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Introduction

Each year, vaccination programs across the world prevent 
between 2 and 3 million needless deaths, protecting children 
against deadly diseases such as measles, polio, diphtheria, tetanus 
and pertussis with the ultimate aim to induce immune memory 
for life-time protection and in all individuals.1 Vaccine leaders 
from around the world discuss critical issues surrounding the 
development of effective—and affordable/acceptable—vaccines. 
Intramuscular (IM) or subcutaneous (SC) routes, widely used 
for vaccination, have proven to be successful in inducing sys-
temic humoral immunity toward several pathogens but gener-
ally failed to induce efficient and long-term cellular protection. 
Vaccine development faces difficulties to manipulate the appro-
priate arms of the immune system in predictable ways for vac-
cine efficacy. The nature and intensity of the acquired immune 
protection are variable depending of targeted pathogens and host 
responses. After a period of abandon that have followed the suc-
cessful era of vaccinia virus vaccination and eradication of small-
pox, the skin routes of vaccination have regained interest during 
the past two decades.

Our increased understanding of the high immune potential 
of skin resident and inflammatory cells, as well as the urgent 
need to improve the immunogenicity of vaccines against infec-
tious diseases (HIV, HCV, influenza…) and cancers motivates 
the development of innovative strategies targeting the cutane-
ous tissue. Numerous concepts for vaccine delivery to the skin 
layers have been developed in the past decade. However, some 
key mechanisms of vaccination remain to be elucidated in more 
details: (1) the nature and function of antigen-presenting cells 
(APCs) that can favor the initiation of immune response; (2) the 
molecular and cellular networks involved in skin immunization. 
These parameters are important to ensure optimal initiation of 
both innate and adaptive immunity. The challenge today is to 
understand how to manipulate skin APCs to increase vaccine 
efficacy. We propose here an overview of our recent knowledge 
on skin APC and inflammatory cells and their potential to mod-
ulate adaptive immunity for optimal development of vaccination 
strategies.

Characterization and Functions of Epidermal 
Antigen-Presenting Cells

Langerhans cells
The epidermis of mice and human is composed of strati-

fied layers of squamous and keratinized cells—keratinocytes—
that protect the integrity of the skin.2,3 As the epidermis is not 
vascularized, nutrient supply is dependent on the dermis. The 
solely professional APCs that populates the epidermis, namely 
Langerhans cells (LCs), represent 1–5% of all epidermal cells. 
LCs are located mainly at the suprabasal layer of the epidermis 
and form a network around keratinocytes.4 They can be identi-
fied by the constitutive expression of Langerin (CD207), and the 
presence of unique intracytoplasmic organelles known as Birbeck 
granules, which have a role in antigen uptake.5 CD207 is a type 
II C-type lectin receptor homogeneously expressed at the surface 
of human and murine LCs that, when triggered by its ligands, 
is internalized in Birbeck granules, a hallmark of maturation.6,7 
CD207 expression is not exclusive to LCs as other dermal DC 
populations have been found to express it, as described below. 
Human and mouse LCs also express E-cadherin, a molecule 
that mediate adhesion to keratinocytes,8 epithelial cell adhesion 
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Skin vaccination aims at targeting epidermal and dermal 
antigen-presenting cells (APCs), indeed many subsets of differ-
ent origin endowed with various functions populate the skin. 
The idea that the skin could represent a particularly potent site 
to induce adaptive and protective immune response emerged 
after the success of vaccinia virus vaccination by skin scarifi-
cation. Recent advances have shown that multiple subsets of 
APCs coexist in the skin and participate in immunity to infec-
tious diseases. Induction of an adaptive immune response 
depends on the initial recognition and capture of antigens by 
skin APCs and their transport to lymphoid organs. Innovative 
strategies of vaccination have thus been developed to target 
skin APCs for tailored immunity, hence this review will discuss 
recent insights into skin APC subsets characterization and how 
they can shape adaptive immune responses.
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molecule (EpCAM), CD205 (DC-SIGN), and class-II major 
histocompatibility complex (MHCII) molecules (Table 1). In 
addition, human, but not mouse, LCs also express high levels of 
the CD1a molecule which is able to present non-peptidic antigens 
to T cells.9

LCs key features include radioresistance, longevity and immu-
nosurveillance of the skin.10 In sharp contrast with other DC 
subsets, LC repopulation did not depend on transplanted bone-
marrow cells after lethal irradiation of mice but rather on skin 
local precursors.11 Similarly, LCs from parabiotic mice, which 
share a common blood circulation, failed to mix, thus supporting 
the idea that they maintain themselves independently of circu-
lating precursors during steady-state.11 Conversely, it was shown 
that in inflammatory conditions, another type of LCs, named 
short-term LCs, arise from Gr-1hi monocytes soon after UV light-
induced depletion.12,13 This subset is progressively replaced by 
long-term LCs that arise from bone marrow precursors in steady-
state. A study by Nagao et al. further described this mechanism 
and revealed that hair follicles act as entry portals for monocyte-
derivated LCs in a C-motif chemokine receptor (CCR) 2 and 
CCR6-dependent manner.14

Consistent with their role in skin immunosurveillance, LCs 
appear to be very motile even at steady-state. Indeed Kissenpfennig 
et al. demonstrated that 2 to 3% of LCs circulate naturally from 
the skin to the draining lymph nodes (DLNs), passing through 
the dermis where they can be identified as “en route” LCs.15 
This process involves constitutive expression of chemotractants 
such as C-motif chemokine ligand (CCL) 20 by lymphatic ves-
sel endothelial cells, hence providing constant source of antigen 
from the cutaneous environment for the induction of tolerance. 
Accordingly, migratory LCs have also been found in healthy 
human skin DLNs.16

The differential expression of PRRs between APC subsets 
probably account for the diversity of the immune responses they 
can induce.17 Following TLR engagement, reception of appropri-
ated signals, and capture of antigen, maturated, and differenti-
ated APCs migrate to the DLNs where they will promote clonal 
expansion of antigen-specific naïve T cells (Fig. 1). To do so, they 

exhibit unique physical properties that allow them to migrate 
through confined space such as lymphatics.18 Upon inflamma-
tion, resident LCs drastically change in morphology and motil-
ity and increase their expression of CCR7, which ligands CCL19 
and CCL21 are constitutively expressed by endothelial cells of 
the lymphatic vessels.19 This phenomenon, largely mediated by 
cytokines of the IL-1 family and TNF-α produced by kerati-
nocytes, has to overcome the autocrine effect of tumor growth 
factor (TGF)-β, which by upregulating E-cadherin and down-
regulating CCR7 promotes LC retention in the skin.20

The extensive use of Langerin-Diphteria Toxin Receptor 
(Lang-DTR) transgenic mice, which can be conditionally 
depleted of Langerin+ cells, has unravelled multiple functions of 
LCs in vivo.15 Consistent with their role of “gatekeeper” of the 
skin, LCs appear to have dual functions. First, and because the 
skin in continuously challenged with non-pathogenic microor-
ganisms such as commensals and auto-antigens, LCs have unique 
immunosuppressive and tolerogenic properties.21 D Kaplan’s 
group demonstrated that targeted depletion of LCs increased 
antigen-specific T cell counts in a mice model of contact 
hypersensitivity, showing that LCs act as regulator of immune 
responses.22,23 Accordingly, LCs have been shown to promote and 
activate antigen-specific T regulatory cells (Treg) in the course 
of Leishmania infection,24 allergy contact dermatitis,25 and after 
targeting with myelin oligodendrocyte glycoprotein (MOG).26 In 
humans, Seneschal et al. demonstrated that in absence of exoge-
nous antigen, LCs, but not dermal DCs, constitutively promoted 
local proliferation and activation of skin resident memory CD4+ 
Treg.27 However, after infection with C. albicans, the study also 
demonstrated that LCs were capable to induce effector memory 
non-regulatory T cells in situ.

The spatial localization of LCs within the skin makes them 
the first APCs to encounter environmental antigens, and as so, 
they must be able to induce potent and broad responses to foreign 
antigens. Indeed several studies suggest that LCs can efficiently 
prime naïve T cells and induce their helper or cytotoxic func-
tions. Igyarto et al. elegantly demonstrated that LCs are neces-
sary and sufficient to induce immunity to yeast (C. albicans) and 

Table 1. Mouse and human APC subsets and their associated markers in healthy skin

Mouse subsets Phenotype Human subsets Phenotype

Langerhans cell CD11bint, CD207+, CD205+, CD103-, CD172a+ Langerhans cell CD1ahi, CD1c+, EpCAM+

XCR1+ DDC CD11blow, XCR1+, CD207+, CD103+/−, CLEC9A+, CD172a- CD141+ DDC CD1a+/−, CD14+/−, CD1clow/int

CD11b+ DDC CD11b+, XCR1-, CD172a+ CD1a+ DDC CD1aint, CD1b+, CD1c+, CD14-, CD208+

CD11blow DDC CD11blow, XCR1-, CD172a+ - -

Monocyte-derived DC CD11b+, Ly6C+, CD64low/+, MERTK-/low CD14+ DDC CD1a-, CD14+, CD1c+, CD163+, DC-SIGN+

Dermal Macrophage CD64+, MERTK+ Dermal 
Macrophage

CD14+, CD1a−, CD1c-, FXIIIa+

Plasmacytoid DDC CD11b-, B220+, PDCA1+ Plasmacytoid DDC CD123+, CD303+, CD304+

Four conventional DC subsets have been described in mice, which can be identified by their level of expression of a group of markers. In addition, murine 
skin contains myeloid monocyte-derived DCs and dermal macrophages. Plasmacytoid DCs are almost absent in healthy skin. Human counterpart DCs are 
identified based on the expression of CD1a, CD1c, CD14, and CD141. High expression of the cellular marker is denoted by +, while intermediate, low, and lack 
of expression are denoted byint,low, respectively. DDC, dermal dendritic cell.
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extracellular bacteria (S. aureus) by promoting induction of Th17 
cells.28 Evidences also suggest that LCs can mediate Th2-like cel-
lular responses after epicutaneous sensitization with protein anti-
gens.29 Similarly, freshly isolated human LCs are endowed with 
the capacity to stimulate allogeneic CD4+ T cells toward a Th2 
profile in vitro.16

The ability of LCs to cross-prime foreign antigens and initi-
ate cytotoxic CD8+ T cells responses has long been controversial. 
Early studies either suggested that LCs were efficient in cross-
presentation30,31 or that they were not involved.32 However, these 
studies did not take into account the existence of the CD207+ 
CD103+ dermal subset, as is was not identified at the time. 
Later on, Henri et al. showed that CD207+ CD103+ were the 
solely skin DC subset able to cross-present self-antigens using 
a mouse model in which keratinocytes constitutively expressed 

membrane-bound ovalbumin.33 However, another study dem-
onstrated that LCs are involved in the acquisition of effector 
functions by CD8+ T cells that infiltrate the skin during TLR-
induced inflammation.34 Thus, rather than being responsible for 
cross-presentation of self-antigens during steady-state, LCs could 
be able to interact closely with CD8+ T cells during an inflamma-
tory response. Accordingly, Liard et al. showed that after intrader-
mal immunization of mice with a particulate antigen, LCs were 
the main subset responsible for the generation of IFN-γ-secreting 
CD8+ T cells in DLNs.35 Interestingly, after intradermal delivery 
of plasmid DNA, a second wave of LCs from epidermal precur-
sors—reminiscent of long-term LCs described in13—was present 
in DLNs two weeks after immunization and was essential for 
CD8+ T cell priming.36 Conversely, primary LCs residing in the 
epidermis at the time of vaccination could not prime CD8+ T 

Figure 1. Mouse skin APCs shape adaptive immune responses. APC populations of the epidermis and dermis have high propensity for modulation of 
adaptive immune responses. This figure summarizes published works describing interaction between skin APC and T cell in skin and draining lymph 
node at steady-state or during inflammatory responses. InfDC, inflammatory dendritic cell; LC, Langerhans cell; TH, T helper; TREG, regulatory T cell.
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cells. Of note, bone marrow-derived CD207+ dermal DCs also 
contributed to CD8+ T cell priming.36 These findings fits nicely 
with the view that steady-state, non-inflammatory LCs that are 
used to encounter skin antigens are tolerogenic and thus enable to 
efficiently prime naïve CD8+ T cells, whereas LCs that are newly 
generated upon inflammation and entry of foreign antigen could 
prime naïve CD4+ and CD8+ T cells. However, a recent study on 
skin scarification with Vaccinia Virus showed that LCs are not 
involved in CD8-mediated immune responses.37

The contribution of LCs to humoral immunity has not been 
much studied. For instance, LCs were shown to induce protective 
IgG1 in serum after patch immunization with S. aureus-derived 
toxin, which revealed LCs ability to project their dendrites 
through tight junctions and sample antigens that have not yet 
breached the epidermal barrier.38

In humans, most studies have focused on the ability of LCs 
to activate and induce differentiation of naïve T cells in vitro. 
Human LCs preferentially induce Th2,39,40 Th17,41 Th2242 and 
are able to cross-present antigens to CD8+ T cells.40,43

Overall, these findings suggest a high plasticity of LCs 
according to the context. That is, the combination of signals 
they receive from the environment during steady-state or when 
encountering the antigen, as well as the nature of the antigen 
itself and its location, would shape their functions toward immu-
nogenicity or tolerance.

Keratinocytes
Keratinocytes account for 80% of epidermal cells and although 

acting as structural cells, they exert key innate immune func-
tions. Keratinocytes express various pattern recognition receptors 
(PRRs) such as Nod-like receptors (NLRs) 1 and 2, Toll-like 
receptors (TLRs) 3, 4, 5, and 9, and C-type lectins that recognize 
pathogen-associated molecular patterns (PAMPs), which in turn 
trigger activation of pro-inflammatory pathways. Recognition 
of PAMPs by keratinocytes lead to production of various pro-
inflammatory signals such as CXC chemokine ligand (CXCL) 
8, 9, 10, 11, CCL2, CCL20, tumor necrosis factor α (TNF-α), 
interleukin (IL) 1, 6, 10, 18, and 33.44-46 Sugita et al. demon-
strated that in mice, those innate signals where able to improve 
Langerhans cell (LCs) presenting functions.47 Furthermore, the 
expression of MHC class II molecules on their surface make 
them non-professional APCs able to present antigen to CD4+ T 
cells and stimulate their proliferation in certain conditions such 
as skin disorders.48,49

Characterization and Functions of Dermal Antigen-
Presenting Cells

The dermis, which is mainly composed of fibroblasts, repre-
sents the skin connective tissue layer. As blood and lymphatic 
vessels are present throughout the dermis, it hosts multiple 
immune cell populations that vary dramatically from steady-
state to inflammatory conditions. In mice, four conventional 
dermal DC subsets can be distinguished based on surface expres-
sion markers (Table 1). Analysis of mice transgenic for CD207 
(Langerin-EGFP) revealed that in addition to “en route” LC that 

transit through the dermis, at least two other dermal DC subsets 
express CD207 and differ from LCs in origin and function.15,50-52 
These subsets express low amounts of CD11b and can be fur-
ther characterized by expression of the marker CD103 (Table 1). 
They develop from a blood-borne pre-DC progenitor and acquire 
their phenotype and functions through the action of granulo-
cyte/macrophage colony-stimulating factor (GM-CSF).10,53 It has 
been recently proposed that these populations should be referred 
to as a so-called XCR1+ DC subset, based on the unique expres-
sion of this marker.54

Other DC subsets include CD11b+ DCs, lacking CD207, 
CD103, and XCR1 expression and representing the majority 
of dermal DCs,33,55 as well as a minor population of CD11blow 
DCs.56 The CD11b+ population was long considered as an het-
erogeneous population that overlapped with other subpopula-
tions that had not been - or poorly - characterized, including 
conventional dermal DCs (cDCs), dermal macrophages, mono-
cytes, and monocyte-derived DCs (moDCs).33,57,58 The recent 
benchmarking study by Tamoutounour et al. further subdivided 
steady-state CD11b+ dermal cells into distinct subsets of cDCs, 
moDCs, macrophages, and monocytes, using c-mer proto-onco-
gene tyrosine kinase (MerTK), CD64, and CCR2 markers and 
gene expression comparison.59 In this study, blood Ly-6Chi mono-
cytes were found to constitute a pool that continuously gener-
ated skin resident monocytes as well as moDCs at steady-state, 
while cDCs developed on a Fms-like tyrosine kinase 3 ligand 
(Flt3L)-dependent and CCR2-independent manner.59 The ori-
gin of dermal macrophages appears less clear. While some resi-
dent dermal macrophages derive from monocytes, another pool 
seems to seed the dermis before birth from yolk-sac progenitors.60 
Whether these differential origins can be linked to differential 
functions has not yet been elucidated. At steady-state, resident 
macrophage function is primarily to survey the skin and react 
quickly after detection of foreign antigen. Upon inflammation, 
blood monocytes can further differentiate into specialized mac-
rophage subset such as pro-inflammatory “M1”, regulatory “M2” 
or wound-healing macrophages.61 Healthy human dermal DC 
subsets include “en route” LCs, CD14+ DCs, CD1a+ DCs, and 
CD141+ DCs, which resemble murine LCs, mo-DCs, CD11b+ 
DCs, and XCR1+ DCs respectively.62 Their associated markers 
can be found in Table 1. The overall complexity to segregate der-
mal APCs by surface markers in line with the development of 
systems biology approaches fostered the identification of tran-
scriptional signatures of cell subsets.63-65 The use of transcription 
factor-deficient mice unravelled developmental relationships and 
functions of certain subsets.66 However, the phenotyping of cells 
based on intracellular markers requires permeabilization, which 
unable cell sorting by flow cytometry for further uses.

Plasmacytoid DCs (pDCs) are absent from non-inflamed 
skin and essentially act as contributors of skin wound healing 
and TLR7-mediated skin inflammation.67 As members of the 
innate immune system, their functions will not be further dis-
cussed here.

During pathogen- or vaccine-driven inflammation, immune 
populations of the dermis vary dramatically, with rapid infil-
tration of inflammatory cells from blood capillaries under the 
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influence of pro-inflammatory cytokines and chemokines, while 
skin resident APCs sample foreign antigens and migrate to cuta-
neous DLNs where they prime naïve T cells (Fig. 1).68

Inflammatory DCs (infDCs) are a hallmark of inflamma-
tion induced cell recruitment. InfDCs arise from blood Ly-6Chi 
CCR2+ monocytes and are thought to differentiate under influ-
ence of Macrophage-Colony Stimulating Factor (M-CSF).69 
It is however not fully understood what are the cellular source 
for M-CSF neither if other factors contribute to InfDCs differ-
entiation. One feature that differentiates InfDCs from steady-
state moDCs is the fact that they can upregulated CCR7 and 
thus migrate to DLN and present antigens, thought in relatively 
smaller number than CD11b+ cDCs.59 InfDCs have been some-
times referred to as Tip-DCs (for TNF-α/inducible NO synthase 
(iNOS)-producing-DCs), however monocytes and activated 
macrophages can also express iNOS and TNF-α. In addition, 
Tip-DCs were actually found not to express the DC-specific 
zbtb46 transcription factor in Listeria-infected mice while 
InfDCs expressed it.70,71 During inflammation, the massive 
recruitment of monocytes also helps to repopulate the skin with 
newly generated LCs12 as well as dermal DCs,72 which left the 
skin to migrate to DLNs. In addition, neutrophils can be found 
within an hour after skin injury and participate in the production 
of cytokines and chemokine that help recruitment and activation 
of monocytes.73

XCR1+ Dermal DCs

Dermal XCR1+ DCs comprise two populations of CD11blow 
CD207+ cells that either express CD103 or not.54 As this nomen-
clature is relatively recent, these cell subsets were often referred 
to as CD207+ dermal DCs, irrespectively of their expression of 
CD103. XCR1+ dermal DCs resemble the XCR1+ CD8α+ DCs 
found in lymphoid and non-lymphoid organs, which are par-
ticularly efficient in cross-presentation; therefore it was initially 
assumed that their unique function was to cross-present skin-
derived and viral antigens.74,75 Accordingly, XCR1+ dermal DCs 
specifically express TLR3, which recognize double-stranded 
RNA, and Clec9A, which bind to components of dead cells.74,76 
CD207+ dermal DCs reportedly induced CD8+ T cell responses 
to self-antigen33 and after vaccinia virus,37 and leishmaniasis 
infection in mice.77 However, in contrast with CD8α+ DCs, 
CD207+ dermal DCs have been found to promote differentiation 
and function of CD4+ T helper effector cells. Induction of Th1 
responses to bacteria28 and experimental autoimmune encephalo-
myelitis (EAE),53 and Th17 responses upon skin infection with 
herpes simplex virus have been noted in mice.78 Using a systems 
biology approach, Haniffa et al. recently identified the human 
homolog of mice XCR1+ DCs, namely CD141+ dermal DCs, 
which also express XCR1 and Clec9A and efficiently cross-pres-
ent antigens to CD8+T cells in vitro.79 In addition, vitamin D3 
was described as a potent inducer for the generation of CD141+ 
DCs-like DCs in vitro, which promoted Treg differentiation and 
suppression of xeno-graft vs. host disease and tumor alloimmu-
nity in mouse model.80

CD11b+ Dermal DCs

Multiple myeloid cell subsets of the dermis express CD11b. 
The expression of the marker CD64 differentiates conventional 
DCs (CD64-) from monocytes and moDCs (CD64low/+).59 
Their function has been extensively studied in vivo in mice, how-
ever due to possible contamination with other CD11b+ myeloid 
cells, previous studies must be interpreted with care. Nevertheless, 
under steady-state condition, CD11b+ DCs found in skin and 
associated DLNs produce retinoic-acid, which is involved in the 
generation of Treg.81 This observation was surprising, as retinoic 
acid production is largely mediated by CD103+ DCs in other 
organs such as the gastro-intestinal tract.82 What mechanisms 
underlie this functional difference between the skin and the 
mucosa are not known. Polarization of Th2 cell responses is also 
a feature of CD11b+ dermal DCs. The initiation and progression 
of skin allergic inflammation involve a thymic stromal lympho-
poietin (TSLP)-responsive DC subset expressing high levels of 
CD11b and able to drive differentiation of Th2 cells in mice.83 
Whether their non-responsive counterpart form a distinct subset 
with different functions remains to be elucidated. Accordingly, 
conditional depletion of dermal CD301b+ DCs, a population 
of CD11b+ DCs that do not express CD207, impaired Th2 cell 
development upon infection with N. brasiliensis or with others 
well-known Th2 cell-inducing adjuvant in mice.84 Not all CD11b+ 
DC express CD301b, therefore this subset may represent a specific 
population dedicated to Th2 immunity. In humans, the corre-
sponding CD1a+ dermal DCs represent the major subset of the 
dermis. They strongly express the CD1c (BDCA-1) marker and 
low levels of CD1a as compared with human LCs. Both CD1a+ 
dermal DCs and LCs are found in T cell-rich areas of skin DLNs 
and appear to have similar properties of antigen cross-presentation 
to CD8+ T cells, as well as capacity to promote differentiation of 
CD4+ T cells into Th2 cells in vitro.85,86 For a comprehensive 
review on human dermal DC functions, see ref. 62.

Monocyte-Derivated and Inflammatory DCs

In absence of inflammation, murine and human skins con-
tain low numbers of moDCs that develop from continuously 
extravasating Ly-6Chi or CD14+ monocytes respectively.40,59 In 
mice, steady-state moDCs express Il-10 transcripts, suggest-
ing that these cells could exert immunosuppressive functions. 
When pulsed with OVA protein, they induced proliferation and 
IFN-γ production by OT-I CD8+ T cells and OT-II CD4+ T 
cells in vitro, though to a minor extend than CD11b+ dermal 
DCs.59 Sorted human CD14+ dermal DCs produce IL-10 and 
TGF-β, and have been shown to inhibit cytotoxic T lymphocyte 
responses and preferientially polarize pre-activated CD4+ T cells 
into T follicular helper cells and stimulate B cell isotype class-
switching.40,85 Therefore, even in absence of strong inflammatory 
signals, moDCs are able to present the antigen and stimulate pro-
liferation of naïve T cells in vitro. However, wether these cells 
exert specific function in vivo remains to be determined.
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The ability of inflammatory moDCs (InfDCs) to prime 
T cell responses is less clear. Following hapten-induced skin 
inflammation, only few numbers of newly differentiated InfDCs 
can upregulate CCR7 and migrate to DLNs, and their T cell 
stimulatory properties are very low.40,43 In addition, InfDCs were 
found to overexpress type-I IFN-related transcripts as compared 
with steady-state moDCs.59 Thus, under particular inflam-
matory conditions, InfDCs preferentially remain in the tissue, 
where they produce pro-inflammatory signals that stimulate the 
innate arm of immunity. Accordingly, dermal InfDCs have been 
shown to activate skin natural killer (NK) cells and memory 
CD8+ T cells even in the absence of antigen, through secretion 
of IL-15 and IL-18, after microbial infection.87 An heterogeneous 
group of inflammatory cells producing large amounts of TNF-α 
and iNOS has also been referred to as Tip-DCs. This popula-
tion appears to have direct microbicide functions but poor T cell 
inductive properties, mirroring the phenotype of InfDCs that are 
generated upon sterile inflammation.88

López-Bravo et al. demonstrated that subcutaneous infec-
tion with leishmania induced efficient migration and induction 
of Th1-biased cellular responses by infected InfDCs.89 If this 
infection model may not be representative of what occurs dur-
ing natural infection, it nonetheless reveals that InfDCs could 
be able to migrate to DLN and initiate adaptive immunity in 
the context of skin vaccination. In patients with psoriasis, sorted 
InfDCs induced allogeneic T cell to differentiate into Th1 and 
Th17 cells.90 Likewise, Segura et al. demonstrated that InfDCs 
isolated from patients suffering from rheumatoid arthritis or 
untreated inflammatory tumors were able to induce Th17 cell 
differentiation in vitro.91 Thus, it seems likely that these cells can 
exert different functions according to the inflammatory context. 
In regards to what happens in other tissues, InfDCs would pri-
marily act to stimulate antigen-experienced rather than naïve T 
cells.88

Targeting of Skin APCs by Vaccination

Intramuscular and subcutaneous vaccinations are the main 
routes currently used for conventional vaccines. However, the 
muscle and the subcutaneous tissue represent poor inductive site 
as they contain few, if any, numbers of APCs.92 A tremendous 
body of literature points out the critical role played by APCs in 
initiating the adaptive immunity, that is required for protection 
against pathogens.93 Recent advances in the understanding of 
skin APC populations and functions, in line with development 
of new devices make the skin particularly attractive for vaccina-
tion. Here we will briefly discuss how skin APCs can be targeted 
by transcutaneous and intradermal routes of vaccination.

Spatial Targeting of Skin APCs

Several methods have been developed in the past few years, 
which enable the targeting of skin immune actors at different 
depths. Antigen can be directly delivered into the dermis by 

conventional intradermal needles, microneedles, or pressure-
injector (e.g. gene gun). Several clinical trials have compared 
intramuscular and intradermal routes of vaccination for a wide 
array of pathogens, including rabies, hepatitis B virus, and influ-
enza, showing similar or superior immune responses by intrader-
mal route with lower antigen dose.92 In mice, we showed that 
intradermal immunization with HIV-p24 protein-loaded par-
ticles induced superior humoral and cellular responses in serum 
and mucosa as compared with subcutaneous and intramuscular 
routes.94 This seems to be largely mediated by LCs, as their migra-
tion to the dermis and subsequent capture of the antigen was 
shown to be responsible for CD8+ T cell responses.35 Injection of 
vaccine into the dermis induces strong inflammatory responses 
even in absence of adjuvant, however it also induces higher local 
side effects and pain than conventional routes of vaccination.95

Passive transcutaneous vaccination consists in a topical appli-
cation of vaccine compounds. As only small molecules with high 
lipophilicity can penetrate through intact epidermis,96 targeting 
of epidermal LCs and other dermal DCs can be rendered possible 
by transfollicular penetration through hair follicles.92 Hair fol-
licle opening allows large molecules and particles (less than 300 
nm in diameter) to flow and penetrate the epidermis and the der-
mis.97 Recently, Vogt et al. described the penetration and uptake 
of HIV-p24 protein-loaded particles after cyanoacrylate stripping 
of human skin explants. More importantly, this process allowed 
maturation and activation of epidermal LCs that efficiently 
uptaked the particles.98 Accordingly, we have shown that trans-
cutaneous anti-influenza vaccination induced both CD4+ and 
CD8+ T cell responses in humans, which were superior to that 
obtained after intramuscular immunization.99,100 Other methods 
to target epidermal cells include microneedle and needle-free 
patches. Standardized micron-scale needles (25 µm and 1 mm) 
can be grouped in microarrays and enable large molecules to 
enter the epidermis through microperforations.101 The use of dis-
solving polymer microneedle patches has been shown to induce 
robust humoral responses to influenza in mice.101 Also, antigens 
such as bacterial toxins can be delivered directly onto the skin102 
or deposed on needle-free patches103 after disruption of the stra-
tum corneum, which allow their passive transport throughout 
the epidermis and induce serum and mucosal humoral responses 
in both mice and humans.102-104

Thus, different methods exist that allow spatial targeting of 
either or both epidermal and dermal APCs, which could be used 
to potentiate vaccine responses.

Physical Targeting of Skin APCs

Several classes of vaccines based on micro or nanoparticles 
could be used to aim vaccine compounds specifically at skin 
immune cells. Interesting candidates include virus-like particles 
(VLPs), DNA and attenuated viral vectors, as well as a family of 
polymeric biodegradable nanoparticles, such as poly-D L-lactide-
co-glycolide and poly-D, L-co-glycolic acid (PLGA), poly-D, 
L-lactic acid (PLA), and others, that can carry proteins, peptides 
or DNA. It is clear that the nature and size of the antigen have 
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an impact on its uptake by APCs. Particles of 20 to 200 nm in 
diameter can be internalized by professional APCs in a clathrin-
dependent manner, whereas larger particles (0.5 and 5 µm) are 
taken up by phagocytosis (or macropinocytosis) by macrophages. 
Using antigen-loaded poly(lactide-co-glycolide) (PLGA) par-
ticles of different sizes ranging from 300 nm to 17 µm, Joshi 
et al. elegantly demonstrated that maximal uptake and activa-
tion by DCs were reached with the smallest particles in vitro.105 
This is in accordance with our observation that 40 nm particles 
are found in greater numbers than 200 nm or modified vaccinia 
Ankara (MVA) particles in DLNs of transcutaneously immu-
nized mice.97 Therefore, nanoparticles represent an efficient anti-
gen delivery system for optimized targeting of skin APCs.

Specific Targeting of Skin APCs

There are several ways by which the interaction between anti-
gen and APCs can be improved for vaccination. For example, 
because DCs express high levels of mannose receptors, man-
nosylation of the antigen-delivery system has been proposed to 
improve the targeting and activation of APCs.106 Another strat-
egy to improve the efficiency of nanoparticle-based vaccines is 
endocytic pathway targeting, by using C-type lectin receptors. 
Cruz et al. demonstrated that targeting the DC-SIGN improved 
antigen processing by human DCs and thus resulted in increased 
antigen-specific T-cell activation with reduced antigen concen-
trations 10 to 100-fold.107 Similarly, several TLR and NOD 
ligands have been incorporated into PLGA nanoparticles, such 
as TLR-4 ligand (7-acyl lipid A),108 TLR-9 ligand (CpG),109 and 
NOD 1 and NOD 2 ligands (CL235 and CL365, respectively)110 
which enhances the immunogenicity of particle-based vaccines 
by increasing APC activation.

More specifically, vaccine-induced immunity could also be 
tailored by targeting selected APC populations by using antigens 
that are coupled with antibody specific for surface molecules.111 
For instance, targeting of the XCR1+ DC-specific C-type lectin 
receptor Clec9A (also known as DNGR-1) with antibody coupled 
to antigen induced efficient cross-presentation and induction of 

CD8+ T cells.112,113 When anti-Clec9A antibody was coupled with 
a tumor-expressed peptide, development of B16 melanoma lung 
pseudometastases was prevented, and eradication of tumor cells 
enhanced.112 Likewise, targeting of antigen to CD205, which is 
expressed on the surface of LCs and some dermal DCs, resulted 
in induction of tolerance.114 Thus, targeting of CD205+ skin DCs 
could induce deletion of pathogenic CD8+ T cells and improve 
prognosis of skin allergic inflammatory diseases such as psoriasis 
and atopic dermatitis, as demonstrated in a murine model of type 
I diabetes.115 These few examples clearly illustrate how vaccines 
could be designed to specifically target distinct subsets of skin 
APCs, thus tailoring adaptive immunity.

Conclusion

Skin routes of vaccination have proven high efficacy and effi-
ciency. For instance, intradermal vaccination has achieved pro-
tective humoral immunity against major pathogens using lower 
dose of antigens as compared with conventional intramuscular 
and subcutaneous routes. It is now clear that this has to do with 
skin unique and rich immune network, which by its diversity 
and propensity for modulation can tailor the adaptive arms of 
immunity. The future of skin vaccination will benefit from our 
increased knowledge of APC functions and interactions, not only 
allowing the improvement of immune response intensity, but also 
its quality, polyfunctionality and persistency. By spatially, physi-
cally, and specifically targeting specialized APC subsets, future 
vaccines might be able to tailor immune responses against infec-
tious diseases and tend toward a personalized medicine that is 
adapted to the individual.
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