,55 hTERT-promoter driven crHAdV-5
vector Telomelysin,56 E2F-1-promoter driven CG007033, Rb-
targeted crHAdV expressing hyaluronidase (VCN-01)57 and
crHAdV vectors expressing immunomodulating genes have
shown safety (low toxicity) with some promising preliminary
results.

In general, the use of early generation oncolytic crHAdVs
appears to be reasonably safe with low toxicity when adminis-
tered locally and at lower doses systemically. However, the devel-
opment of newer generations of crHAdVs expressing transgenes,
having altered capsids or different promoters can dramatically
alter this perceived safety. Shedding of crHAdVs from injection
sites and patient excretions, although not always reported, has
been observed in several (pre) clinical trials, and increases with
higher doses and systemic administration.49,58-64 Shedding of
HAdV vectors could result in homologous recombination
between AdVs of the same subgroup, which occurs with high

efficiency during growth in co-infected cultured cells, and there
is evidence of recombination events in humans as well.65-67 The-
oretically, homologous recombination between wildtype AdVs
and recombinant crHAdVs could lead to new wildtype AdVs that
e.g. possess transgenes, or worse, have expanded tissue tropism
due to retargeting strategies. However, to date such recombina-
tion has never been detected in any clinical trial.

Family Paramyxoviridae: Measles Virus (MeV)

MeV is highly contagious via the respiratory route and is
responsible for high morbidity and mortality rates in immune
naive subjects.68 Large-scale vaccination programs with live-
attenuated MeV have been very successful. An extensive safety
record has been established for the use of vaccine strains of MeV
in humans.69

Most (pre) clinical research with oncolytic MeVs have used
the attenuated vaccine Edmonston strain, which is perceived to
be very safe in terms of toxicity.70 The cancer selectivity of MeV
stems from overexpression of the MeV receptor CD46 on malig-
nant cells.71 Recombinant MeV can accommodate and maintain
large sizes of foreign genetic material with good genetic stability
in vitro and in vivo, and MeVs expressing transgene(s) have
shown good genetic stability upon passaging. Both arming and
targeting strategies have been used to improve efficacy of MeV in
a wide array of malignancies.70

Completed and ongoing clinical trials in patients with T cell
lymphoma, ovarian cancer or glioblastoma multiforme have first
used wild type MeV and later recombinant MeV expressing
marker genes CEA and NIS.72-74 Intratumoral, intraperitoneal
and intravenous administration have been reported using doses
up to 109 infectious viral particles without dose limiting toxicity
or MeV induced immunosuppression.72-74 Although wildtype
MeV can cause potentially serious disease, attenuated MeV vac-
cine strains like Edmonston have an excellent safety record.69 In
clinical trials with rMeV-CEA, no evidence was seen of shedding
in sputum and urine samples of patients who were intraperitone-
ally injected.73 Spread of oncolytic MeV in the general popula-
tion is highly unlikely since most individuals in industrialized
countries are immunized, although herd immunity is currently
waning with declining vaccination percentages. As noted, the
oncolytic MeV of choice to date has been of the Edmonston
strain, which has a good safety profile without capability of caus-
ing overt disease.

Family Paramyxoviridae: Newcastle Disease Virus
(NDV)

NDV is an avian virus, and as such causes no serious disease in
humans.75 NDV strains are categorized in 3 different groups
based on the severity of the disease they cause in birds: lento-
genic, mesogenic and velogenic.76 NDV has been shown to be
very safe with regards to toxicity in tumor models using mice or
rats, even when used in high dose and injected intravenously, and
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NDV also appears to be safe for high dose administration in
humans, with no serious adverse events noted in early clinical tri-
als.77 Several wildtype NDV strains have shown (limited) antitu-
mor activity without major side effects in phase I–II clinical trials
for patients with various types of solid cancer.77

Using recombinant NDVs, the oncolytic efficacy has been
improved by increasing the virulence of the virus and the expres-
sion of immunomodulating or apoptotic transgenes. In addition,
tumor cells are targeted with modified attachment proteins and
combinations with other treatment modalities, most recently
immune checkpoint blockade.78-85 Clinical trials with these
improved viruses have not yet been described, but pre-clinical
data indicate efficacy with low toxicity in multiple tumor models
for several solid malignancies, including pancreatic adenocarci-
noma.78-86

Virulent NDV strains pose an environmental risk, as birds
(specifically poultry) are very susceptible to infection with meso-
genic or velogenic strains. A preclinical study evaluating lento-
genic and mesogenic oncolytic NDV injected intravenously in
non-human primates showed i.v. administration of the virus to
be safe without relevant toxicity of high dosages, although rele-
vant shedding was noted.87

Family Rhabdoviridae: Vesicular Stomatitis Virus
(VSV)

VSV is the causative agent of vesicular stomatitis in cattle,
causing a mild fever and the formation of blister�like lesions on
the inside of the mouth, the lips, nose, hooves and udder.88

Compared with other oncolytic viruses, VSV has some dis-
tinct advantages: first of all a well-studied biology with relative
replication independency of cell cycle and a specific receptor. Sec-
ondly, VSV produces high virus yields in a wide range of cell
types, it replicates intracytoplasmatic without risk of genomic
integration, it harbors a small and easy to manipulate genome,
and there is no pre-existing immunity in humans.88 VSV infec-
tion in humans is generally asymptomatic and limited to people
having direct contact with VSV.88 A single case of VSV strain
Indiana related encephalitis in humans has been reported.89 VSV
oncoselectivity is based largely on defective or reduced type I
IFN responses in tumor cells,90 although abnormal translation
machinery and other cellular proteins have also been shown to
play a role.91,92 All 3 strategies previously described (conditional
replication, arming, and targeting) have been employed to
increase efficacy of VSV.88 Furthermore, combination therapy
has been described with different other therapies. Finally, opti-
mizing delivery and distribution of oncolytic VSVs has been eval-
uated using cell-based carriers and aptamer or PEGylation of
virions. Hastie & Grdzelishvili published an excellent overview
of abovementioned strategies and resulting oncolytic VSVs in
2012.88

A recent study in purpose-bred beagle dogs showed that a dose
up to 1010 TCID50 of VSV-hIFNb was well tolerated, with mild
adverse events with the exception of one dog that received 1011

TCID50 which developed severe hepatotoxicity and shock

leading to euthanasia.93 A following study testing VSV-hIFNb
on rhesus macaques via intrahepatic injection did not result in
neurological symptoms and is considered to be safe enough to
proceed into phase I clinical trials, which are currently ongoing
in humans and pet dogs.94,95 With regards to shedding, no VSV
RNA was detected in buccal swabs taken from non-human pri-
mates after intrahepatic injection with VSV-hIFNb.94 Theoreti-
cally, VSV mutants harboring mutations in their M or G gene
(making them oncoselective and abolishing neurotropism) could
revert to wildtype VSV upon passaging. Also, VSVs expressing
attenuating transgenes like hIFNb can acquire mutations in this
transgene, which has been shown in several studies.96-98 Further-
more, oncolytic VSVs have been shown to optimize targeting to
glycoproteins upon passaging in tumor cells,99 and to mutate
expressed transgenes to optimize replication.100 These examples
have strangely not been perceived as a safety problem, but should
be taken into account in future (pre)clinical trials.

Family Picornaviridae: Coxsackievirus (CVA)

Coxsackieviruses can be divided into 2 groups (A and B) based
on their pathogenicity in mice. The best known example of
CVA-related human disease is hand, foot and mouth disease,
caused by CVA-16.101 CVA-21 causes upper respiratory tract
infections in humans, and it is considered one of the ‘common
cold’ viruses.102 Similarly to rhinoviruses, CVA-21 binds to
ICAM-1 and additionally needs DAF-attachment for productive
viral infection.103 Given that ICAM-1 and DAF are overex-
pressed in melanoma cells, efforts to evaluate the oncolytic poten-
tial of wildtype CVA-21 (and other coxsackieviruses) have mainly
focused on this disease.104

Currently ongoing phase I/II clinical trials employing intratu-
moral injection of wildtype CVA-21 (CAVATAK) in Australian
patients with advanced melanoma are showing promising prelim-
inary results.105 All (pre) clinical work so far has been conducted
with wildtype CVA, while no progress has been made regarding
conditional replication, arming or targeting.

Clinical trials thus far have not led to serious adverse events.
No information is available regarding shedding. When consider-
ing non- or low-pathogenic coxsackieviruses for oncolytic viro-
therapy, environmental risks are considered to be low. However,
when using viruses that do cause (severe) disease in humans, care
should be taken to evaluate and/or attenuate these new vectors.

Family Picornaviridae: Poliovirus (PV)

The vast majority of PV infections remain asymptomatic in
humans, but in 1–2% of cases infection results in neurological
complications. Clinical polio syndrome is dominated by flaccid
paralysis, due to cell tropism of PV for lower motor neurons in
the spinal cord and brainstem expressing CD155/Necl¡5.106

Overexpression of CD155 has also been shown in (neuro) ecto-
dermal tumors, and transcriptional upregulation has been linked
to signaling pathways commonly affected in malignancy,
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including Raf-Erk-Mnk signaling.107,108 The neuropathogenicity
of PV is dependent on the neuronal cell-type-specific function of
its IRES element, which assures initiation of translation in a 5’
end- and cap-independent manner. Mutations in the IRES geno-
mic region or exchange with other viral IRES counterparts result
in markedly neuro-attenuation in CD155-transgenic mice and
non-human primates, without reducing the cytopathogenicity in
malignant cell types that express CD155.109

Most preclinical research has been performed with PVS-
RIPO, a recombinant PV type 1 (Sabin vaccine) strain with the
IRES element of human rhinovirus type 2. PVS-RIPO has shown
oncolytic efficacy in immune-deficient xenograft rat and mouse
models of malignant glioma.110

Currently a phase I clinical trial is ongoing with intratumoral
infusion of PVS-RIPO in patients with recurrent GBM showing
durable responses.111 Extensive evaluation in non-human pri-
mates has shown PVS-RIPO to be safe for intraspinal and intra-
thalamic injection, without observations of extraneural
replication or shedding.109,112 No serious adverse events have
been observed so far in an ongoing phase I clinical trial.111 One
of the biggest concerns with PV is the inherent genomic instabil-
ity of picornaviruses and thus the possible reversion to wildtype
pathogenicity. PVS-RIPO has been evaluated extensively for
genomic instability by e.g., serial passaging in vitro and in vivo
and it was shown that escape mutants reverting to neuropatho-
genic virulence in the CD155-transgenic mouse model do
arise.113 Similar mutants have not been observed in other animal
models, which makes it unclear what the importance of this pre-
clinical finding is in relation to currently ongoing clinical trials in
humans.

Family Picornaviridae: Seneca Valley Virus (SVV)

SVV was first isolated at Genetic Therapy Inc. (Gaithersburg,
MD) as a contaminant from cell culture media and is presumed
to be introduced via bovine serum or porcine trypsin
source.114,115 Serum samples taken from different farm animal
populations indicated that (healthy) pigs and other animals are
exposed to SVV. However, attempts to infect pigs with SVV iso-
lates failed to demonstrate any specific disease. SVV does not
infect humans but does propagate in tumor cells with neuroendo-
crine features, giving the virus a safe profile for use in virother-
apy.114,115 Since its introduction as an oncolytic virus in 2007,
SVV has shown preclinical efficacy in nude mice xenograft mod-
els for several malignancies.114-118

In a phase I clinical trial employing an intravenous dose esca-
lation in patients with neuroendocrine tumors, SVV had (mar-
ginal) treatment benefits without causing serious adverse events
when administered even in high dose (1011 viral particles/kg).119

A phase II RCT in patients with extensive stage NSCLC and a
phase I dose escalation trial in pediatric patients with neuroblas-
toma, rhabdomyosarcoma or rare tumors with neuroendocrine
features are currently underway.120

Recent reports indicated that, although the natural host is still
uncertain, this virus seems safe with regards to toxicity for use as

oncolytic virotherapy in (pediatric) patients.119 Analysis of sam-
ples obtained from researchers in close contact with phase I clini-
cal trial patients revealed the absence of neutralizing antibody
titers, which implicates that imposed hygiene policies were effec-
tive.119 However, detailed evaluation of shedding was not per-
formed, and should be determined in future clinical trials.

Family Poxviridae: Vaccinia Virus (VV)

VV infection induces a strong cytotoxic T lymphocyte
response and neutralizing antibodies without causing signifi-
cant disease in humans.121 As an oncolytic virus, VV has the
advantage of fast replication and cell lysis with a broad
cell/tumor tropism. Furthermore, it lacks genomic integra-
tion, and shields extracellular enveloped VV virions from
host immunity resulting in capability of (systemic) spreading
between tumors. Lastly, it also harbors a large genome pack-
aging accommodation.122

Several strategies have been described to target oncolytic VV
specifically to tumor cells. The VV protein VGF is homologous
to cellular growth factor EGF and transforming growth factor a
(TGFa) and can stimulate the cell for enhanced viral replication
through EGF-R. Deletion of the VGF gene will result in a VV
that is targeted to cells with inherent EGF-R pathway activity,
which is often observed in cancer cells.123 J2R gene (encoding for
viral tk) deletion similarly results in a VV that is dependent on
overexpression of cellular tk, which is also often observed in can-
cer cells.124 The combination of VGF and tk gene deletion is
known as vvDD and results in an even more selective oncolytic
VV, adding to the safety profile.123 VV gene B18R binds to the
IFN receptor and can thereby inhibit the cellular antiviral innate
immune response. Deletion of B18R thus leads to selectivity for
IFN-deficient cells.125 A56R gene encodes for HA and deletion
results in severe (neuro)-attenuation.126

Arming of VV has also been described, e.g. with immune
stimulators, apoptotic proteins, anti-angiogenic antibodies/pro-
teins, ECM proteases and prodrug-converting enzymes.

Early clinical trials employing non-recombinant vaccine
strains of VV have shown safety when injected superficially into
melanoma tumors, while local control of bladder cancer was also
noted.127,128 JX-594 (tk gene deleted, GM-CSF expressing VV
Wyeth; Pexa-Vec)129 has been evaluated in phase I-II clinical tri-
als for patients with metastatic melanoma, (primary) liver
tumors, lung, colorectal and various other solid cancer types.
GLV-1h68 (GL-ONC1) is currently being investigated in several
phase I clinical trials.130,131

Clinical trials with oncolytic VV have thus far reported good
safety with regards to toxicity with minor side effects like tran-
sient low-grade fever and local pain. Commonly, live vaccinia
virus is shed from skin injection sites after vaccination.132 Also,
in clinical trials, live JX-594 was detected in throat swabs and
skin pustules of patients up to one week after administration.133

Theoretically, recombination between oncolytic recombinant
VV and wildtype VV is possible, however, since VV vaccination
is not practiced on a large scale anymore, this is highly unlikely.
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In addition, spontaneous mutation rates for VV have been shown
to be very low.134

Family Reoviridae: Mammalian Orthoreovirus
(mORV)

mORV is a ubiquitous pathogen with high seropositivity
in humans, and has been isolated from sewage, stagnant and
river water throughout the world.135,136 mORV is not associ-
ated with a named disease in humans, although it can cause
mild flu-like upper respiratory or gastrointestinal tract symp-
toms.135 Three serotypes of mORV can be distinguished:
type 1 Lang, type 2 Jones and type 3 Abney or Dearing
(mORV-T3D). mORV-T3D was isolated from the intestinal
tract of a child with diarrhea, and is used most in (pre)clini-
cal oncolytic virus research.137

mORV-T3D replicates in cells with dysfunctional cell signal-
ing cascades, most importantly (but not exclusively) KRAS-over-
expression and subsequent PKR inhibition, making it an inherent
oncolytic virus, meaning that it is tumor-specific contributing to
safety.138,139 A multitude of cancer types have been shown to
respond to mORV-T3D treatment in (animal) models. Cellular
immunity has been found to be important for increasing anti-
tumor efficacy.137 The absence or inaccessibility of the JAM-A/1
receptor is perceived as a possible limitation for mORV-T3D
infection of tumor cells.140 As such, bio-selection through passag-
ing has been attempted to retarget mORV-T3D to other recep-
tors, although this strategy is probably limited by the quasispecies
presence in mORV-T3D isolates.141 Only one study using recom-
binant oncolytic mORV-T3D has been described thus far.142

More studies with recombinant mORV-T3D can be expected in
the near future, probably focusing on receptor retargeting and
expression of therapeutic or imaging transgenes.

At this time, 16 clinical trials employing intratumoral or intra-
venous injection of wildtype mORV-T3D (REOLYSIN�: pelar-
eorep) have been conducted and more are currently underway or
planned to start in the near future. As excellently summarized by
Harrington et al. and Maitra et al,137,143 these trials have shown
safety with regards to toxicity of mORV-T3D administration to
patients with various solid tumors without dose limiting toxic-
ities, while having some appreciable anti-tumor effects in phase
II/III trials.

High mORV titers injected intravenously have been shown to
be reasonably safe with low toxicity, even in combination with
standard therapies like chemo- or radiotherapy, as well as in com-
bination with transient immune suppression.137,143 Limited
mORV shedding has been observed in clinical trials in patient
samples of urine, saliva and feces, mostly with high intravenous
administrations.137 As an RNA virus with a viral RNA polymer-
ase, mORV genome replication is prone to errors which can lead
to mutations in offspring. Furthermore, since wild-type isolates
are in use, these probably represent several quasispecies.144 Even
so, since mORV-T3D does not seem to cause disease in human
subjects, the relevance of this mutation rate is low.

Family Retroviridae: Murine leukemia Virus (MuLV)

MuLVs are widely distributed in domestic and feral mice.
MuLVs induce leukemia in mice with latencies ranging from
2 to 18 months, depending on the strain of virus and mouse
strain. MuLV is not known to cause a specific disease in
humans.145

MuLV development for cancer therapy has been focusing on
non-replicating, as well as more recently, replication competent
retroviral (RCR) oncolytic vectors. The capacity of MuLV and
other retroviruses to integrate into the host genome of dividing
cells carries the risk of insertional mutagenesis/oncogenesis.
Reducing this risk has been an important goal in designing retro-
viral vectors. The replication capacity of RCR-MuLV is consid-
ered to be beneficial for optimizing gene expression in tumors.
Recent RCR-MuLV vector genomes consist of an intact viral
genome including an IRES-transgene immediately after the stop
codon of the env gene, which results in more genetic stability,
while retaining good replication capacity.146,147 The fact that
RCR-MuLVs can only infect and integrate in dividing cells
results in an inherent onco-selectivity. In contrast to most other
oncolytic viruses, the oncolytic activity of RCR-MuLVs depends
solely on the transgene that is carried by the virus, since infection
itself is not cytolytic. To date the transgene of choice has mostly
been CD, which converts the antifungal drug 5-fluorocytosine
into active chemotherapeutic agent 5-fluorouracil. Oncolytic
activity of RCR-MuLV-CD (Toca 511) has been evaluated in
preclinical (animal) models for breast cancer, GBM and mesothe-
lioma.148-150 Toca 511 has a modified backbone and a codon-
optimized and heat-stabilized CD gene and has been shown to
be highly genomically stable while maintaining oncolytic efficacy
upon passaging.145,149

Toca 511 is being investigated in clinical trials in the United
States in subjects with recurrent high-grade glioma. Up to now,
over 70 patients have been treated without dose limiting toxicity
and with evidence of clinical oncolytic efficacy.145 Since RCR-
MuLV vectors are capable of genomic integration, germline
transmission is a theoretical risk of these vectors, and should be
taken into consideration when designing clinical trials.

Discussion

The field of oncolytic virus research has seen a tremendous
progression of several first and second generation vectors toward
clinical trials. Most current strategies used in oncolytic virother-
apy focus on the use of second and third generation of more viru-
lent conditionally replicating viruses, armed with immune
stimulating, anti-tumor or tracking transgenes. Also,
immune evasion is still sought after to optimize vector delivery.
With the first oncolytic virus talimogene laherparepvec now on
the break of FDA and EMA approval, we can expect an even
greater interest for this relatively young field of oncologic research
in the near future.

The newer generation of oncolytic viruses has been evaluated
extensively for their efficacy in preclinical trials, and they have
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shown to be more effective than first generation vectors on many
occasions. Also, ample evidence has been gathered regarding their
safety in terms of toxicity in laboratory animals. However, studies
focusing on environmental shedding and possible recombination
of these new oncolytic agents with wildtype viruses are scarce.
This subject seems to be of less interest to oncolytic virus
researchers. However, a good oncolytic virus should also be eval-
uated for environmental safety. This holds true not only from a
scientific point of view, but also from a regulatory and public
health point of view. Without a thorough environmental risk
assessment, new agents will not be accepted by the regulatory
agencies like EMA and FDA for marketing as new therapies.
Especially with the newer oncolytic agents becoming more viru-
lent and with the possibility of expressing transgenes that alter
the nature of the virus, any possibility of environmental shedding

and recombination with wild type virus should be excluded.
More studies evaluating the environmental safety of promising
oncolytic viruses should therefore be conducted and reported.
With proper safety evaluations, oncolytic virotherapy is ready to
make the next step toward clinical applications.
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