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Recombinant VLP-based vaccines have been successfully
used against 3 diseases caused by viral infections: Hepatitis B,
cervical cancer and hepatitis E. The VLP approach is attracting
increasing attention in vaccine design and development for
human and veterinary use. This review summarizes the
clinically relevant epitopes on the VLP antigens in successful
human vaccines. These virion-like epitopes, which can be
delineated with molecular biology, cryo-electron microscopy
and x-ray crystallographic methods, are the prerequisites for
these efficacious vaccines to elicit functional antibodies. The
critical epitopes and key factors influencing these epitopes
are discussed for the HEV, HPV and HBV vaccines. A pentamer
(for HPV) or a dimer (for HEV and HBV), rather than a
monomer, is the basic building block harboring critical
epitopes for the assembly of VLP antigen. The processing and
formulation of VLP-based vaccines need to be developed to
promote the formation and stabilization of these epitopes in
the recombinant antigens. Delineating the critical epitopes is
essential for antigen design in the early phase of vaccine
development and for critical quality attribute analysis in the
commercial phase of vaccine manufacturing.

Introduction

Virus-like particles (VLPs) as a passport to immune system
recognition have been widely used in vaccine development for
prophylaxis against viral infection.1 VLPs are safe because of their
non-replicating nature and are strong immunogens attributing to
their particulate nature.2-4 In addition, VLPs are highly ordered
macromolecular assemblies of the viral protein(s), presenting
virion-like epitopes that can be uptaken by antigen presenting
cells. The VLP antigen with regular and repetitive epitopes has
been demonstrated to more effectively stimulate the immune
response than subunit proteins or peptides with much smaller
molecular weights.5-7

Over the past 3 decades, VLP-based vaccines have made a
great impact in viral disease prevention.4 VLP-based vaccines
against 3 viral infections have been approved for human use to
date: Recombivax HB� and Engerix�-B against hepatitis B virus
(HBV), Gardasil� and Cervarix� against human papillomavirus
(HPV), and Hecolin� against hepatitis E virus (HEV) (Table 1).
All of the 5 vaccines, listed in Table 1, have demonstrated a sig-
nificant clinical effect with good safety and efficacy profiles. Cur-
rently, numerous VLP-based vaccine candidates have entered
preclinical testing or clinical trials.

The evaluation of vaccine potency can be conducted by ani-
mal testing and clinical trials.8-13 Generation of neutralizing anti-
bodies against specific epitopes is the underlying mechanism of
efficacious prophylactic vaccines. In general, titer of neutralizing
antibodies elicited by vaccination correlates with the efficacy of a
given vaccine. Numerous studies have demonstrated that the gen-
eration of neutralizing antibodies is dependent on the correct
antigen conformation and native-like epitope presentation on the
VLP surface. Recombinant VLPs maintain the 3D structural fea-
tures of key epitopes on antigen surface. Effective antigen presen-
tation with regularly arrayed epitopes on the nanometer scale
bionanoparticles and high local antigen concentration (depot
effect for an adjuvanted vaccine) could account for this effective
Th2 response. For Th1 response involving cell-mediated
immune response, the antigens are processed into peptide frag-
ments prior to binding to MHCs, making VLPs to be less advan-
tageous than smaller subunits in stimulating immune system.
Making the native-like epitopes on VLP surface is of utmost
importance in vaccine design and vaccine bioprocessing.

In this study, the importance of neutralizing epitopes localized
on the VLP surface for vaccine potency is reviewed for VLP-
based human vaccines. Neutralizing epitopes are the structural
basis of an antigen to elicit functional and neutralizing antibod-
ies. These epitopes or surface features on VLPs can be identified
by various methods including cryo-EM and crystal structural
determination.4 For HEV, some representative neutralizing epit-
opes on the VLP surface have been identified with cryo-EM using
3D structural reconstruction and/or crystal structure analysis in
combination with site-directed mutagenesis to confirm the epi-
tope structure on the viral capsid.14-18 In contrast, due to lack of
high-resolution crystal structures or 3D reconstruction structures
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of the VLPs, the type-specific neutralizing epitopes localized in
the hypervariable loops of the HPV VLP surface which deter-
mine the type specificity for genotypes and serotypes have been
identified mainly by molecular biology methods such as loop
swapping, foreign epitopes grafting into the surface loops and
site-directed mutagenesis.19,20

Full exposure of the key neutralizing epitopes on the particle
surface is essential for VLP-based vaccines to induce effective
humoral response and to confer immunity against viral infec-
tion.4 The accurate mapping of neutralizing epitopes on the
whole viral capsid or on subunits would aid in better understand-
ing of the vaccine potency and in facilitating the rational design
and refinement of VLP-based vaccines. Increased knowledge on
epitopes would lead to improved epitope-based assays, which are
useful in process control. This is critically important to have well
designed assays during vaccine manufacturing owing to the bio-
chemical or biophysical complexity in vaccine products.

Mapping of immuno dominant and conformation-
dependent neutralizing epitopes of VLPs using

molecular biology methods

Prophylactic vaccines are efficacious against virus infection.
VLP-based vaccines exert their function by inducing the humoral
immune response to generate neutralizing antibodies, which are
raised against specific epitopes presented by the spatial structure
of the immunogen. The integrity of these clinically relevant epit-
opes localized on the surface of VLPs is critically important for
inducing effective titers of functional antibodies, thus conferring
immunity against a certain pathogen. The dominant neutralizing
epitopes are identified using a method of antibody cross-blocking
of a given mAb versus a clinical serum or serum from an immu-
nized animal. The detection of virus neutralizing activity is usu-
ally achieved by PCR-based virus capturing neutralization assay
for HEV-specific antibodies or a pseudovirus neutralization
model for anti-HPV antibodies.21,22 Additionally, the neutraliz-
ing effect of serum antibodies against a human viral pathogen
can be tested by passive immunity of transferring polyclonal anti-
bodies or administration of one or more monoclonal antibodies
followed by virus challenge in animal models.8

Mapping of the immuno dominant neutralizing epitopes
of HEV VLPs

Two VLP-based vaccines against HEV have been developed,
both containing aa 458–607 as a core antigenic region of pORF2
(the capsid protein encoded by ORF2). This region harbors the

key neutralizing epitopes against the virus.23 The VLP antigen
used in the first vaccine is assembled from a 56 kDa peptide that
was expressed in insect cells and encoded by ORF2.24,25 The
results of a phase II trial conducted in Nepal demonstrated that
the vaccine was highly efficacious with efficacy against the HEV
infection of 95.5% and well tolerated (Fig. 1).11 The other vac-
cine was a further truncated version of pORF2, designated as
p239. p239, a shorter version of pORF2, self-assembles into
VLPs with a total of 239 aa (MW~26 kDa). The p239 antigen
was expressed in an E.coli system and self-assembled into particles
with a diameter of 20–30 nm in purified antigen preparations.8

A total of 112,604 healthy adult participants were enrolled in a
randomized, controlled phase III clinical trial. The vaccine was
also well-tolerated, protected against hepatitis E disease with an
efficacy of 100% and had 78% efficacy against HEV infection.9

This VLP-based vaccine was licensed for human use in China in
2011 (Fig. 1 and Table 1).26

HEV vaccine could play an important role in preventing HEV
infection which is responsible for acute viral hepatitis in the
developing world, especially resulting in the high mortality in
pregnant women about 20–30%.23 HEV infection in animal
models can elicit a strong humoral immune response that results
in effective immune protection.8 Furthermore, clinical cases have
shown that the serum antibodies raised against specific epitopes
can protect humans from severe HEV infection-related ill-
ness.10,27,28 The HEV genome is approximately 7.2 kb long, sin-
gle stranded, positive sense and includes 3 ORFs, among which
the ORF2 encodes the viral capsid protein (Fig. 1 and
Table 1).29 A series of B cell epitopes have been identified, par-
ticularly for the neutralizing mAb 8C11, which improves the
understanding of the neutralization mechanism (Figs. 2 and
3).16,30 More importantly, because of the importance of the
8C11 epitope, this neutralizing mAb was used to design assays to
assess the p239 particle integrity and antigen stability.21,31 Moni-
toring product consistency and process reproducibility is essential
in the lifetime management of a licensed vaccine.

In addition to the 8C11 epitope determined by the crystal
structure, additional important neutralizing epitopes localized in
the pORF2 were studied using classical molecular biology techni-
ques. Zhou et al. indicated that a truncated ORF2 protein (aa
112–607) contains the most antigenic epitopes region in the
pORF2 (Figs. 1 and 2).30 Three distinct antigenic regions were
identified, localized at aa 25–38, aa 341–354 and aa 517–530 of
the pORF2. The same group also demonstrated that the C- (aa
12–147) and N- (aa 573–660) termini of pORF2 contain strong
IgG and IgM epitopes by using synthetic peptides.32 Zhang et al.
reported that the recombinant capsid protein p166Chn (amino

Table 1. Representative recombinant VLP-based human vaccines on the market

Trade name Manufacture (year of licensure) Expression host Structure Potency marker Reference

Recombivax HB (HBV) Merck (1986) Saccharomyces cerevisiae Octahedral RF-1, A1.2, 5F11 104,105,111,114,115,152

Engerix-B (HBV) GlaxoSmithKline (1988) Saccharomyces cerevisiae N/A RF-1 153

Gardasil (HPV) Merck (2006) Saccharomyces cerevisiae Icosahedral H16.V5, H18.R5, H11.B2, H6.B10.5 20,68,154,155

Cervarix (HPV) GlaxoSmithKline (2009) Trichoplusiani/baculovirus Icosahedral H16.V5 156

Hecolin (HEV) Xiamen Innovax Biotech (2011) Escherichia coli N/A 8C11, 8H3 8,21,31
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acids 464–629) harbors the major anti-
genic epitopes of pORF2.33 Another
study showed that in the main struc-
tural protein encoded by ORF2, 2
immuno dominant antigenic regions
were identified at aa 394–470 and aa
546–580.34 Li et al. utilized some
GST-ORF2 fusion proteins to identify
that aa 394–660 of the pORF2 was
strongly reactive with both acute and
convalescent sera but aa 394–473 alone
was poorly reactive.35 These findings
suggest that the reactive epitopes are
discontinuous and conformational
(Fig. 2).

The immuno dominant and shorter
epitope region was further identified.
Riddell et al. suggested that the
sequence spanning aa 394 to 457 of the
capsid protein participates in the forma-
tion of strongly immuno dominant
epitopes on the surface of HEV par-
ticles. The presence of those epitopes
may be important in developing immu-
nity to HEV infection.36 Meng et al. showed that the truncated
version of pORF2 containing aa 452–617 elicited antibodies
with specific HEV neutralizing activity.37 This was the first iden-
tification of the smallest fragment of pORF2 that can efficiently
present virion-like neutralizing epitopes. Zhang et al. expressed a
23 kDa peptide, E2, mapping to aa 394–604 of pORF2 using
an E.coli expression system (Figs. 1 and 2). This peptide was
shown to form homodimers and the dimeric form strongly
reacted with human sera from HEV infected individuals.38 Strik-
ingly, the serum reactivity to E2 was abrogated when the dimer
was dissociated into monomers. Furthermore, the dimeric form
of the peptide elicited a strong immune response in animals. The
antisera were capable of neutralizing HEV. Emerson et al. further
narrowed down the dominant neutralizing epitopes localized at
aa 458–607 of pORF2 (Fig. 2).39 More specifically, Zhang et al.
reported that Leu 477 and Leu 613 in pORF2 are critical to the
formation of neutralizing antigenic epitopes by constructing the
truncated proteins and assessing their reactivity with the identi-
fied neutralizing mAbs.40

HPV vaccine and the key epitopes on VLPs
The antigens in HPV vaccines (Gardasil� and Cervarix�) are

also in the VLP form. These VLPs are based on the HPV major
capsid protein, L1 (Fig. 4). The type-specific immune response
induced by HPV infection is mainly directed against the L1 pro-
tein. Although the capsomere harbors most of the neutralizing
epitopes, the VLP form is still superior to the capsomere because
the immunogenicity of VLPs is 20–40 times higher than that of
the capsomere form.41,42 Thus, VLPs are promising vaccine
immunogens for efficacious vaccines. The efficacy of the vaccines
is critically dependent upon the integrity of type-specific confor-
mational epitopes. Studies in animal models have shown systemic

immunization with a VLP-based vaccine. In early studies, Harro
et al. and Koutsky et al. reported the safety and immunogenicity
of an HPV16 VLP-based vaccine in healthy adults.43,44 The vac-
cine is well tolerated and is highly immunogenic with the major-
ity of the recipients achieving high functional antibody titers that
were 40-fold higher than those in natural infection.44 As a result,
the HPV16 vaccine reduced the incidence of both HPV16 infec-
tion and the related cervical intraepithelial neoplasia.43

Two VLP-based HPV prophylactic vaccines are licensed glob-
ally: these were developed and manufactured by Merck & Co.,
Inc. and GlaxoSmithKline (GSK) (Table 1).4 One is a quadriva-
lent HPV vaccine produced in yeast (Saccharomyces cerevisiae),
Gardasil�, for preventing HPV6/11/16/18 infection and was
licensed for use in the USA in June 2006. The other bivalent
(16/18) HPV vaccine, which is produced in a baculovirus-based
insect cell expression system, is Cervarix�, which is also licensed
in the USA. Both vaccines have satisfactory safety profiles
and good efficacy at preventing infection and the diseases associ-
ated with the relevant types.13,45-51 The efficacy of the quadriva-
lent HPV vaccine was demonstrated by clinical studies that
recruited women from over 30 countries.47 A 56% decrease was
found in vaccine type (HPV6/11/16/18) prevalence among
females aged 14–19 y from 11.5% in the prevaccine era (2003–
2006) to 5.1% in the vaccine era (2007–2010).52 For the biva-
lent vaccine, at 4.5 y of follow-up, the vaccine is still highly
immunogenic and safe and induces a high degree of protection
against HPV16/18 infection and the related cervical lesions.48

The serological markers of clinical efficacy are neutralizing func-
tional antibody titers in serum samples. The functional titers are
evaluated by competition (with a neutralizing mAb such as V5
for HPV16) based immuno assays, or with pseudovirion-based
neutralization assays.22,53

Figure 1. Presentation of different truncated versions of HEV pORF2. E2s (aa 459–606), the shortest
version to form dimer, harbors the major neutralizing epitopes, and its crystal structure was deter-
mined with a high resolution of 2.0 A

�
. p239 (aa 368–606) is the vaccine antigen in Hecolin

�
in a partic-

ulate form.8,9 p495 (aa 112–608), which can form VLP with T D 1 icosahedral symmetry, is used in the
other HEV vaccine which has been tested in a phase II clinical trial.17,91 p595 (aa 14–608) also can form
a particle (T D 3) which is more similar to the native virions.15 The structure of T D 3 VLP was acquired
by using the T D 1 VLP (PDB ID: 2ZTN) as a template to build the homology model with the spatial
information of side chain because the reconstruction model from cryo-EM data of T D 3 VLP (PDB ID:
3IYO) only recorded the information of aC atoms. The peptide located at aa 368–459 is supposed to
play a key role in inducing multimerization of p239.
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HPVs are small DNA viruses with a circular double stranded
DNA genome. Owing to the difficulty of growing and propagat-
ing native HPV virions in culture, the pseudovirion system,
which includes 2 genes encoding the structural proteins L1 and
L2, was developed for neutralization assays.22 The major capsid
protein of papillomavirus, L1, successfully expressed in insect
cells, yeast, and E.coli, is a »55 kDa protein which can spontane-
ously self-assemble into VLPs with L1 pentamers as the basic
building blocks. These recombinant L1-based VLPs have diame-
ters of 50–60 nm and a strong resemblance to native virions
(Fig. 4). The VLPs are potent immunogens because the well-

defined epitopes are regularly displayed
on the VLP surface where they can be
easily recognized by B cell receptors
and induce high-titer, conformation-
dependent neutralizing antibodies.
The characterization of the regions of
HPVs that can elicit a neutralizing
immune response provides insight for
the development of prophylactic vac-
cines and for processing controls dur-
ing bioprocessing for vaccine
production.

In early studies, site mutation and
loop swapping were the main methods
of delineating neutralizing domains.
The development of the athymic
mouse xenograft system facilitated
serologic studies on the response to
HPV infection and verified the pres-
ence of specific neutralizing antibodies
in the serum of patients with the
related clinical diseases.54-56 HPV16
and HPV18 are high-risk types of
HPV that associated with cervical and
other cancers. Some of the neutralizing
epitopes were determined by molecular
biological methods, and some of the
identified neutralizing mAbs were used
to monitor the critical quality attrib-
utes of the vaccines.20,57-60

Three neutralizing mAbs (H16.
E70, H16.U4 and H16.V5) that are
uniquely reactive to surface conforma-
tional epitopes on intact HPV16 VLPs
were identified by Christensen et al.61

The epitopes of H16.V5 and H16.E70
were primarily mapped to the FG loop
and HI loop of HPV16 L1 with high
neutralization efficiency (Fig. 4 and
Table 3). Roden et al. and White et al.
also indicated that in HPV16 the L1
residues 50, 266, 282 are vital for the
binding of the neutralizing mAbs
H16.V5 and H16.E70.62,63 In addi-
tion, Carpentier et al. suggested that

amino acid 270 in the FG loop is part of the H16.E70 epi-
tope.64 Carter et al. found that the sequence at both ends of
the FG loop (aa 260–290) of L1 was required for the mAbs
H16.V5 and H16.E70 (Fig. 4 and Table 3).65,66 Further-
more, a new antibody binding site was identified on the
C-terminal arm of L1, between residues 427–445, that was
recognized by the mAb H16.U4.65 Recently, Cardone et al.
also indicated that the epitope recognized by H16.U4 was
mapped to “the suspended bridge” in a recently determined
higher-resolution structure of HPV16 mature capsid.67

HPV18-neutralizing mAbs R5 and J4 have been reported and

Figure 2. The binding sites of representative neutralizing antibodies on the HEV VLP surface. (A) The
pORF2 monomer is divided into 3 sections named the S domain (aa 118–313), the P1 domain (aa 314–
453) or P domain (aa 320–455) and the P2 domain (aa 454–606) or P domain (aa 456–606), which are
shown in color blue, purple, and yellow, respectively. The P2 or P domain is dimeric and harbors all of
the identified neutralizing epitopes. The neutralizing epitopes determined by different methods against
several neutralizing antibodies are shown in different colors. Such as E479, D481, T484, Y485, S487,
Y532 and S533 for FAB244;17 S487, S488, T489, P491, N562 and T564 for MAB1323;15 D496, G591 and
P592 for MAB272;15 E479, Y485, I529 and K534 for 8H3; E479, S497, R512, K534, H577 and R578 for
8C11. These antibodies are useful serological markers for evaluating the clinical efficacy of the vaccine.
(B) Key neutralizing epitopes on P (P2) domain of pORF2. The S domain, M (P1) domain and P (P2)
domain are colored in blue, purple, and yellow, respectively.

1280 Volume 11 Issue 5Human Vaccines & Immunotherapeutics



used in the quality control of the 2
licensed HPV vaccines (Table 1 and
Table 3).20,68

The type-specific neutralizing epito-
pes of the low-risk HPV types HPV6
and HPV11 have also been identified.
HPV6 and HPV11 are responsible for
condylomata acuminata, and antigens
from these viruses have also been
included in vaccine development, with
significant efficacy in reducing the risk
of HPV6/11-related genital warts.69-72

Christensen et al. identified three con-
formation-dependent HPV6-specific
antibodies H6.B10.5, H6.M48 and H6.
N8 (Table 3).73 Following this study,
McClements et al. mapped the binding
sites of these 3 mAbs by making
HPV11-based amino acid substitutions
in the HPV6 major capsid protein L1.
The region defined by residues 49–54 in
the BC loop is critical for recognition by
all 3 of the HPV6-specific, conforma-
tion-dependent antibodies. Addition-
ally, the other domain defined by the L1
residues 169–178 in the EF loop also
contributes to H6.B10.5 and H6.M48
binding (Table 3).74 It has been demon-
strated that specific antibodies (H11.B2,
H11.F1, H11.G5, H11.H3 and
H11G131S.G3) against HPV11 can
neutralize the virus by binding to 2 dis-
tinct domains of DE and HI loops on the particle surface.75–78

Specifically, the epitope for H11.B2 was mapped to residues
123–141 in the DE loop of L1, and another 3 mAbs, H11.F1,
H11.B2, H11.G5, recognize a dominant epitope centered on res-
idue 132 (Fig. 4 and Table 3). The mAb H11.H3 has been
shown to bind to the region that includes residues 346–349 in
the HI loop. Another highly neutralizing mAb, H11G131S.G3,
has been shown to bind the region encompassing residues 263–
290 in the FG loop, in addition to residues 346–349 (Table 3).

The quadrivalent HPV vaccine (types 6, 11, 16, and 18),
Gardasil�, can prevent 70% of cervical cancer and high-grade
cervical intraepithelial neoplasia and 90% of anogenital warts.
Inclusion of more types of HPV in the vaccine would provide
even wider protection. Merck has developed a 9-valent HPV vac-
cine, which has been approved for the US market by the FDA
(V503) in which 5 additional HPV types (31/33/45/52/58) are
included (licensed in the US in late 2014). The vaccines also use
recombinant VLPs as antigens.79 Therefore, information about
the neutralizing epitopes of more HPV types is desired. A variety
of neutralizing mAbs recognizing immuno dominant epitopes
are needed for vaccine quality control and serological antibody
analysis. Three type-specific neutralizing mAbs, H31.F16, H31.
H12 and H31.B1, which recognize conformational epitopes,
were developed and characterized by Fleury et al.80 The type-

specific epitopes for these antibodies are located at aa positions
264–272 in the FG loop of L1 for H31.B1, aa 264–269 for
H31.H12 and aa 265–273 for H31.F16. In addition, another 2
conformation-dependent neutralizing mAbs (H31.F7 and H31.
C19) react with conformational epitopes.81 The epitopes of these
2 mAbs have been shown to be located in the FG loop of H31
L1. The epitope of another antibody, H31.A6, was also investi-
gated and this antibody was shown recognize a conformation-
dependent epitope on the EF loop (Table 3).81

To characterize the epitopes of HPV33-specific antibodies,
hybrid VLPs were designed in which the type-specific sequence
of the surface loops of the HPV33 VLP was replaced by the cor-
responding amino acids of HPV16. The major residues contrib-
uting to the binding sites of 3 mAbs (H33.B6, H33.E12 and
H33.J3) were identified by Roth et al.82 The sequences at 2
hyper loops, DE (aa 132–140) and FGb (aa 282–291) were
determined to be essential for the binding of H33.B6. The epi-
tope of H33.E12 was even more complex with an overlap with
that of H33.B6 in the DE and FGb loops (Table 3). In addition,
the binding of this antibody also required aa 260–270, localized
in the FGa loop. The epitope of H33.J3 was determined to reside
in the BC loop (aa 51–58). For quality control purposes in the
Merck’s project of V503, Brown et al. developed neutralizing
mAbs for additional oncogenic HPV types: 31, 33, 45, 52 and

Figure 3. The crystal structure of 8C11Fab in complex with the E2s domain. (A) The structures of the
E2s-8C11Fab complexes. (B) The epitope of mAb 8C11 on E2s, including E479, T497, R512, K534, H577
and R578 on the recombinant HEV capsid protein at the interface with an interacting Fab of the 8C11.
(C) Interacting residues at the interface between E2s and 8C11Fab. The interactions include hydrogen
bonds, Pi-Pi interaction and salt bridge.
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Figure 4. For figure legend, see page 1283.
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58 (H31.5F12 and H31.5D10, H33.5D4 and H33.6G9,
H45.6G6 and H45.10B4, H52.8D11 and H52.9F7, H58.2C3
and H58.6E11).83 These elite mAbs displayed high affinity,
type-specificity, high neutralization efficiency and recognition of
conformational epitopes. These characteristics make these mAbs
suitable as analytical tools to monitor the production process, to
analyze potency in vitro and to assess the induced in vivo immune
response of a vaccine (Table 3).

For the HPV-neutralizing mAbs for which epitopes have been
identified, the immuno dominant epitopes have been shown to
localize in the different flexible loops on the VLP surface
(Table 3 and Fig. 4).84-86 Therefore, the correct spatial confor-
mation of these loops and the structural integrity of the VLPs are
essential for inducing effective neutralizing antibodies for vaccine
efficacy. From a practical aspect, these representative neutralizing
antibodies can be used to develop assays for process monitoring
and production consistency during vaccine manufacturing.

Particle assembly and structural determination

In general, VLPs are assembled from the related viral capsid
protein(s). Different truncated versions of the capsid protein can
form particles with different sizes. Most VLPs retain native-like
epitopes. Characterization of the assembled VLPs is essential for
vaccine development, especially in regard to the size and mor-
phology. Various biophysical and biochemical methods are used
to characterize these properties, including high performance liq-
uid chromatography (HPLC), analytical ultracentrifugation
(AUC), dynamic light scattering (DLS), transmission electron
microscopy (TEM), Cryo-EM and atomic force microscopy
(AFM). The structural determination of the VLPs and/or their

subunits can provide more details to aid in the in-depth under-
standing of the assembly mechanism and the preservation of epit-
opes on the VLPs surface.

The sole structural protein of HEV (pORF2) is encoded by
ORF2. Different truncated versions of the capsid protein can
assemble into distinctly sized spherical VLPs.8,24,87-89 The
N- and C-terminal truncated version of aa 112–608 can form
T D 1 VLPs (Fig. 1) and another version that contains aa 14–
608 form T D 3 VLPs, which are analogous to the native virus
(Fig. 1).15,90–92 The p239, with aa 368–606 of pORF2, can
also self-assemble into VLPs with a diameter of 20–30 nm,
with the key epitopes properly presented (Fig. 1).8,21,31 The
HEV T D 1 VLPs have been visualized by electron microscopy
.93,94 The overall spatial structures of the T D 1 and T D 3
VLPs have been elucidated using cryo-EM and crystallography
with the development of structural analysis techniques
(Table 2).15,90–92 The full length of ORF2 protein in T D 1
VLPs can be divided into 3 sections: the S domain (aa 118–
313), the P1 domain (aa 314–453) or M domain (aa 320-455)
and the P2 domain (aa 454–606) or P domain (aa 456–606)
(Fig. 3).15,90 The P2 or P domain is localized on the outer sur-
face, named E2s, and harbors the major neutralizing epitopes. A
high-resolution crystal structure of the E2s domain was deter-
mined and its structural analysis verified the existence of this
functional domain in a homodimeric form. The E2s protrusion
projecting from the surface of the viral shell plays a key role in
the interaction of HEV with host cells. Maintenance of the cor-
rect conformation and the dimeric form are essential for elicit-
ing an effective immune response.14

HPV vaccine are another type of vaccine for human use and
have played a major role in human health since their develop-
ment in the past decade. HPV vaccines utilize VLPs, which are

Table 2. Structure determination of recombinant virus-like particles or the subunit antigens of prophylactic vaccines against 3 viruses: HEV, HPV and HBV

Methods of structural determination

Virus VLP or capsid protein X-ray Cryo-EM Reference

HEV E2s (I) x £ 14

E2s (IV) x £ 16

p239 £ £ 8

T D 1 VLP (I) x x 91,92

T D 1 VLP (III) x £ 15

T D 1 VLP (IV) x £ 90

T D 3 VLP (III) £ x 92

HPV Pentamer (HPV11,16,18,35) x £ 96

T D 1 VLP (HPV16) x £ 95

T D 7 VLP (HPV11,16) £ x 19,67

HBV HBsAg (Octahedral) £ x 108

Figure 4. (See previous page) Comparison of different loops, harboring key neutralizing epitopes, of 4 genotypes HPV11, HPV16, HPV18 and HPV35 (for
which X-ray structures are available).96 (A) The BC loop, DE loop, EF loop, FG loop and HI loop colored in red, green, blue, yellow and magenta, respec-
tively, are shown in L1 monomer, pentamer and TD 7 VLP. (B) Comparison of the L1 surface loops, BC loop, DE loop, EF loop, FG loop and HI loop respec-
tively. HPV11, HPV16, HPV18 and HPV35 are shown in different colors (blue, magenta, yellow and green, respectively). (C) Localization of the different
loops in the full length of HPV16 L1 protein. The epitope regions of 2 type-specific neutralizing mAbs are labeled with an arrow (H16.V5 binding to the
FG and HI loop, H11.B2 binding to the DE loop).
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assembled from the major capsid protein L1, as the immunogen.
Electron microscopy has shown that the HPV11 VLPs have a
similar surface topography to the infectious viruses75. The assem-
bly of VLPs from HPV16 L1 pentamers indicated that full
length L1 can assemble into T D 7 particles resembling the
72-pentamer native virions, whereas a truncated L1 lacking
10 N-terminal residues can only assemble into T D 1 particles
including 12 pentamers.95 Several reports have indicated that the
hypervariable loops on the surface of VLP, which determine the
type specificity for genotypes and serotypes, are essential for bind-
ing by most of the identified neutralizing mAbs and for the integ-
rity of the key neutralizing epitopes. Vaccination generating high
levels of type-specific neutralizing antibodies is the primary
mechanism of protection against infection. The structural deter-
mination of L1 in its pentameric form or in the T D 1 small
VLP form provided insight into the type specificity of neutraliz-
ing antibodies.95,96

Chen and colleagues prepared L1 pentamers of 4 different
HPV types, HPV11, HPV16, HPV18, HPV35 and determined
their crystal structures with high resolution (Fig. 4 and
Table 2).96 Comparison of the crystal structures of the 4 types
revealed that the L1 structure among different types of HPV
shared a conserved core domain and highly flexible loops on the
capsid surface which harbor the major neutralizing epitopes and
determine the type specificity for genotype and serotype (Fig. 4).
The distinct loop structures provide an explanation for the mech-
anism of binding and elicitation of type-specific neutralizing anti-
bodies. The version of the capsid protein L1 that is truncated by

10 N-terminal residues can assemble into small T D 1 icosahe-
dral particles.95 Chen et al. determined the crystal structure of
T D 1 HPV16 VLPs (Table 2) and this structure provided a
starting point for understanding the particle (~20 nm) assembly
mechanism and the importance of the loops in determining the
type specificity. These particles are smaller than those used in the
vaccines (~40–60 nm) and have different intercapsomeric contacts
from the native virions, whereas the epitopes on the capsomeres
are largely identical.

The spatial structure of HPV virions or VLPs can also be
determined by cryo-EM and 3D reconstruction. Bovine papillo-
mavirus and human papillomavirus are in the same genus and
are highly similar to each other, especially in regard to their struc-
ture. BPV and HPV both consist of 72 capsomeres arranged on a
T D 7 icosahedral lattice.97 Baker et al. determined the structure
of BPV1 and HPV1 at 25 A

�
resolution using Cryo-EM and a 3

dimensional image reconstruction technique.97 The surface
representation of the BPV1 and HPV1 reconstructions shows
that the capsids of the 2 viruses consist of a layer of nearly contin-
uous density from which the capsomeres project radially. It can
be seen that the capsomeres have clear 5-fold symmetry in the
reconstructed structures.

A higher resolution BPV structure (9 A
�
) was characterized by

Trus et al. using cryo-EM.98 With the improvement in resolu-
tion, finer structural features were resolved and differences
between the hexavalent and pentavalent capsomeres were
observed and analyzed. Holes were clearly seen in the center of
the hexavalent capsomeres but not in the pentavalent capsomeres.

Table 3. The key epitope information of neutralizing mAbs against HEV, HPV and HBV

Virus mAb Epitope information Notes References

HEV 8C11 Glu479, Ser497, Arg512, His577, Arg578, Lys534 Key epitopes located in the dimeric E2s
domain which is formed by the P2 (aa
454–606) or P (aa 456–606) domain with
hydrophobic interaction and hydrogen
bond and presents a single b-barrel
structure

16

8H3 Glu479, Tyr485, Ile529, Lys534 14

MAB272 Asp496, Gly591, Pro592 15

MAB1323 Ser487, Ser488, Thr489, Pro491, Asn562, Thr564 15

Fab244 Glu479, Asp481, Thr484, Tyr485, Ser487, Tyr532, Ser533 17

HPV V5 (HPV16) FG loop (aa 266–297) and HI loop (aa 339–365) Key epitopes located on the 5 flexible surface
loops: BC, DE, EF, FG and HI

20

R5 (HPV18) NA 68

B10.5 (HPV6) BC loop (aa 49–54) and DE loop (aa 169–178) 157

B2 (HPV11) DE loop (aa 123–141) 73

A6 (HPV31) EF loop 81

E12 (HPV33) DE (aa 132–140) and FG loop (aa 260–270 and aa 282–291) 82

O3 (HPV35) NA 20

C1 (HPV45) NA 20

8D11, 9F7 (HPV52) NA 83

2C3, 6F11 (HPV58) NA 83

B1.A1(BPV1) NA 83

HBV RF1 aa 124–137 Key epitopes are sensitive to redox treatment
and are located near the dimeric interface

113

A1.2 NA 110

5F11 NA 111
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The intercapsomere connections were clearly resolved, which
indicates that the protrusions emanate from the facets of the pen-
tavalent capsomeres and extend toward a vertex of each of the 5
neighboring hexavalent capsomeres. An atomic model was gener-
ated for HPV from a combination of cryo-EM and crystallo-
graphic data, and this model was named the ‘invading arm’
model.99 A reconstruction of BPV at approximately 3.6 A

�
resolu-

tion has permitted reasonable fitting and refinement of the
atomic model for the L1 shell utilizing the HPV16 L1 pentamer
as a homology template.100,101 The new model corrects one fea-
ture of the earlier model in which the critical contacts are in the
C-terminal arm. The loops emanate from the core of the subunit,
contact 2 subunits in a neighboring pentamer and reinsert into
the pentamer from which they emanate.101 A recent pseudoa-
tomic model based on a 9 A

�
resolution reconstruction of fully

mature capsids of HPV16 using cryo-EM and 3D image analysis
showed strikingly high degree of similarity to the high-resolution
cryo-EM-based model of BPV1.67 The whole atomic model pro-
vides the precise location and composition of the dominant epit-
opes. Therefore, cryo-EM and 3D reconstruction technique
could be a useful tool to determine the precise spatial structure of
biomolecules (VLP or VLP-Ab complexes) and monitor dynamic
processes of VLP assembly and maturation.67 Ideally, high-reso-
lution structures of VLP-antibody complexes will be determined
so that the epitopes can be observed in the complexed form with
near atomic level resolution.

Structure analysis of antigen-antibody complexes

Efforts have been made to characterize the neutralizing epito-
pes using mAbs by cryo-EM (3D-structure reconstruction),
X-ray crystal structure determination and site-directed
mutagenesis.

For HEV, to date, all of the identified neutralizing epitopes
are conformational and all have been mapped to the E2s domain,
which consists of a discontinuous amino acid sequence (Fig. 2
and Table 3).23 Xing et al. prepared Fab244 and the HEV VLP-
Fab244 for Cryo-EM determination and showed the general
structure of the Ag-Ab complex.17 The results indicated that the
Fab244 recognizes a conformational epitopes that includes the
residues E479, D481, T484, Y485, S487, Y532 and S533. This
is consistent with the results of Western blot assays indicating
that residues 597–601, localized at C- terminal region, are critical
for Fab244 binding to the ORF2 protein. Separately, Yamashita
et al. identified two neutralizing antibodies and determined their
binding sites at the surface of the P (P2) domain.15 The
MAB1323 recognizes a discontinuous epitope consisting of resi-
dues, S487, S488, T489, P491, N562 and T564. The other
mAb, MAB272, binds to the residues D496, G591 and P592.
The neutralization activity of the 2 antibodies was determined
using mutation analysis. These results further support the notion
that the P (P2) domain is the major dominant neutralizing epi-
tope region.

Additional epitopes of highly neutralizing mAbs located at the
P or P2 domain have also been determined. Li et al. suggested

that the groove region on the surface of the E2s (P or P2) domain
is the most likely antibody-binding region.14 A series of mutants
targeting the groove region were constructed and the binding
activity with the neutralizing antibody 8H3 was studied. The
data showed that the mutants E479A, Y485A, I529A and
K534A independently abrogated the reactivity of mAb 8H3. A
study by Tang et al. was the first to report a crystal structure of a
truncated HEV capsid protein and a dominant type specific
(referred to genotype 1) neutralizing antibody (8C11).16 The
sites of the interaction were determined and include the residues
E479, S497, R512, K534, H577 and R578. Of the residues iden-
tified in the complex structure as contact points, R512 is the
most crucial site for the interaction of 8C11 with the E2s domain
and for the neutralization function, as determined by mutations
analysis and cell model assays (Fig. 2, Fig. 3A and B).16 Identifi-
cation of the neutralizing epitopes on the surface of the E2s pro-
trusion facilitates the understanding of the effective immune
response against HEV and provides important information about
the epitopes for the design and improvement of the vaccine.

Owing to the lack of a high-resolution crystal structure of an
Ag-Ab complex, precise epitope mapping data are still missing
for HPV. Complexes of BPV and 2 neutralizing mAbs have
been determined by cryo-EM and 3D image reconstruction to
13 A

�
resolution (Fig. 5).102 The two mAbs had 2 distinct bind-

ing patterns. The reconstructions revealed that mAb #9 binds to
the L1 protein of both pentavalent and hexavalent capsomeres.
However, the mAb 5B6 only binds to each of the L1 molecules
in the hexavalent capsomeres. Epitope localization shows that
mAb #9 binds monovalently to the tips of the capsomeres
(Fig. 5A), whereas 5B6 binds both monovalently and bivalently
to the sides of hexavalent capsomeres about 2-thirds of the way
down from the outer tips yet to none of the L1 molecules in
the pentavalent capsomeres because of steric hindrance
(Fig. 5B). The binding patterns observed in the complexes of
BPV and antibodies might shed light on the patterns in HPV-
antibody complexes. For recombinant vaccine VLPs, Zhao et al.
also determined 2 structures of HPV VLPs and Fabs, with
H11.B2 binding to HPV11 VLPs and H16.V5 binding to
HPV16 VLPs, using cryo-EM and 3D reconstruction techni-
ques.19 For HPV11, the mAb H11.B2 binds to the center of
the capsomeres (DE loop), with 72 potential binding sites on
the VLP surface (Fig. 5C and E). The mAb H16.V5 has a dif-
ferent binding site (the FG and HI loops) that allows it to bind
to the capsomeres at the 3-fold axes of symmetry, but not at the
5-fold axes of symmetry. Thus, HPV16 VLPs provide 300
potential binding sites per VLP for the H16.V5 antibody
(Fig. 5D and F).

Discussion

Identification of the viral neutralization sites on the major
capsid protein may be useful for serologically characterizing the
immune response serologically of both vaccine recipients and
naturally exposed individuals. This knowledge would provide
insights into the structure-function relationships of vaccines and
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virus-host interactions. The presence of conformational and
virion-like epitopes in a vaccine antigen is essential for eliciting
neutralizing antibodies to confer immunity. Although most

neutralizing epitopes are conforma-
tional, some linear neutralizing epitopes
exposed on the surface of HPV VLPs
have also been identified.73 Combita
et al. noted that the HPV capsid protein
L1 contains common linear neutralizing
epitopes and suggested that some degree
of cross-protection could occur.103

However, the level of cross-protection is
very low after immunization, represent-
ing less than 1% of the homologous
neutralizing activity.103 Furthermore,
there is neither virological nor epidemi-
ological evidence of natural cross-pro-
tection between related HPV types.103

Therefore, cross-type epitopes may
exist, but they are unlikely to be any of
the immuno dominant antigenic deter-
minants on the viral capsid.

The determination of the antigenic
and immunogenic structure of a viral
protein is very important for the design
and development of prophylactic vac-
cines. The related immunochemical
tools, such as mAbs, are important for
quality control of different batches of
VLP antigens during vaccine
manufacturing. Determining the struc-
ture of VLP-based vaccine antigens,
whose molecular weight values are of
the order of millions of daltons, is not
trivial. The first licensed VLP-based
human vaccine, the HBV vaccine, con-
tains the HBsAg protein, which has 226
amino acids per monomer and with 96
monomers per particle.104,105 Owing to
their intimate association with lipids
and the presence of multiple disulfide
bonds, no crystal structure for HBsAg
particles has been determined to
date.106 In addition, because of the high
cysteine content in the major hydro-
philic region (aa 101–170), which is the
main antigenic region (with 8 cysteines
of approximately 70 amino acids), the
subunit structure of HBsAg particles has
not been solved.107 The only cryo-EM
structure of HBsAg particles shows that
the hydrophilic regions of 4 subunits
form protrusions from the particle sur-
face, so this region contains 32 cysteine
residues which result in the complex
disulfide cross-linking.105,108 This

region is postulated to be immuno dominant and to generate
most of the neutralizing antibodies (Table 2). However, a high-
resolution structure of the major neutralizing epitopes region has

Figure 5. Different binding patterns of antibodies to BPV and HPV.19,102 (A) mAb #9 binding to the
outer surface of the hexavalent capsomere. (B) mAb 5B6 binding to the 2 L1 molecules of the adjacent
hexavalent capsomeres. (C) A 3D reconstruction structure of mAb H11.B2 binding to HPV11 VLP (the
DE loops on L1, Fig. 4) indicates that the binding sites are located at the center of the capsomere. (D)
A 3D reconstruction structure based on cryo-EM data of mAb H16.V5 binding to HPV16 VLP (FG and
HI loops on L1, Fig. 4) shows that H16.V5 only binds to the hexavalent capsomeres but not the penta-
valent capsomeres.19 Recently, atomic model of the V5 epitope were built with higher resolution 3D
reconstruction of cryo-EM data, demonstrating certain conformational changes induced by V5 bind-
ing to its epitope and confirming the preferential binding to the hexavalent capsomeres.151 The differ-
ent binding models demonstrate different neutralization mechanisms for neutralizing antibodies
exerting their effects against the viral infection. (E) The 3D structural model of mAb H11.B2 binding to
HPV VLP in which the binding site of H11.B2 was indicated in blue and warmpink for VLP. (F) The 3D
structural model of mAb H16.V5 binding to HPV16 VLP, with magenta for H16.V5 binding site on FG
loop and red on HI loop, and cyan for VLP.
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not been determined, making an analysis of antigen binding to
neutralizing mAbs even more critical. Three neutralizing anti-
bodies, RF-1, A1.2 and 5F11, have been identified. They recog-
nize the immuno dominant region on the surface loops of
HBsAg near the dimer interface with a high sensitivity to the epi-
tope integrity on the VLP surface (Table 3).109–111 RF-1 is the
only mAb specific for HBsAg that has been demonstrated to have
the protective activity in a viral challenge experiment in chimpan-
zees.112 The epitope of RF-1 is composed of a stretch of 14
amino acids that includes 3 cysteines (aa 124–137), and the mAb
binds to an intramolecularly disulfide-bonded cyclic peptide, as
shown by ELISA and Western blot.113 RF-1 has been used as a
competitor of clinical sera to validate the immune effects of a
prophylactic vaccine.105,114,115 The mAb 5F11 also has a high
sensitivity to the disulfide integrity in HBsAg in addition to a
high in vitro neutralizing efficiency for HBV. All of the 3 mAbs
are used as molecular probes to monitor the particle integrity and
to assess the correct conformation of HBsAg, a prerequisite for
an efficacious vaccine.111

Similar to the critical nature of the disulfides in HBsAg, disul-
fide bond formation plays an important role in facilitating the
assembly and in maintaining the conformational stability of
HPV VLPs.116 HPV16 L1 consists of 505 amino acids, including
12 cysteines. When the intermolecular disulfide bonds are dis-
rupted in the capsid, the VLPs assembled from the L1 protein
dissociate into individual capsomeres. Thus, the presence of the
disulfide bonds is critical to the assembly and structural integrity
of VLPs. A study by Ishii et al. indicated that Cysteines 175,
185, and 428 are involved in intercapsomeric disulfide bonding
and in the normal assembly of the VLPs.117,118 In addition, the
Cysteines 229 and 379 are most likely involved in intramolecular
disulfide bonding, which may also contribute to the integrity and
stability of the VLPs as well. A change in the redox environment
can influence the assembly and disassembly of VLPs.119,120 Cap-
sid maturation (from procapsids to capsids) was observed and
characterized related largely to disulfide formation. The confor-
mation of DE loop (near the center of the capsomere) was stabi-
lized while the axial region of the capsomere formed, whereas the
spatial structure of another 4 exterior loops (BC, EF, FG and HI
loop, Fig. 4) were gradually shaped after a dynamic process of
the capsid maturation with the consolidation induced by the
disulfide cross-linking of the adjacent capsomeres [67]. The sta-
bility and homogeneity of HPV VLPs can be improved by disas-
sembly and reassembly [119,120]. With these structural
improvements, immuno reactivity with conformation-dependent
neutralizing antibodies was markedly enhanced. However, the
capacity of the well-formed and fully closed VLPs to bind to anti-
bodies recognizing linear epitopes was greatly reduced.

Unlike HBV and HPV VLP assemblies, redox conditions are
not critical for the bioprocessing of HEV VLPs. There is no cys-
teine in p239, which is the vaccine antigen and the basic struc-
tural unit in dimeric form maintained by hydrophobic
interaction and which harbors the major neutralizing epito-
pes.14,23,121 As long as the E2s fragment (or the P/P2 domain) is
expressed and purified, its intrinsic properties drive the formation
of the dimer form through strong hydrophobic interactions and

hydrogen bonds, and this form properly presents neutralizing
epitopes such as those recognized by the mAbs 8C11 and
8H3.14,16

More recently, using a similar recombinant VLP approach, a
vaccine against influenza virus produced by Protein Sciences, Inc,
(Meriden, CT), FluBlok�, was recently licensed in 2013 in the
USA.122,123 FluBlok� is a recombinant trivalent hemagglutinin-
based vaccine produced in the baculovirus expression system.
These multimeric, rosette-like particles with a diameter of 20–
40 nm properly present the virion-like epitopes.124–127 FluBlok�

has been tested in multiple clinical trials and shown to be safe
and well tolerated. It displayed strong immunogenicity and eli-
cited a long lasting immune response in these studies.128-133 This
vaccine was shown to provide cross-protection against genetic
drift in influenza virus strains.134 The effective protection was
mainly dependent on the correct subunit folding for effective epi-
tope formation, the correct spatial conformation and the presence
of biologically active rHA antigens in the assembled form.
FluBlok� contains 3 times more HA protein than the egg-based
trivalent inactivated influenza vaccine. The HA antigens in
FluBlok� are full-length proteins, including HA1, HA2 and
transmembrane domain. rHA antigens with the correct confor-
mation and native-like epitopes can induce protective immune
responses, as evidenced by the presence of both hemagglutina-
tion-inhibiting and virus-neutralizing antibodies.

Another influenza VLP-based vaccine is being developed by
Novavax using insect cell cultures. This VLP consists of HA and
the matrix protein (M1) with or without neuroamidase.135 Thus,
this vaccine can mimic the native virus in its stimulation of the
immune response. The particle form can be more readily up
taken by dendritic cells and in turn activates these dendritic
cells.136 The results of clinical trials indicate that the vaccine can
elicit cross-protection in animals and humans vaccinated with
H5 HA-containing VLPs.137,138 The use of a liposomal adjuvant
can further enhance the immunogenicity.139

In addition, another VLP-based vaccine against mosquito
borne chikungunya virus (CHIKV) is being developed.140-142

CHIKV, a re-emerged, arthritogenic and mosquito-borne virus,
causes severe diseases in human including fever, rash, myalgia,
fatigue and the joint symtoms, often debilitating.143-145 The
native virus contains 240 heterodimers of E1/E2 arranged as tri-
meric spikes on the virus surface. The study by Akataha et al.
showed a self-assembled VLP of viral structural protein
expressed in 239F cells. The preclinical data indicated that the
VLP-based vaccine induced high neutralization titers in Balb/C
or in nonhuman primates.140 Furthermore, the vaccine was
evaluated in a Phase I dose-escalation clinical trial. After a fol-
low-up study for 44 weeks, the presence of neutralization anti-
bodies were detected, and the cross-type protection was
achieved.146 To study the early neutralizing response to CHIKV
in infected patients, immunoglobulin G3 targeting a dominant
linear epitope on the E2 glycoprotein was shown to be associ-
ated with the virus clearance and long-term clinical protec-
tion.147,148 Two human mAbs, 5F10 and 8B10, with
neutralization activity was identified and characterized. The
structural analysis indicated that the 5F10 epitope was located
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at the tip of the E2 domain B (containing the residue of V216)
whereas the epitope recognized by 8B10 was proposed to be a
transient epitope which was only exposed under acidic condi-
tions.149,150 Insightful findings on epitopes would aid in the
vaccine design and development for CHIKV.

Vaccines can confer protection against viruses, and this pro-
tection depends mainly on inducing the immune system to gen-
erate neutralizing antibodies. Therefore, monitoring the major
neutralizing epitopes on the VLP surface is an essential aspect
of the development and quality control of vaccines. During bio-
processing, conditions should be provided to promote the for-
mation of the virion-like epitopes. Accordingly, formulations
should also be developed to stabilize the antigens by maintain-
ing these epitopes during the shelf-life of the vaccines. A panel
of monoclonal antibodies with the identified desired characteris-
tics makes up a powerful tool box for monitoring the produc-
tion process and characterizing the vaccine-induced clinical
response. A panel of representative monoclonal antibodies is
need for vaccine quality analysis and in the detection assay of

vaccine release. The precise epitope mapping of a neutralizing
antibody will aid in understanding the relationship between
structure and function. In turn, this knowledge will also aid in
the optimization and development of novel vaccines and in the
quality assessment of licensed vaccines during life-cycle manage-
ment to deliver safe and efficacious vaccine products to
consumers.
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