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Receptor

Influenza virus (IFV) infection causes serious health problems
and heavy financial burdens each year worldwide. The classical
inactivated influenza virus vaccine (IIVV) and live attenuated
influenza vaccine (LAIV) must be updated regularly to match
the new strains that evolve due to antigenic drift and antigenic
shift. However, with the discovery of broadly neutralizing
antibodies that recognize conserved antigens, and the CD8C T
cell responses targeting viral internal proteins nucleoprotein
(NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is
possible to develop a universal influenza vaccine based on the
conserved hemagglutinin (HA) stem, NP, and matrix proteins.
Recombinant adenovirus (rAd) is an ideal influenza vaccine
vector because it has an ideal stability and safety profile,
induces balanced humoral and cell-mediated immune
responses due to activation of innate immunity, provides ‘self-
adjuvanting’ activity, can mimic natural IFV infection, and
confers seamless protection against mucosal pathogens.
Moreover, this vector can be developed as a low-cost, rapid-
response vaccine that can be quickly manufactured. Therefore,
an adenovirus vector encoding conserved influenza antigens
holds promise in the development of a universal influenza
vaccine. This review will summarize the progress in adenovirus-
vectored universal flu vaccines and discuss future novel
approaches.

Introduction

Influenza is an acute respiratory infectious disease that leads to
serious health problems. Each year, influenza infects 5%–10% of

adults and 20%–30% of children globally. Worldwide, 3 to
5 million cases of severe illness and approximately 250 000 to
500 000 deaths due to influenza are reported each year,1 and the
newest statistical data show that influenza activity continues to
increase in the southern hemisphere.2

Influenza is classified into 3 groups: A, B and C; however, influ-
enza A is responsible for most seasonal influenza infections and all
known pandemics.3 Influenza viruses are divided into 17 HA sub-
types and 10 neuraminidase (NA) subtypes based on the expressed
surface proteins HA and NA.4 Influenza evolves through antigenic
drift and antigenic shift, resulting in the emergence of new strains;
therefore, IIVV and LAIV cannot control emerging pandemic influ-
enza virus threats. Furthermore, the production of a new vaccine
cannot be achieved until 4 months after the identification of a pan-
demic strain5 because it is not easy to expand vaccine production
capacity within a short time due to limited egg supplies. In general,
both IIVV and LAIV have limited capacity to prevent and control
pandemic influenza; therefore, identifying alternative vaccine strate-
gies for influenza outbreaks is critical. Recent studies have led to
progress in the development of a universal vaccine. rAd is a respira-
tory virus. An adenoviral vector can mimic natural infection6 and
induce long-term cross-protective immunity toward influenza
viruses,7,8 andmany studies indicate that rAd induces effective trans-
gene-specific humoral9 and cellular immune responses.10,11 There-
fore, the adenovirus vector is one of the most promising types of
vaccine vectors. This review describes the progress in adenoviral vec-
tored universal flu vaccines and outlines novel future approaches.

Recombinant Adenoviral Vectors for Vaccines

Adenovirus was first isolated from human adenoid tissue cul-
ture nearly 60 y ago,12 and since then, additional adenoviruses
have been isolated from a variety of animal species and humans.13
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Human Ads are classified into 53 serotypes, which are grouped
into 7 subgroups (A-G), based on serological properties and
genome DNA sequences.14 Adenovirus is a non-enveloped,
70–100-nm diameter, icosahedron, DNA virus.15 The adenovi-
rus capsid is composed of 3 major structural proteins (i.e., hexon,
penton base and fiber) and several minor proteins.16 The viral
genome is a linear, double-stranded DNA between 33 and 38 kb
that is flanked by 2 inverted terminal repeats (ITRs); the
upstream ITR is followed by a packaging signal (c).17 The Ad
genes are classified into early transcription units (E1a, E1b, E2a,
E2b, E3 and E4) and later transcription units (L1-L5).17,18

rAds have many advantages as vaccine delivery vectors. Many
clinical and preclinical studies have demonstrated that rAds are
safe, and rAd-vectored vaccines can be easily generated and cul-
tured in suspension cells, such as PER.C6, at low cost.19 The rAd
vaccine may retain activity for at least 1 y in lyophilized or liquid
form,20 and new thermostabilization techniques enable the com-
plete recovery of rAd titer and immunogenicity after storage at
up to 45�C for 6 months and longer, with minimal losses.21 rAd
vectored vaccines do not require classical adjuvants, which may
result in unpredictable side effects,22 because the Ad hexon pro-
tein is a potent adjuvant for the activation of innate immunity.23

rAd can infect a variety of cells and tissues; therefore, rAd can be
administered via nasal, aerosol and intramuscular
vaccination.24,25

Ad5 has been widely studied, and we now have extensive
knowledge of the structure of the virion, the mechanism of the
virus-cell interaction, and the replication, transcription, expres-
sion and assembly of the virus.17 Ad5 is primarily used for gene/
vaccine delivery vectors,26 and currently, rAd5 vectors are in at
least the third generation of development. Progenitor vectors
with the E1 gene deleted can be packaged and cultured in the
human embryonic kidney 293 (HEK293) packaging cell line,
which provides the E1 gene product in trans.27 Replication-defi-
cient adenovirus can regain the deleted E1 gene and become rep-
lication-competent adenovirus (RCA) as a result of
recombination.28 The appearance of RCA in an Ad vector popu-
lation raised the possibility of undesired Ad infection. Further-
more, RCA also induces the host immune response, which may
result in inflammation and tissue damage.29 An RCA-free Ad
vector can be constructed using the PER.C6 cell line,30 which
has permitted the production of adenovirus for clinical trials
using good manufacturing practices.30,31

Furthermore, the second-generation rAd vector had the E2
and/or E4 as well as E1/E3 genes deleted from the vector back-
bone to reduce toxicity and increase the packaging size of the rAd
vector.32,33 The third-generation rAd vector has nearly all capsid-
coding sequences deleted, except for the essential cis-acting ele-
ments, including the c and ITRs. A helper virus provides the
viral functions that are required for replication of the vector
DNA, produces viral structural proteins and packages the vector
DNA into virions. Therefore, third-generation rAd vectors are
also called helper-dependent adenoviral (HDAd) vectors.34 The
second- and third-generation rAd vectors avoid pre-existing anti-
vector immunity and induce robust immune responses against
the encoded transgenes.35 While major anti-Ad adaptive immune

responses focus on the capsid proteins, antigen-presenting cells
(APCs) infected by the Ad5 vector deleted for E1 and E2b may
be less susceptible to attenuation by pre-existing anti-Ad immu-
nity because deletion of E2b prevents expression of late gene
products, including highly immunogenic proteins such as hexon.
Thus, the infected DC are not cleared as rapidly by NK cells,
allowing more time for immune responses to the antigen (Ag) to
develop.35 However, the problems of manufacturing and purifi-
cation remain unsolved.

Ad5 is the leading subtype of human adenovirus. Because of
natural exposure to wild type Ad5, antibodies against Ad5 pre-
exist in the majority of human populations,36,37 which may
severely reduce the immune response to injected Ad5-vectored
vaccines.38,39 Many researchers have attempted to resolve this
potential problem by developing rare-serotype rAd vectors
(Ad11, Ad26, Ad35, Ad48, Ad49 and Ad50),40-44 nonhuman
rAd vectors (chimpanzee Ads,45,46 bovine Ad3,47 canine Ad2,48

porcine Ad349), and molecularly engineered Ad5 vectors.50,51

However, studies have shown that novel rAd vectors derived
from rare serotypes and nonhuman rAd vectors are less potent
than rAd5 vectors.43,52,53 Furthermore, pre-existing Ad5-specific
T cells are cross-reactive with Ad vectors derived from rare sero-
types.54 Hutnick et al. found that Ad-specific CD4C and CD8C

T cell responses against chimpanzee-derived AdC6 and AdC7
were found in all 17 human subjects, indicating the commonality
of cross-serotype reactivity of Ad-specific T cells.55 This cross-
reactivity is due in part to epitopes recognized by Ad-specific T
cells conserved across many adenovirus serotypes.54,56,57 The
prevalence and cross reactivity of Ad-specific T-cells in humans
may interfere with transgene product-specific immune responses
by eliminating vector-infected cells even when rare serotype Ad
vectors are employed.55

Because of these obstacles, researchers have designed molecu-
larly engineered Ad vectors to induce lower immune responses
than wild type Ad.58,59 These approaches include PEGylation
of vectors, using fibers from other serotypes, modification of
fibers, and using hexon proteins modified by ‘Antigen Capsid-
Incorporation’.59 Because fiber proteins modified with polyly-
sine residues target heparin sulfates on the cellular surface, an
Ad in which the fiber protein is modified to contain 7 lysine
residues, AdK7, shows reduced spleen distribution, which in
turn decreases the production of inflammatory cytokines, com-
pared with conventional Ad.60 Because fiber binding to Cox-
sackie-Adenovirus Receptor (CAR) plays a major role in
inducing the production of cytokine in non-immune cells,61

another strategy for reducing innate immune responses is the
substitution of Ad5 fiber with the fiber protein of other types of
Ad vectors that do not bind to CAR, such as Ad7, Ad35 and
Ad4.62,63 Ad vector modified with monomethoxypoly-ethylene
glycol (MPEG) is another approach to avoid the innate immune
responses. PEGylation reduces vector uptake in spleen, resulting
in the decrease of cytokine production.64 ‘Antigen Capsid-
Incorporation’ is another novel strategy to circumvent preexist-
ing immunity. This strategy consists of incorporating antigenic
peptides within the Ad capsid protein, and offers potential
advantages: a strong humoral response against the given Ag
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similar to the response generated by native Ad capsid proteins,
allowing boosting of the immune response against antigenic
epitopes that are part of the Ad capsid50,51 Antigen capsid-
incorporation display platforms based on Ad565,66 and Ad367

have been used for a variety of vaccines against infectious dis-
eases, including virus infection66,67 and parasite infection65.
The results show that this novel Ag capsid-incorporation
approach may provide exciting opportunities to circumvent the
major limitations associated with Ad vectors. Although some
progress has occurred for molecularly engineered rAd, it is diffi-
cult to construct and manufacture these new vectors on a large
scale. Furthermore, the safety of these new vectors remains
unclear.68

Administration Route of Adenovirus-Vectored
Vaccine

rAd can infect a variety of cells and tissues and can be
administered via many delivery routes, such as nasal and aerosol
vaccination.24,69-72 The route and dose of rAd administration
impact the phenotype and quality of the transgene-specific
immune response.73-76 The traditional intramuscular route
induces robust humoral and cellular immune responses;77 how-
ever, pre-existing Ad5 immunity can weaken the immune
responses of rAd vectors.78 Mucosal immunity may overcome
pre-existing immunity against the rAd5 vector. Growing evi-
dence shows that nasal vaccination can effectively avoid pre-
existing Ad5 antibodies in mouse, rabbit and primate animal
models, induce a potent antibody (Ab) effect against the
encoded antigens and protect the vaccinated animal from patho-
gen challenge.9,79-81

Clinical research indicates that nasal vaccines are more potent
than epicutaneous administration under adjuvant-free condi-
tions. Nasal Ad5 vaccines induce strong immune responses, even
when antibodies against Ad5 exist.70 Recent research has focused
on mucosal immunity, including mucosal immunity in response
to nasal and aerosol vaccinations, because there are many advan-
tages to mucosal immunity. Mucosal administration is a pain-
free and needle-free systemic delivery that can be performed by
non-medical personnel82. Therefore, this type of vaccine may be
suitable for mass vaccination programs during a crisis because
nasal and aerosol administration is simple and economical and
these vaccines are well tolerated.

Pre-existing S-IgA, IgG and CD8C T cells are the keys to
broad-spectrum cross-protection.83 Increasing evidence has
shown that nasal vaccination with the rAd-vectored influenza
vaccine induces robust antigen-specific IgAs and IgGs during
respiratory illness. Compared to other administrations, mucosal
rAd induced stronger IgA responses and more virus-specific acti-
vated T cells in the lung.84-86 Because mucosal vaccination can
mimic natural infection, it is superior to parenteral administra-
tion for inducing cross-protection. Furthermore, mucosal vacci-
nation can induce a cross-reactive IgA and IgG response,
resulting in cross-protection against different subtypes of influ-
enza viruses.87-89

Mucosal vaccination shows good safety. Nasal-vaccinated rAd
seeds into the olfactorius bulbus and central nervous system
(CNS),90-92 and no cytopathic effect (CPE) has been observed in
the CNS due to this approach.90 Nasal administration of an Ad-
vectored vaccine encoding influenza HA has also been shown to
be safe and well tolerated in human volunteers.70

Intranasal spray is an efficacious delivery route for the rAd vec-
tor. However, many of the large droplets do not reach the target
nasal airway tissues. Aerosol delivery may provide a strategy to
improve vaccine efficacy93 because a fine aerosol regimen of rAd
vector induced remarkably high and stable lung T-cell responses
and humoral responses of both IgA and IgG isotypes in nonhu-
man primates.72 rAd5 encoding influenza HA protected ferrets
against challenge with a lethal dose of H5N1 avian influenza via
4-mm aerosol immunization.72 To achieve better mucosal immu-
nity induced by an aerosol rAd vector, Roy et al. characterized
the dynamics of aerosolization and its effects on immune
responses, including particle size, vector viability, and the actual
delivered dose of the aerosolized adenoviral vector. Because of
the clogging effect, a nebulizer can produce smaller aerosolized
particles at high rAd concentrations. The particle diameter has an
effect on the immune responses of rAd because the smaller par-
ticles can reach deep into the respiratory tract and induce robust
biological responses.94

Mucosal vaccination with rAd5 rapidly induces an anti-influ-
enza state, similar to a prophylactic drug, followed by the elici-
tation of sustained protective immunity, similar to a vaccine.
Therefore, rAd5 confers seamless protection against mucosal
pathogens when administered as a drug-vaccine duo (DVD) in
a single package by mucosal vaccination.95 rAd vectors have
been shown to activate innate immune responses and induce
the production of inflammatory cytokines and chemokines in
mouse models.96 Many factors have been shown to be involved
in this process, including type I interferon (IFN-a and b),97

lung dendritic cells (DCs),98 natural killer cells99 and antiviral
nitric oxide.100 The effects induced by DE1E3 Ad5 result in a
multi-dimensional defense barrier against infection by IFV, and
these protective effects persist for at least 3 weeks and up to 47
d when administered in a single-dose regimen.95 Therefore,
rAd, as a prophylactic drug, may provide protection against
IFV infection prior to inducing specific immunity by a rAd
encoding IFV Ag. M2 ion channel blockers and neuraminidase
inhibitors may contribute mutational pressure for further selec-
tion of resistant isolates of IFV.101 Conversely, Ad5-DVD
induces an anti-influenza effect by changing the biological state
of the respiratory tract and activating a specific innate immunity
to prevent IFV growth without directly attacking the IFV95.
Therefore, it is conceivable that Ad5-DVD may confers no
mutational pressure that could induce drug resistance. More-
over, administration of the neuraminidase inhibitor, oseltamivir
(OSV), suppresses respiratory mucosal secretory IgA responses
and increases the risk of re-infection, whereas mucosal vaccina-
tion with rAd5 enhances mucosal innate immunity against
IFV.102 Unlike LAIV, Ad5-DVD cooperates with contempo-
rary influenza drugs because of its lack of antiviral drug
targets.30,95
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Influenza-Specific, Broadly Neutralizing Antibodies

HA is currently a major target of influenza vaccine research.
The HA protein is a trimer of approximately 13.5 nm (135 A

�
)

and is found on the surface of the virus. The trimeric HA ectodo-
mains consist of the HA1 and HA2 domains, which are assem-
bled into a head domain and a stem domain.103 HA head
domains are the major protective antibody-binding site (Fig. 1),
and neutralizing antibodies can induce a serum hemagglutination
inhibition (HI) effect.104 The HA head domain evolves with a
high mutation rate to avoid initial antibody suppression;103

therefore, the classical influenza vaccine must be continuously
updated to defend against the challenge of new mutational viral
strains.

Influenza virus A viruses are divided into 17 subtypes based
on HA and are further segregated into 2 phylogenetic groups
(Fig. 2).4 In 1993, the Japanese researcher Y. Okuno first found

a monoclonal antibody, designated
C179, that neutralized all H1 and
H2 strains of influenza A virus.120

Further research showed that C179
also neutralized the H5 strain.121 The
monoclonal antibody C179 not only
protected a mouse model from chal-
lenge with H1 and H2 influenza virus
infection but also treated H1, H2 and
H5-induced bronchopneumonia in
the mouse model.105,106 Then, new
antibodies, CR6261 and F10, were
found to neutralize additional influ-
enza viruses in group 1, including
H1, H2, H5, H6, H8 and H9.
107-109 In 2010, Wang et al. identi-
fied the monoclonal antibody 12D1,
which neutralized H3 virus in group
2 strains and protected from chal-
lenge by the H3 subtype strain.110

However, researchers did not identify
an antibody that neutralized all group
1 and group 2 viral strains until
FI6v3 was found in 2011.111 Further-
more, CR9114 neutralizes both influ-
enza A and B viruses and protects
against lethal challenge with H1N1,
H3N2 and influenza B viruses112

(Table 1).
In contrast to the most abundant

influenza antibodies that interfere
with receptor binding by binding to
the head of HA, the above-mentioned,
broadly neutralizing antibodies recog-
nize a highly conserved and hydropho-
bic helical region in the membrane-
proximal stem of HA, the ‘fusion
peptide’,108 which plays a decisive role
in the membrane fusion process.

When HA undergoes a conformational change at low pH (5»6)
in the endosome, the fusion peptide is exposed and inserted into
the endosomal membrane, causing the endosome and virus to
fuse, followed by the release of viral RNA and successful infec-
tion.113 Universal monoclonal antibodies (mAbs) block infection
by inserting their heavy chains into the conserved fusion peptide
in the stem region, thereby preventing membrane fusion109

(Fig. 1).
Both x-ray crystallography and electron microscopy models

suggest that universal monoclonal antibodies bind to the stem
region of HA trimers and block the pH-induced conformational
changes in HA.112 HA is active as a trimer on the viral surface,
and the trimeric stem domain is the key to the induction of uni-
versal neutralizing antibodies; therefore, mutational escape is not
possible due to the critical function and conserved helical struc-
ture of the stem. However, it is difficult to simulate the trimeric
HA stem domain.

Figure 1. Schematic diagram of influenza virus infection and the adaptive immune responses involved
in host defense. (1) Classical HI antibodies prevent receptor-mediated endocytosis of the virus by bind-
ing to the HA head domains, which are typically variable. (2) Broadly neutralizing antibodies prevent
membrane fusion by binding to the highly conserved HA stem. (3) Broadly neutralizing antibodies spe-
cific for HA stem and viral internal proteins mediate ADCC of infected cells, which is dependent on bind-
ing to FcR. (4) The influenza A virus internal proteins, M1 and NA, induce cytotoxic T lymphocyte-specific
responses, which are dependent on MHC-I molecules.
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Several research groups have been developing a broadly pro-
tective influenza vaccine based on the stem domain.114–116 How-
ever, none of the vaccines have produced a properly folded stem
trimer. Wei et al. constructed a rAd vector encoding a stem
mutant trimer that was recognized by the mAb C179.69 Lin et al.
used baculovirus-insect cell expression to obtain trimeric HA
proteins that resulted in high levels of neutralizing antibodies
when coupled with a PELC/CpG adjuvant.114 Lin et al. also con-
structed a glycan-masked HA mutant that overlapped with
broadly neutralizing epitopes of the mAb CR6261. The trimeric
HA mutant induced HA-inhibition and virus-neutralizing anti-
bodies.115 Because the head covers conserved Ag epitopes on the
stem region, the neutralizing antibodies that were induced by the
complete trimeric HA recognized the head of HA but only
blocked a few subtypes in the same group of influenza A
viruses.103

In addition to recognizing conformational epitopes, the
monoclonal antibody 12D1 also binds to a linear epitope pres-
ent between amino acids 76–106 in the stem of HA.110 Hu

et al. found three neutralizing mAbs (1F2,1F4, and 1E1) that
could neutralize different influenza virus strains between group
1 and group 2, including subtypes of H1(H1N1), H3 (H3N2),
H5 (PR8-H5), H7 (PR8-H7), and H9 (H9N2). The three
mAbs could specifically recognize a conserved linear epitope
that is part of the fusion peptide on HA2.117 Nevertheless, a
number of linear and conformational neutralizing epitopes
within the HA stem shows that this region is complicated.
Therefore, further research is needed to understand the wide
diversity of interaction between neutralizing antibodies and the
HA stem region.

Universal Antibody-Dependent, Cell-Mediated
Cytotoxicity

Typically, stem-specific Abs prevent membrane fusion
between the endosome and virion membranes but do not induce
a HI effect via the receptor-binding site, as do classical head-spe-
cific Abs. Further research revealed that only anti-stem mAbs
were capable of mediating antibody-dependent cell-mediated
cytotoxicity (ADCC) of infected cells, which is dependent on the
binding of Fc receptors (FcRs) to IgG116 (Fig. 1).

Influenza A virus internal antigens are also involved in potent
ADCC effects. Cells infected with influenza virus express nucleo-
protein (NP) on their surface,118 and a natural anti-NP antibody
was detected in human serum119 that specifically promoted heter-
osubtype influenza virus clearance in mice via ADCC involving
FcRs.120 The high conservation of NP Ag and the ADCC effect
may provide a critically necessary component of a universal influ-
enza vaccine. Jegerlehner et al. found that mice immunized with
M2 coupled to hepatitis B core (M2-HBc) produce M2-specific
protective Abs that failed to neutralize the virus in vitro. NK cells
are important for protection induced by M2-HBc. They also
found that the dominant M2-specific Ab isotype after infection
of vaccinated mice is IgG2b, followed by IgG2a.121 These 2 iso-
types have been shown to be the most important mediators of
ADCC in mice.122 The M2-specific mAb Z3G1 recognizes a
broad spectrum of M2 variants from natural viral isolates. Passive
immunotherapy with Z3G1 significantly protected mice from
influenza A infection via ADCC.123,124 These results indicate
that M2 may also induce protection through an ADCC-depen-
dent mechanism.

Figure 2. HA Subtypes.

Table 1. Broadly neutralizing antibodies against influenza A virus

MAb Group Subtype Challenge Model Reference

C179 1 H1, H2, H5 H1N1/H5N2 Mice 105,106

CR6261 1 H1, H2, H5, H6, H8, H9 H1N1/H5N1 Mice 107,108

F10 1 H1, H2, H5, H6, H11, H13, H16, H9 H1N1/H5N1 Mice 109

12D1 2 H3 H3N2 Mice 110

CR8020 2 H3, H7, H10 H3N2/H7N7 Mice 190

FI6v3 1 and 2 All H1N1 Mice, ferret 111

CR911* 1 and 2 All H1N1/H3N2 Mice 112

*Also neutralizes influenza B virus and protects a model from challenge with lethal influenza B virus.
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Influenza Virus-Specific T-Cell-Mediated Immunity

To effectively prevent influenza virus infection, an ideal
influenza vaccine should induce a cell-mediated immune
response to limit disease severity when mucosal and humoral
immunities are inadequate or are circumvented by a reassortant
virus. In cell-mediated immunity, the T-cell response effectively
clears the virus and promotes the recovery from influenza virus
infection.125 Mice lacking CD8C T cells have significantly
delayed pulmonary viral clearance and a significantly higher
mortality rate than control mice.126 However, mice devoid of
Abs and mature B cells can survive primary influenza infection.
These mice cleared virus from the lungs in a process dependent
upon CD8C T cells, and these Ab knockout mice can produce
antigen-specific immune protection against challenge infec-
tion.127,128 Adoptive transfer of cytotoxic T lymphocytes
(CTLs) to mice challenged with a lethal dose of influenza virus
has been shown to cause a significant reduction of the infectious
virus levels in the lungs and prevented death.129 Further studies
found that the adoptive cross-reactive CTL clone A7 protects
mice from a simultaneously lethal challenge with H1N1 and
H2N2 subtypes and promotes complete recovery.130 In a non-
human primate model of influenza, IFN-gC CD8C T cells
mediated the early clearance of an antigenically novel influenza
virus.131 Furthermore, memory CTLs (mCTLs) reduced the
titers of heterologous type A viruses 2–3 d earlier than in na€ıve
controls.132 The frequencies of pre-existing T cells specific for
conserved CD8 epitopes have a strong inverse correlation with
illness severity and the total symptom score of influenza,133

demonstrating that cross-reactive T cell responses play an
important role in the early clearance of newly emerging pan-
demic influenza viruses.

Activation of T cells is initiated by major histocompatibility
complex class I (MHC-I)-displaying viral epitopes from within
the infected cell to T cells. In humans, MHC is also called
human leukocyte antigen (HLA). Polymorphic HLA molecules
occur at significantly different frequencies in different ethnicities;
therefore, a single CD8C T cell epitope derived from a conserved
influenza viral protein may be insufficient to induce strong cellu-
lar immunity in different populations.128,129

Although hundreds of HLA alleles are present in the human
population, a large fraction of HLA Class I molecules have over-
lapping repertoires of binding specificity. Therefore, HLA Class I
molecules can be grouped into 9 supertype families based on
overlapping peptide-binding repertories and consensus B- and
F-pocket structures.134–136 It is possible to account for the pre-
dominance of all known HLA class I molecules with only 9 main
functional binding specificities. Assarsson et al. identified 54
non-redundant conserved epitopes (38 class I and 16 class II)
that bind to the common HLA alleles and belong to the corre-
sponding 6 class I (A1, A2, A3, A24, B7, B44) and 1 class II
(DR) supertypes that provide high coverage among different eth-
nicities. The theoretical population coverage for the class I and
class II epitopes was high throughout the major different popula-
tions, with an average of 98.5%. On average, each individual was
calculated to bind 6.5 epitopes.137

Influenza virus epitope information can be accessed from the
Immune Epitope Database and Analysis Resource (IEDB, http://
www.immuneepitope.org/). The IEDB contains data related to
both B cell and T cell epitopes from infectious pathogens.138

Available online since January 2005, the IEDB data are derived
from over 4000 literature references and imported from previ-
ously developed databases.139 The IEDB provides various online
tools that cover a broad range of research areas relating to epitope
discovery and analysis to assist in vaccine discovery and develop-
ment.138 Particularly, tools to visualize data are hosted, such as
tools for viewing 3D structural data that provides antibody and
Ag interaction information.140 Researchers can easily access rele-
vant epitope information from the IEDB to assist in the develop-
ment of prophylactic or therapeutic approaches against infectious
diseases.

The published data for influenza-derived epitopes indicate
that the major highly conserved epitopes broad binding to class I
HLA supertype molecules are located within NP, M1 and
PB1137,141-143 (Fig. 1). These influenza T cell epitope data were
obtained using mice and other mammalian models; however, it
is difficult to provide proof-of-concept support for the protective
capacity of T cells against influenza illness in humans.144 Sridhar
et al. followed 342 healthy adults through the pandemic waves of
influenza and correlated the responses of pre-existing T cells with
clinical outcomes. They found that individuals who developed
less severe illness had higher frequencies of pre-existing T cells
specific for the conserved CD8C epitopes. The total symptom
score had the strongest inverse correlation with the frequency of
IFN-gCIL-2¡CD8CT cells. In the absence of cross-reactive neu-
tralizing antibodies, CD8CT cells specific to conserved viral epit-
opes play a key role in the reduction of influenza symptoms and
cross-protection against influenza. This protective immune
response correlation may guide universal influenza vaccine
development.133

Cooperation Between CD8CT-Cell- and Virus-
Specific Non-Neutralizing Antibodies

Laidlaw et al. found that virus-specific CD8C T cells or virus-
specific non-neutralizing antibodies are relatively ineffective at
conferring heterosubtypic protective immunity alone. However,
both cooperatively elicit robust cross-protective immunity against
H1N1 and H3N2,145 and this synergistic effect is dependent on
alveolar macrophages. Therefore, the basis for a potential
‘universal’ vaccine is the capacity to elicit both CD8C T cells and
antibodies specific for highly conserved influenza proteins. Ad is
a respiratory virus and is therefore an ideal vector to activate alve-
olar macrophages.

rAd-Vectored Universal Influenza Vaccine

Many studies have evaluated the protective effect of Ad-vec-
tored influenza vaccine against various subtypes,146–148 and some
have completed phase I clinical trials.148 The HA protein plays
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critical roles in the early stages of virus infection by binding to
viral receptors and mediating membranes fusion between viruses
and cells.149 Therefore, the HA protein is an attractive target of
influenza vaccine research. The Ad-vector-based, full-length
H5N1 HA (A/Vietnam/1203/04) has been shown to induce
homologous and heterotypic (A/Hong Kong/156/197) HI
responses146. Furthermore, another study assessed the protective
efficacy of rAd-HA against challenge with variant H5N1 strains.
Immunization of mice with rAd-HA/H5N1/Hong Kong/156/97
provided effective protection from heterologous H5N1 (A/Hong
Kong/483/97, A/Vietnam/1203/04, and A/Hong Kong/156/
197) disease, death, and primary viral replication, even without a
strong humoral neutralizing response against A/Vietnam/1203/
04 virus.147 Two studies of Ad-vectored HA (H3N2) vaccines
have revealed that cross-protection from heterotypic challenge
can also occur in the absence of neutralizing humoral immunity
in swine and mice.70,150 H1N1 HA has a similar protection effi-
cacy. Vaccination with plasmid DNA encoding H1N1 HA and
boosting with a rAd vector encoding HA stimulated broadly neu-
tralizing antibodies that recognized diverse H1N1 strains dating
from 1934 to 2007 and conferred protection against divergent
H1N1 viruses in mice and ferrets.69 These studies indicate that
cellular immunity likely plays a major role in heterotypic immu-
nity. In addition, CD4C and CD8C T cell-mediated immunity
may play important roles in protecting against this virus and pro-
moting recovery after influenza infection.151 However these stud-
ies also show that the HA protein provides limited heterotypic
protection for the same subtype and is unable to induce cross-
subtype and cross-group protection. The HA2 subunit, which
comprises most of the HA stem region, shows high sequence con-
servation among the different HA subtypes. Therefore, the HA2
region would be a very attractive target to induce broader neutral-
izing Abs then full-length HA.108,152-154 Results of recent studies
that reevaluated the HA stalk subunit are likely to contribute to
the development of more effective rAd vectors encoding HA
stems. In one study, Ad-vectored HA2 failed to prevent homolo-
gous virus infection but partially enhanced viral clearance and
recovery from influenza infection.146 Recent research has shown
that glycan-masked H5HA elicits stem-specific antibodies that
overlap with broadly neutralizing epitopes of the CR6261 mAb,
which neutralizes most group 1 subtypes.115 In another study, a
conserved HA stalk domain (H1N1) expressed in transiently
transfected cells induced stem-specific antibodies that were cross-
reactive among group 1 HA subtypes (H2N2 and H5N1).152

Further studies assessed the protective efficacy of HA stem with
different heads. The chimeric HA antigens induced high titers of
stalk-reactive Abs in mice and ferrets,155,156 and such humoral
immunity broadly protected from lethal challenge by divergent
group 1 and group 2 viruses, including H5N1 and H7N9
viruses156-158. However, it is important to note that, to date, no
cross-group protection has been observed from vaccination with
only HA or the HA stem.155

These previous reports suggest that the conserved HA stem
may provide much weaker protective Ag compared with the
whole HA protein and may induce only mild immunity and pro-
tection. This mild immunity may be partly caused by the lack of

CAR on DCs, which result in resistance of DCs to Ad infec-
tion.159 Moreover, Ag presentation by transduced non-profes-
sional APCs may lead to suboptimal T cell activation or even
tolerance induction.160 An alternative method to strengthen the
immunity efficacy of Ag is by retargeting Ag or rAd vector to
CD40 on APCs such as DCs.161-163 CD40 and its ligand
(CD40L) not only play a crucial role in the expansion and sur-
vival of T cells and B cells to initiate and sustain immune
responses but also promote DC maturation into fully competent
APCs.164,165 Fan et al. generated a recombinant rAd encoding a
secreted and codon-optimized HA2 fusion with murine CD40L.
Mice immunized with this recombinant viral vaccine were
completely protected against lethal challenge with cross-group
influenza A virus subtypes, including H1N1, H3N2, and
H9N2.166 The results also show that codon-optimization of
HA2 as well as the use of CD40L as a targeting ligand/molecular
adjuvant were indispensable for enhancing HA2-specific mucosal
IgA and serum IgG levels.

In addition to the HA stem, conserved internal viral proteins,
such as NP and matrix protein 1/2 (M1/2), induce cross-immu-
nity between different subtypes in the same group. Epstein et al.
predicted DNA prime-rAd boost vaccination to conserved NP
and M2 in ferrets and mice, and this vaccine strategy protected
against virulent H1N1 and H5N1 challenges.86,167 However,
antibodies induced by conserved internal viral epitopes failed to
replace HA stem-specific neutralizing Abs that play a key role in
the prevention of infection and merely reduced the disease symp-
toms.121 NP has also been shown to provide limited protection
against high challenge doses of H5N1 in ferrets.168 To enhance
the immune-inducing efficacy of NP, Hashem et al. constructed
rAd vectors encoding a secreted NP-CD40L fusion protein
(SNP40L). SNP40L expressed in rAd-infected cells could be
secreted and target CD40 on APCs. CD40L, as an adjuvant and
targeting molecule, can enhance the breadth, potency, and dura-
bility of NP-specific immune responses involving both CD8C T
cells and anti-NP Abs and provide complete cross-group protec-
tion against H1N1 and H3N2 strains in mice.169 Therefore,
secreted Ag fusion with CD40L may be a potential platform to
improve the immunogenicity and protective efficacy of other HA
stem and conserved internal viral proteins. The present vaccine
development strategies include expressing HA Ag combined with
other conserved internal viral proteins, such as NP and M1/2, to
induce highly effective and lasting CD8C T cell responses and
ADCC effects.

An adenoviral vector-based vaccine that contains HA and
conserved NP (H5N1) elicited cell-mediated CD8C T cell
immune responses as well as neutralizing antibodies against
clade 1 and clade 2 strains within the same subtype viruses
(H5N1),170 and similar observations were recorded in another
study. An Ad-based HA vaccine protected mice from challenge
with different clade strains of the same subtype.171 Further-
more, lung virus titers were significantly reduced in mice that
were challenged with the cross-subtype strain after vaccination
with rAd-HA and rAd-NP.171 However, another study showed
that co-administration of Ad-based HA and NP did not confer
better protection than HA alone.172 Future research will assess
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the relative risks and benefits of different combinations of
vaccines.

Kim et al. reported that intranasal vaccination with rAd
encoding H5 and M2e induced significant HA- and M2e-specific
Ab responses and protected vaccinated mice against heterosub-
typic (H1N1) challenge. This cross-subtype protection is based
on stalk-specific Abs that prevent the release of viral genetic mate-
rial into the cells and on M2e-specific Abs that mediate the lysis
of virus-infected cells by ADCC.173

Holman et al. developed a multi-antigen Ad vector, cAdVax-
FluAv, containing the HA, NA and M1 genes. Mice vaccinated
with cAdVax-FluAv survived after challenge with lethal clade 1
and clade 2 H5N1 viruses.174 A single Ad vector encoding a
multi-subunit of the influenza virus has many advantages, such as
a reduction of the vaccine dose, avoidance of the complexity of
production, and induction of an optimized immune response.

Codon optimization was used to elicit immune responses to
viral antigens by improving the expression of the protein in host
cells.175 Steitz et al. demonstrated that a single-dose of codon-
optimized, Ad-based H1N1 vaccine encoding HA Ag induced
more robust cellular and humoral responses than wild type HA
Ag in mice.176 Codon-optimization of HA2 also seems to induce
significantly higher levels of local and systemic anti-HA2 Abs
than wild-type HA2 in mice.166

In addition to adenovirus type 5, Ad type 4 (Ad4) has been
evaluated as a candidate vector to circumvent pre-existing adeno-
viral immunity. A pre-clinical evaluation showed that rAd sero-
type 4 vaccine expressing HA was safe and induced HA-specific
humoral and cellular immunity.177 Currently, the Ad4-vectored
vaccine has been investigated in multiple phase I clinical trials,
including for H5N1 influenza, HIV infections, and anthrax
infection.178 Other nonhuman adenovirus vectors include chim-
panzee adenovirus AdC7,45 bovine adenovirus subtype 3,47

canine adenovirus type 2,55 and porcine adenovirus.56

Vaccine-Associated Immunity Escape

Current study results present a challenge to HA-specific uni-
versal antibodies. To et al. found that nonneutralizing Ab titers
were significantly higher for patients with severe disease than for
those with mild disease during the 2009 H1N1 influenza pan-
demic. Early IgG response within 2 to 4 d after symptom onset
indicated that the nonneutralizing antibody present in patients
was likely to be preexisting or was the result of a secondary het-
erotypic antibody response against conserved epitopes.179 This
study concluded that higher levels of nonneutralizing antibodies
in the early stage of infection may be associated with worse clini-
cal severity and poorer outcomes. Khurana et al. evaluated the
mismatched influenza vaccine-associated enhanced respiratory
disease (VAERD) after pandemic H1N1 (pH1N1) infection in a
swine model. Cross-reactive HA2-specific Abs induced by inacti-
vated H1N2 promoted H1N1 virus fusion and enhanced influ-
enza virus respiratory disease.180 Gauger et al. have also
confirmed that high levels of IgG serum Abs targeting the mis-
matched pH1N1 HA2 stalk domain were exclusively detected in

IIVV-vaccinated swine and associated with increased pH1N1
virus infectivity in MDCK cells. IIVV-vaccinated swine chal-
lenged with mismatched pH1N1 were not protected from infec-
tion and demonstrated severe respiratory disease consistent with
VAERD.181 Conversely, infection-enhancing HA2 Abs were
detected at minimal levels in the serum of intranasal LAIV vacci-
nates, and VAERD was not observed, though both IIVV and
LAIV vaccinates induced low and similar mean levels of Abs
against mismatched pH1N1 HA1.181 Therefore, when chal-
lenged with mismatched virus, pigs lacking protective Abs in the
presence of high titer anti-HA2 Abs may have an increased risk
of VAERD. Although the mechanism of the differences in the
type of Abs elicited by WIV and intranasal LAIV is still
unknown, the results of this study suggest that the immune bal-
ance among globular-specific protective Abs, stalk-targeting Abs
and local IgA may play an important role in the infection out-
come. However, VAERD did not interfere with the adaptive
immune response following challenge with H1N1.178

There have been no reports of HA2-specific Abs related
VAERD in other animal models. However, Dougan et al. found
another mechanism of VAERD in a mouse model. Influenza
virus infects HA-specific B cells via its receptor, disrupting anti-
body secretion and causing HA-specific B cell death in mice.
Infection and killing of antigen-specific B cells impair the kinetics
of the memory response that is established by infection or vacci-
nation.182 Therefore, it is necessary to further investigate the pos-
sibility of establishing a balanced immune response induced by a
combined vaccine.

Furthermore, a vaccine based on conserved internal viral pro-
teins induces T cell immunity, which may lead to selective
immune pressure on the influenza virus, similar to Ab-mediated
antigenic drift.183 Under this selective pressure, virus escape
mutants arise at the residues that anchor the epitope peptide to
MHC.184 Gras et al. demonstrated that influenza virus escapes
CD8C T-cell immunity through mutations at highly conserved
NP418-426peptides.

185 Therefore, this type of theoretical vaccine-
associated T-cell immune escape must be further estimated.

Prospect of a Universal Influenza Vaccine

There is no doubt that great progress has been made in the
development of a rAd-vectored influenza vaccine. However, it is
too early for the use of a rAd-vectored vaccine as an alternative to
the classical IIVV and LAIV because many problems are still
unresolved. There are many difficulties in the development of a
universal vaccine that induces a cross-reactive CD8C T-cell
immune response, including time-related attrition of immune
competence,125,186 the protective capacity in different HLA pop-
ulations, and vaccine-associated immune escape and immunopa-
thology. Early studies have shown that cytotoxic T-cell memory
has a half-life of approximately 2–3 y.125 Therefore, a booster
immunization is needed every 2–3 y to maintain an adequate
level of memory T-cells. Furthermore, the future design of a uni-
versal vaccine should consider major HLA allele populations, as
well as rare-allele ethnicities.
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The ideal influenza vaccine should induce universal and effi-
cient cross-reactive antibodies to conserved antigens, such as the
HA stem, and this strategy has been assessed in mouse and ferret
models. Furthermore, the ideal influenza vaccine should also
induce a strong T-cell immune response and maintain long
memory potential. Significant progress has been made to identify
a universal antibody and produce cross-reactive T-cell immunity,
but generating an effective universal vaccine remains difficult.

Moreover, cross immunity-associated immune evasion and its
effect on virus evolution must be further assessed. Another major
problem is that the relationship between the vaccine dosage and
immune effect remains unclear.187 Serum HI antibody titers of
more than or equal to 1:40 reduce the risk of influenza infection
by at least a 50%.188 However, no such correlation of protection
exists for a rAd-vectored vaccine encoding the HA,174 HA1/
HA2,146 NP or M286 genes. ADCC activity is impaired in neu-
trophils from aged subjects;189 therefore, an ADCC-dependent
universal vaccine may be ineffective in the elderly.

Future directions for the universal influenza vaccine should
focus on multi-faceted based on cross-reactive antibodies, T-cell

immune responses and long memory potential. Standardized
virus strains and animal models are necessary to develop standard
methods for evaluating different candidate vaccines. Additional
studies will probe the relationship between the dosage of the vac-
cine and the immune effect. Overall, the development of a uni-
versal influenza vaccine based on the Ad vector is early in its
development, but the approach holds great potential in the fight
against influenza.
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