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Abstract

Since their first description in mammalian cells, more than 2,500 microRNA molecules have been 

predicted or verified within human cells. Recently, extracellular microRNAs have been described, 

protected from degradation by specialized packaging in extracellular vesicles or RNA-binding 

proteins. Such microRNAs, circulating in the bloodstream and extracellular space, have been 

proposed as attractive candidates as both diagnostic and prognostic biomarkers in various diseases, 

including a spectrum of cardiovascular conditions. Moreover, consistent with our evolving 

appreciation of the role of exosomes and microvesicles in intercellular communication, it has been 

proposed that delivery of active microRNAs to recipient tissues may serve as a primary mode of 

intercellular communication. Indeed, the transfer of functional microRNAs has been demonstrated 

in in vitro models and has been reported in a few in vivo contexts. In this review, we will discuss 

the recent data of circulating microRNAs in cardiovascular disease with an emphasis on their 

potential roles as diagnostic and prognostic biomarkers as well as the challenges of proving their 

potential clinical utility. In addition, we will discuss the evidence regarding the role of circulating 

microRNAs in intercellular communication as well as known molecular factors affecting their 

packaging, transfer, and uptake in recipient cardiovascular cell types.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules that mediate post-

transcriptional gene regulation by binding the 3’ untranslated regions of messenger RNA 

[1]. Since the first description of their biologic activity in mammalian cells [2-4], more than 

2,500 miRNAs have been identified in the human genome, with >1,500 miRNAs with more 

defined gene regulatory functions [5]. MiRNAs participate in a wide range of biological 
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processes, including numerous aspects of normal cardiovascular development and 

physiology as well as cardiovascular disease [6, 7]. Regarding the latter, dysregulated or 

altered miRNA expression has been implicated in cardiovascular disease such as myocardial 

infarction, hypertrophy, atherosclerosis, and hypertension, to name a few [6-8].

More recently, Mitchell and colleagues [9] were first to describe the presence of miRNAs in 

the extracellular space and circulating in mammalian plasma, packaged in remarkably stable 

forms either in microvesicles or in RNA-protein complexes. Since then, a great variety of 

studies have been reported regarding the dynamic alterations of circulating miRNA 

expression in a variety of cardiovascular conditions, leading to speculation of their utility in 

clinical diagnosis and prognosis [10-13]. Furthermore, the functions of circulating miRNAs 

as endocrine messengers to allow for intercellular communication have been increasingly 

interrogated. In this review, we will discuss recent data regarding circulating miRNAs, their 

potential role as novel biomarkers and intercellular communicators, as well as future 

challenges of studying and applying such novel biology, particularly in the cardiovascular 

system.

Stability and packaging of extracellular miRNAs

Although circulating messenger RNAs have previously been detected in human plasma [14], 

it was not until 2008 that the presence of extracellular miRNAs was described in the human 

bloodstream by Mitchell et al. [9]. In the same year, Chim et al. [15] described placental 

miRNAs in the plasma of pregnant women, and Lawrie et al. [16] identified an elevation of 

tumor-associated miRNAs in the sera of lymphoma patients. The presence of circulating 

miRNAs in other bodily fluids (i.e., urine, saliva, etc.) was subsequently identified, marked 

by distinct compositions according to the different fluid types [17, 18].

These initial reports emphasized the notable stability of extracellular miRNAs, even under 

harsh conditions such as boiling, low/high pH, extended storage at room temperature, and 

multiple freeze-thaw cycles [9, 17]. These studies also found that naked, synthetic miRNAs 

directly added to plasma are rapidly degraded by existing RNase activity [9], suggesting 

endogenous protection against these enzymes. In contrast, detergents or proteinase K 

facilitate extracellular miRNAs degradation [19, 20], thus indicating protection by lipid 

membrane encapsulation and/or RNA-binding proteins [21]. Subsequently, several 

mechanisms for packaging of extracellular miRNAs for transport were defined (Fig. 1), 

including the encapsulation of miRNAs in membrane-derived vesicles (exosomes [22], 

microvesicles [23], apoptotic bodies [24]), RNA-binding proteins (Argonaute 2 protein; 

AGO2 [20] or nucleophosmin I [25]), or lipoprotein complexes such as high-density 

lipoprotein (HDL) [26].

Exosomes are small (40 ~ 100 nm in diameter) secreted membrane vesicles that originate 

from intracellular endosomes and are released upon fusion of multivesicular bodies with the 

plasma membrane [27, 28]. Exosomes serve as carriers for various miRNAs [22, 29-31]. 

Notably, expression levels of miRNAs in exosomes can differ substantially as compared 

with expression in donor cells [22, 32], thus suggesting the existence of an active cellular 

mechanism that packages specific miRNAs and other cellular contents into these secreted 
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bodies. Similarly, microvesicles are larger (50 ~ 1,000 nm in diameter) membrane vesicles 

that are produced by budding directly from the plasma membrane [28]. Plasma 

microvesicles also package miRNAs, and their biology is thought to be integral in cell-to-

cell transfer of their miRNA cargo [23, 33, 34]. Apoptotic bodies are even larger particles (1 

~ 5 μm in diameter) released from apoptotic cells and can transport active miRNAs involved 

in gene repression in recipient cells. For instance, in atherosclerotic vascular disease, 

endothelial cell-derived apoptotic bodies, enriched with microRNA-126 (miR-126), are 

produced and trigger the production of the CXC chemokine CXCL12 in the recipient 

vascular cells, thus mediating, at least in part, the atheroprotective effect of apoptotic bodies 

[24].

In addition to these membrane-encapsulated vesicles, a significant portion of circulating 

miRNAs is associated with RNA-binding proteins. Nucleophosmin 1 is a 

nucleophosphoprotein and involved in the nuclear export of the ribosome [35]. 

Nucleophosmin 1 protects miRNA degradation by RNase and was the first protein identified 

as crucial for miRNA transport [25]. Since then, it has been reported that a majority of 

circulating miRNAs are bound to proteins of the Argonaute family (mainly AGO2), 

important catalytic components of the RNA induced silencing complex of proteins (RISC) 

which mediate canonical miRNA engagement with intracellular target transcripts [20, 36]. 

Secreted miRNAs have also been found in association with lipoproteins [26], including the 

high- and low-density lipoproteins (HDL and LDL) that enable the transport of lipids and 

fat-soluble vitamins through the bloodstream [37, 38]. An extracellular miRNA frequently 

associated with HDL particles is miR-223, a miRNA enriched in hematologic cells such as 

monocytes and macrophages [23]. This suggests that lipoproteins may be able to be loaded 

with miRNAs derived from cells other than those responsible for the biogenesis of the 

lipoprotein itself [39]. Alternatively, it has been suggested that the association of miRNAs 

with HDL could be, at least in part, nonspecific [40].

The exact molecular processes regulating packaging and release of extracellular miRNAs 

either via vesicle-mediated or non-vesicle-mediated mechanisms are largely unknown. Some 

extracellular miRNAs, such as let-7a, have been identified primarily in vesicles, while 

others, such as miR-16 and miR-92a, have been detected mainly in complexes carrying non-

vesicular AGO2 ribonucleoproteins [20]. In the bloodstream, one high-throughput analysis 

indicated that a majority of miRNAs was found in non-vesicle-associated complexes bound 

to AGO2 [20]. In contrast, other investigators have reported that extracellular miRNAs 

detectable in both serum and saliva are mainly concentrated in exosomes [29]. This 

discrepancy may arise from differences in technique for microvesicle isolation and RNA 

extraction. Indeed, miRNA plasma content can be heavily contaminated by platelets and 

blood cells remaining after plasma processing -- factors which must be addressed prior to 

accurately assessment of expression [41, 42]. Nonetheless, in both vesicles and RNA-protein 

complexes alike, the association of AGO2 with many miRNAs has been reported to play a 

critical role in stabilizing these molecules in extracellular space [43, 44]. Alternatively, 

AGO2 may be crucial for directing transport and/or activity of miRNAs delivered to 

recipient tissues. For instance, Laffont et al. [45] demonstrated that platelet microparticles 

specifically containing AGO2/miR-223 complexes could regulate reporter gene expression 

in recipient endothelial cells. Interestingly, Lv et al. [44] have shown that AGO2 
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overexpression in HeLa cells facilitates the packaging of miR-16 into cell-secreted 

microvesicles, and only after such packaging can miR-16 be delivered and significantly 

reduce Bcl2 protein levels in recipient HEK293 cells. Therefore, it was proposed that non-

AGO2-associated miRNAs in the microvesicles are degraded in the recipient cells, while 

functional AGO2-bound miRNAs are preserved and can be transferred to recipient cells 

[44].

Beyond complexing with AGO2, several mechanisms have been suggested to control the 

packaging and sorting of miRNAs for release (Fig. 1). Specific miRNAs may be selectively 

sorted into the vesicles for extracellular release, based on cellular needs or environmental 

stimulation [19]. Level of miRNA expression may be a key determinant of such sorting. 

Recent RNA profiling of macrophages and their released exosomes demonstrated that 

artificially increasing the cellular levels of a miR-511-3p or its target sequences favors 

sorting of miR-511-3p into multivesicular bodies for secretion as opposed to P bodies for 

canonical intracellular activity. Thus, alterations of miRNA expression appear to activate 

transport mechanisms to relocate miRNAs from one cellular compartment to another and 

change in the balance between endogenous miRNA activity and secretion through the 

exosomal pathway [46]. Cellular energetics also contribute to regulation, given findings by 

Wang et al. [25] that intracellular ATP levels control the exportation of most extracellular 

miRNAs. Protein components of the RISC beyond AGO2, such as GW182, have also been 

detected in multivesicular bodies [47] and may participate in the process of miRNAs sorting 

into exosomes [48]. Alternatively, the sumoylated heterogenous nuclear ribonucleoprotein 

A2B1 has been reported to control the loading of miRNAs into exosomes through the 

recognition of specific sequence motifs present in miRNAs [49]. Such recognition may 

interface with ceramide-dependent secretory machinery, which has also been implicated in 

packaging of miRNAs into exosomes [50, 51]. Specifically, the sphingolipid ceramide is 

required for the sorting of exosome-associated domains into multivesicular endosomes, 

independent of the endosomal sorting complex required for transport system [52]. Inhibition 

of neutral sphingomyelinase 2 (nSMase2), which regulates the biosynthesis of ceramide, 

reduces miRNAs secretion, and overexpression of nSMase2 increases extracellular miRNA 

levels [50, 51]. Interestingly, contrary to the effect on the export of exosomal miRNAs, 

inhibition of nSMase2 significantly increases cellular export of miR-223 with HDL [26]. 

Therefore, current data indicate a specific and complex set of pathways must exist that 

regulates the packaging and release of miRNAs. We now await the more comprehensive 

identification of such putative actions for many more molecular factors thought to be 

involved in these processes.

Circulating miRNAs as potential biomarkers in cardiovascular disease

Due to their robust stability and reasonable ease of detectability in the bloodstream, 

circulating miRNAs are emerging as attractive diagnostic biomarker candidates in a wide 

range of cardiovascular diseases (Table 1). Of these circulating miRNAs, cardiac-enriched 

miRNAs, such as miR-1, miR-133, miR-208, and miR-499, have become the most 

extensively investigated miRNAs, particularly for the diagnosis of acute coronary syndrome 

(ACS) and acute myocardial infarction (AMI), as compared with conventional markers of 

myocardial damage such as creatine kinase (CK) or cardiac troponin [10, 53]. For example, 
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cardiac-specific miR-208a, which is exclusively expressed in the heart, was reported as an 

attractive candidate miRNA consistently observed in a rat myocardial injury model [54] and 

a study of human AMI cases [55]. However, characterization of a single miRNA as a 

reliable cardiac biomarker can be challenging; for instance, in other studies, plasma 

miR-208a concentration was too low to be detected either at baseline or after myocardial 

injury [53, 56, 57]. Furthermore, in the recent large-scale studies performed in suspected 

ACS patients, the diagnostic accuracy of using single miRNAs for detecting MI was lower 

than that of cardiac troponin T [58, 59]. In contrast, the use of a panel of multiple miRNAs 

or a combination of miRNAs with cardiac troponin has been reported to improve the 

discriminatory power in ACS diagnosis [60, 61]. The kinetics of release of these miRNAs 

may also allow for early diagnosis of AMI as compared with traditional biomarkers. 

Recently, Libetrau et al. [62] demonstrated that serum miR-1 and miR-133a are released 

within 15 minutes after induction of AMI in patients with hypertrophic cardiomyopathy who 

underwent transcoronary ablation for septal hypertrophy. These findings are consistent with 

other studies reporting the release of cardiac-specific miRNAs prior to CK or troponin after 

prolonged aerobic exercise (i.e., marathon run) [63]. Together, these data suggest the 

usefulness of circulating cardiac miRNAs in the early diagnosis of AMI and myocardial 

injury. Finally, to confirm the source of release of miRNAs from cardiac tissue, De Rosa et 

al. [64] demonstrated the presence of a transcoronary concentration gradient of cardiac-

enriched miRNAs proportional to the degree of myocardial injury in ACS, thereby 

indicating that damaged myocardium was the likely source of released miRNAs. Gidlöf et 

al. [58] also supported this idea by demonstrating the presence of miR-208b and 

miR-499-5p in the coronary sinus immediately after, but not before, cardioplegia in patients 

undergoing coronary artery bypass graft surgery. These findings suggested that those 

miRNAs are released from injured myocardium. However, it is still unclear whether these 

released miRNAs are just by-product from damaged myocardium or has additional roles as 

intercellular messengers.

In addition to the diagnosis of coronary artery disease, alterations in the expression of 

several circulating miRNAs including miR-423-5p have been reported to discriminate heart 

failure (HF) from dyspnea of different etiologies [65, 66]. Notably, circulating miR-423-5p 

was not helpful in identifying patients with right HF [67], suggesting that perhaps any 

miRNA-dependent regulatory mechanism for right HF likely differs from those of left HF. 

Circulating miRNAs have begun to be assessed in patients with HF with preserved ejection 

fraction (EF) [68, 69]. Although no single miRNA was better than B-natriuretic peptide 

(BNP) in discriminating HF with preserved EF from HF with reduced EF, the assessment of 

multiple plasma miRNAs or combination of miRNAs with BNP significantly improved the 

discriminative power compared with BNP alone. Recently, circulating miRNAs have been 

evaluated in the response to treatment in patients with end-stage HF. Akat et al. [70] 

demonstrated that increased levels of certain myomiRs such as miR-208a, miR-208b, 

miR-499, and miR-1, were nearly completely reversed after the initiation of a left ventricular 

assist device (LVAD) in advanced HF, suggesting the usefulness of these myomiRs as 

biomarkers monitoring cardiac injury. Morley-Smith et al. [71] also found that miR-1202 

was useful to discriminate between good and poor response to LVAD placement. In 
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addition, a differential expression of certain miRNAs was observed in allograft rejection, 

suggesting their potential utility to monitor progress after heart transplantation [72].

Other vascular diseases such as pulmonary hypertension have also been studied in this 

regard. Rhodes et al. reported that circulating levels of miR-150 were reduced in patients 

with pulmonary arterial hypertension (PAH), and reduced plasma miR-150 levels were 

associated with poor survival in these patients [73]. Wei et al. [74] demonstrated that a 

certain set of circulating miRNAs were dysregulated in patients with pulmonary 

hypertension (PH) and were proportional to the degree of PH determined by mean 

pulmonary arterial pressure. Other miRNAs such as the miR-130/301 family [75] and 

miR-210 [76], which have known causative actions in the pathogenesis of PH have been 

reported to be elevated in the pulmonary circulation of PH patients. Circulating miR-26a has 

also been identified to be reduced in PAH and directly related with functional severity of 

this disease [77]. Differential expression of plasma miRNAs has been reported in acute 

pulmonary embolism [78] and chronic thromboembolic PH [79].

Presence of arrhythmias such as atrial fibrillation (AF) has been associated with alterations 

of circulating miRNAs. Liu et al. [80] reported that plasma miR-150 levels were 

significantly lower in patients with AF compared with healthy controls. These findings were 

independently validated in a larger population by McManus et al. [81]. Interestingly, in this 

study, miR-21 and miR-150 levels were lower in persistent AF than in paroxysmal AF, and 

increased after catheter ablation of AF [81]. Moreover, several attempts have been made to 

create miRNAs signature using circulating miRNAs for various cardiovascular disease 

including peripheral arterial disease [82] or congenital heart disease such as ventricular 

septal defect [83].

In addition to their roles as putative diagnostic biomarkers, the prognostic value of 

circulating miRNAs in cardiovascular disease has also been investigated with mixed utility 

(Table 2). It has been demonstrated that the circulating levels of miR-133a and miR-208b 

were related with all-cause mortality at 6 months in ACS patients [84]. However, both 

miRNAs added little incremental prognostic value to high-sensitive troponin. In accordance 

with this result, Eitel et al. [85] also reported that circulating concentration of miR-133a 

could not independently predict cardiovascular events in ST segment elevation MI patients 

after adjustment for traditional markers. The association of increased levels of miR-208b 

and miR-499-5p with increased risk of mortality or HF in MI patients was lost after 

adjustment for troponin T [58]. On the other hand, low concentration of circulating miR-150 

was reported to predict LV remodeling after AMI and outperformed N-terminal proBNP in 

this regard [86]. Pilbrow et al. [87] reported that lower levels of miR-652 can independently 

predict HF after AMI. Moreover, the use of a panel of multiple miRNAs or a combination of 

miRNAs with existing prognostic markers such as BNP or cardiac troponin appeared to 

improve risk stratification in this context [87-89].

Despite the attraction of measuring circulating miRNAs, many challenges exist in proving 

their utility as ideal diagnostic or prognostic biomarkers in cardiovascular disease (Fig. 2). 

First, many of these miRNAs are ubiquitous, so the definite source of these miRNAs cannot 

be identified in most cases, with the exception of some cardiac or muscle-specific miRNAs 
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(so-called “myomiRs”) [6]. In spite of recent efforts to identify more definitively the tissue 

source of released miRNAs [58, 64], many questions remain such as whether alteration of 

miRNAs levels in cardiovascular disease can be attributed to increased expression or simple 

release from damaged tissue, and whether released miRNAs are merely by-products of cell 

injury or play an actual biologic purpose in disease progression or manifestation. Second, 

there are numerous examples of the same circulating miRNA or myomiR altered in a variety 

of clinical situations (Table 1). Thus, a consideration of context specificity will be necessary 

in the future determination of the utility of these miRNAs as true biomarkers of disease. 

Third, due to their low expression, some cardiac- and muscle-specific circulating miRNAs 

can be difficult to detect and quantify accurately with currently available methods [90]. 

Coupled with the possibility of contamination from blood cells, the measurement of these 

miRNAs can be fraught with error [42]. As such, a number of the alterations in circulating 

miRNAs that have previously been reported in a variety of cardiovascular disease conditions 

(Tables 1 and 2) require independent validation in larger cohorts of patients for real 

application to clinical practice. Fourth, there are no standardized endogenous controls for 

normalization. Although the spike-in of exogenous miRNAs (e.g., miRNAs derived from the 

worm Caenorhabditis elegans) is widely used in such analyses [9], alternative methods for 

normalization using endogenous miRNA controls [53] or plasma volume [91] have been 

utilized, often with varying effects on final quantitations. Fifth, inter-individual and intra-

individual variations in circulating miRNA expression certainly exist, notably dependent 

upon time of day, diet or nutrition, or gender [92, 93], as well as activity level or physical 

fitness [63, 94]. Therefore, there exist no reference values for “normal expression” for facile 

clinical interpretation. Finally, it is still unclear which type of assay system for miRNA 

measurements would be ideal for clinical use, with possibilities including quantitative 

polymerase chain reaction vs. next generation sequencing. Recent advances in both 

platforms have allowed for the simultaneous evaluation of multiple miRNAs with improved 

sensitivity. However, the decision on the diagnosis of cardiovascular disease is usually 

required urgently, especially in ACS. Therefore, more rapid and sensitive quantification 

techniques may need to be developed in the future if circulating miRNAs are to be useful as 

clinically applicable biomarkers [95].

Circulating miRNAs as endocrine or paracrine messengers in 

cardiovascular disease

Beyond the diagnostic and prognostic potential for these molecules, circulating miRNAs 

may carry substantial functions as endocrine or paracrine messengers in cardiovascular 

health and disease. Namely, the stability of circulating miRNAs offered by packaging in 

membrane vesicles or in RNA-protein complexes coupled by an increasing appreciation of 

the role of microvesicles in facilitating cell-to-cell communication between the cells [28] has 

raised the possibility of the primary role of miRNAs as intercellular communicators. Several 

pathways have been suggested as possible mechanisms for cellular uptake of miRNAs into 

recipient tissue. First, consistent with the known biology of membrane-derived vesicles, 

Yuan et al. [96] presented early in vitro evidence of intercellular transfer of miRNAs by 

demonstrating that a subset of miRNAs within microvesicles of mouse embryonic stem cells 

can be delivered to mouse embryonic fibroblasts. Such microvesicles have been proposed to 
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deliver miRNAs by endocytosis [97], membrane fusion [98], or phagocytosis [99]. Delivery 

of non-vesicle associated miRNAs has been studied in less depth, but examples exist for 

effective delivery to recipient tissues. For instance, HDL-associated miRNAs have been 

demonstrated to be selectively transferred by engaging the scavenger receptor class B type 1 

on recipient cells [26]. Alternatively, the hypoxia-induced miR-210 can be delivered to 

recipient endothelial cells via AGO2-associated RNA-protein complexes outside of vesicles 

[100]. It remains plausible that extracellular miRNA packaging may modulate the efficiency 

of recipient tissue delivery, but any differences in delivery efficiency of miRNAs within or 

outside of microvesicles have yet to be described. Alternatively, it remains unclear whether 

such packaging may also affect clearance of circulating miRNAs out of the bloodstream into 

urine, feces, or other excretory substances.

In the context of cardiovascular disease, several in vitro studies have proposed that delivered 

miRNAs can regulate gene expression through the same canonical action on target 

messenger RNAs as endogenous miRNAs [22, 26]. For instance, Zernecke et al. [24] 

reported endogenous transfer of functional miRNAs via apoptotic bodies enriched with the 

endothelial-specific miRNA, miR-126. Delivery of miR-126 from endothelial cells was 

reported to convey paracrine signals to recipient vascular cells, thus triggering the 

production of CXCL12, a cytokine that counteracts apoptosis and recruits progenitor cells. 

In a separate study, extracellular AGO2-associated miR-126 was also found to transfer from 

endothelial cells to smooth muscle cells and regulate vascular smooth muscle cell turnover 

[101]. Halkein et al. [102] also demonstrated that miR-146a-loaded exosomes from 

endothelial cells can be absorbed by cardiomyocytes, after which miR-146a levels are 

increased while target gene expression and metabolic activity are decreased. Alternatively, 

we found that functional hypoxia-induced miR-210, complexed to AGO2 but packaged 

independently from microvesicles, can be delivered to recipient endothelial cells [100]. 

Interestingly, we found that prolyl-hydroxylation of AGO2 acts as a molecular switch that 

not only controls miR-210 release and activity in source cells but also regulates intracellular 

activity in recipient cells. Native HDL incorporated with exogenous miR-375 or miR-223 

can also be delivered to recipient cells, leading to reduction of transcripts encoding RHOB 

and EFNA1, both of which are direct target of miR-223 [26]. More recently, Tabet et al. 

[103] demonstrated translational repression of intercellular adhesion molecule 1 in human 

coronary artery endothelial cells by HDL-transferred miR-223, suggesting a novel 

mechanism for the known anti-inflammatory properties of HDL.

Although many investigators have reported the effect of transferred miRNAs in target cells, 

the exact molecular events that facilitate biological activity of mature delivered miRNAs are 

still unknown. Specifically, it is unclear if RISC proteins already complexed with delivered 

miRNAs participate in the post-transcriptional regulation of target gene in recipient cells 

[104]. Chen et al. [17] found that mesenchymal stem cells secrete precursor form of 

miRNAs (pre-miRNAs) enriched in microvesicles. However, Dicer and AGO2 were not 

found in the secreted particles and, therefore, RISC proteins derived from recipient cells 

were assumed to be crucial for functionality of these delivered miRNAs [105]. More 

recently, the presence of pre-miRNAs with Dicer, AGO2, and TRBP in exosomes has been 

reported, and cell-independent maturation of miRNAs in the exosomes has been suggested 
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as an effective way of functional miRNA delivery [78]. Alternatively, delivery of AGO2-

complexed circulating miRNAs such as miR-210 has been described, suggesting the 

importance of AGO2 from source cells to allow for canonical function of delivered miRNAs 

in recipient cells [100]. Finally, while most studies have interrogated the principle of 

canonical actions of delivered miRNAs, other mechanisms may exist for such miRNA 

functionality. Fabbri et al. [106] recently found that miR-21 and miR-29a secreted from lung 

tumor cells via exosomes can be transferred to recipient macrophages. In macrophages, such 

miRNAs can be transported to endosomes, where they act as ligands of Toll-like receptors 

and induce secretion of prometastatic inflammatory cytokines. Therefore, delivered miRNAs 

may carry specific biologic functions, facilitated through both canonical and non-canonical 

methods that have yet to be elucidated completely.

The biologic importance of miRNA delivery in the cardiovascular system has been 

demonstrated by several in vivo studies. For instance, consistent with their in vitro findings, 

Zernecke et al. [24] demonstrated that intravenous injection of endothelial apoptotic bodies 

promotes recruitment of endothelial progenitor cells in aortic root plaques of apolipoprotein 

E (ApoE)-deficient mice on a high fat diet. In that context, administration of apoptotic 

bodies or miR-126 reduced the size and macrophage content in atherosclerotic plaques, 

while apoptotic bodies from miR-126-deficient mice induced negligible atheroprotective 

effects. These data suggested that the atheroprotective effects of apoptotic bodies are 

mediated by delivered miR-126. Hergenreider et al. [31] also demonstrated that extracellular 

vesicles secreted by Krüppel-like factor 2 (KLF2)-transduced or shear-stress-stimulated 

endothelial cells are enriched with miR-143/145. These extracellular vesicles controlled 

target gene expression in co-cultured smooth muscle cells. When vesicles from KLF2-

transduced mouse endothelial cells were injected into ApoE-deficient mice on an 

atherogenic diet, fatty lesions in the aorta were significantly decreased compared with 

control mice. However, when miR-143/145 expression was depleted from these vesicles, the 

atheroprotective effects of these vesicles were lost. In another study, Jansen et al. [107] 

revealed that microvesicles from apoptotic endothelial cells promoted endothelial cell 

migration and proliferation in recipient endothelial cells. These authors found that miR-126 

was predominantly expressed in these microvesicles, was transferred to recipient cells, and 

downregulated expression of direct target genes. In correlation, administration of miR-126-

enriched microvesicles promoted re-endothelialization after electrical denudation of the 

common carotid artery in wildtype mice, while treatment with miR-126-depleted 

microparticles abrogated such re-endothelialization.

Such in vitro and in vivo studies support the notion of functional delivery of circulating 

miRNAs to a variety of cardiovascular tissues, but the real contribution of such biology to 

cardiovascular pathogenesis remains to be determined. In part, this question persists due to 

the challenges of interpreting contemporary studies (Fig. 3). Notably, many current reports 

rely upon quantifying levels of “delivered” miRNAs in recipient tissue that otherwise are 

ubiquitously expressed. Thus, even though increased miRNA expression is often noted in 

recipient cells after exposure to extracellular miRNA molecules, these studies often do not 

rule out the possibility of up-regulation of endogenous miRNA expression rather than actual 

delivery, per se. Rarely have contemporary studies studied recipient tissues that are 
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genetically deficient in specific endogenous miRNAs [100], and to our knowledge, such 

data have been limited to in vitro analyses. Second, in cases where recipient cells can 

already express a delivered miRNA endogenously, often the amount that is already present 

far exceeds the calculated level of delivery possible during most physiologic conditions. 

Thus, unless exogenous and endogenous miRNAs carry differing biologic actions once 

inside a cell, delivery of an already expressed miRNA would not be expected to contribute 

significantly to overall target gene regulation. On the other hand, delivery of miRNAs may 

be more effective in the context of non-endogenous miRNAs or poorly expressed miRNAs 

at baseline. Thus, stemming from these points, rigorous studies to demonstrate transfer and 

activity of miRNAs in vivo are challenging and have not been common in current studies.

A recent example of such challenges in data interpretation have stemmed from a surprising 

report by Zhang et al. [108], claiming that ingested exogenous plant (rice)-derived MIR168a 

can survive and pass through the mammalian gut, enter the circulation, and is delivered to 

the liver, where it suppresses LDL receptor adapter protein 1 expression and consequently 

decreases hepatic LDL uptake. These findings suggested a new possibility of a “cross-

kingdom” platform by which plant miRNAs can regulate mammalian gene expression via 

oral nutrition. However, although the detectability of fungal, bacterial, and plant-derived 

miRNAs in mammalian blood has been reported by multiple groups [109-111], substantial 

delivery of diet-derived miRNAs into mammalian circulation or tissues and any subsequent 

effects on putative target gene expression have been unable to be replicated by independent 

groups [112-114]. It may be possible to increase gut uptake of miRNAs via artificially 

increasing ingested levels or in settings of substantial gut damage [115]. Yet, given the 

exceptionally high sensitivity of miRNA detection techniques, the confounding issue of 

miRNA contamination during tissue processing has been proposed as a more likely 

explanation of detectable levels of foreign miRNAs in human tissue [116]. These 

inconsistencies in data imply the presence of various obstacles preventing significant and 

reliable delivery of orally ingested diet-derived miRNAs (Fig. 4). Consequently, any further 

studies in this regard will require an exceptional level of scientific rigor in order to prove 

definitively the uptake of exogenous and active miRNAs via the digestive tract in a 

biologically relevant context [117].

Future therapeutic perspectives

As the diverse roles of circulating miRNAs in cardiovascular disease have been identified, 

therapeutic application of extracellular miRNAs has also been explored. For example, Hu et 

al. [118] demonstrated that administration of miR-210 using nonviral vectors improved 

cardiac function after MI in mice. They suggested Efna3 and Ptp1b, which are involved in 

angiogenesis and apoptosis, respectively, as potential targets of miR-210. It has also been 

reported that exogenous administration of hsa-miR-590 and hsa-miR-199a using lipid 

transfection reagent or viral vector significantly increases cardiomyocyte proliferation and, 

therefore, reduces infarct size and improves cardiac function in a murine model of MI [119].

Although these studies suggest the therapeutic potential of extracellular miRNAs in the 

cardiovascular system, it is not determined yet which methods will be most suitable for their 

pharmacologic delivery. Engineered exosomes have been considered as ideal carriers for 
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miRNAs due to their small size, stability, and ability to cross biological membranes [120, 

121]. Furthermore, modifications of exosomal surfaces by engineering of donor cells have 

made target cell delivery of exosomes more efficient. For example, Alvarez-Erviti et al. 

[122] demonstrated neuron-specific targeting of exosomal vesicles in vivo by generating 

dendritic cells that express the membrane protein Lamp2b fused to the neuron-specific 

rabies viral glycoprotein peptide. More recently, Ohno et al. [123] reported that let-7a 

miRNA could be delivered specifically to epidermal growth factor receptor-expressing 

breast cancer cells using modified exosomes. Yet, in spite of these promising results, 

challenges still remain, including the development of a more effective purification method 

for the study and handling of exosomes, the determination of the half-life and clearance of 

engineered exosomes in the bloodstream in vivo, and continued improvements in the 

specificity of delivery of exosomal cargo [124].

Conclusions

Over recent years, increasing attention has been paid to the role of circulating miRNAs in 

cardiovascular disease. As biomarkers and intercellular communicators, circulating miRNAs 

could play important roles in the prediction, diagnosis, and tailored treatment of 

cardiovascular diseases in the near future. For successful clinical application, however, it is 

hoped that a better understanding of circulating miRNAs from packaging and release to 

uptake will be forthcoming in the next phase of scientific investigation.
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Figure 1. Schematic representation of intercellular communication of miRNAs
Circulating miRNAs are protected from degradation by several extracellular miRNA 

carriers, which include membrane-derived vesicles such as exosomes, microvesicles (MVs), 

or apoptotic bodies, and RNA-binding proteins such as Argonaute 2 protein (AGO2), or 

high-density lipoprotein (HDL). Exosomes are secreted by the fusion of multivesicular 

bodies (MVB) and the plasma membrane. MVs are released through outward budding of the 

plasma membrane. Sumoylated heterogenous nuclear ribonucleoprotein A2B1 

(hnRNPA2B1) controls the loading of miRNAs into exosomes through the recognition of 

specific motif present in miRNAs. Moreover, neutral sphingomyelinase 2 (nSMase2) 

regulates the ceramide-dependent release of exosomes carrying these miRNAs. Membrane 

vesicles are delivered by endocytosis or membrane fusion. HDL-associated miRNAs are 

selectively transferred via scavenger receptor class B type 1 (SR-B1). miRNP = microRNA 

ribonucleoprotein complex.
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Figure 2. Challenges in defining circulating miRNAs as useful biomarkers of cardiovascular 
disease
Although miRNAs have many attractive features for study in the circulating bloodstream, 

there are still many challenges for establishing circulating miRNAs as clinically useful 

biomarkers. These include non-specific tissue- or organ-distribution, low serum/plasma 

concentration, wide inter- or intra-individual variations, absence of controls for 

normalization, and absence of standardized quantification methods.
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Figure 3. Model of circulating microRNAs (miRNAs) as intercellular messengers and the 
challenges of interrogating this model
Recently, the functional delivery of circulating miRNAs has been reported in many in vitro 

and in vivo studies. Many of these studies have proposed the function of delivered specific 

miRNAs by relying upon the subtractive logic that the carrier without those miRNAs could 

not alter the expression of target gene in recipient cells or tissues. Caveats in interpreting 

these data should be considered, which include the possibility of endogenous ubiquitous 

miRNAs expression and the efficiency of delivered exogenous miRNAs, among others. 

Furthermore, robust delivery of a labeled and active miRNA in vivo, particularly in rodents 

genetically deficient in that given miRNA, has not been demonstrated to date in 

cardiovascular tissue.
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Figure 4. Controversy regarding the model of functional delivery of diet-derived microRNAs 
(miRNAs)
Recently, functional cross-kingdom transfer of food-derived miRNAs has been proposed 

(white boxes) [108]. However, current evidence demonstrates limitations to the original data 

and the poor efficacy of delivery of diet-derived miRNAs after typical dietary ingestion, in 

general (gray boxes) [110, 112-114]. LDLRAP1 = Low-density lipoprotein receptor adaptor 

protein 1.
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Table 1

Circulating miRNAs as diagnostic biomarkers for cardiovascular disease

Circulating
miRNAs Expression in cardiovascular disease References

miR-1 Up-regulation in AMI [91, 125, 126]

Up-regulation in ACS [60]

miR-16 Down-regulation in CAD [127]

miR-17 Down-regulation in CAD [128]

miR-19a Up-regulation in AMI [129]

miR-21 Up-regulation in NSTEMI in elderly [130]

Up-regulation in ACS [60]

miR-22 Up-regulation in HF [131]

miR-23b Up-regulation in PH [74]

miR-26a Down-regulation in PAH [77]

miR-30a Up-regulation in AMI [132]

miR-30b Down-regulation in HF vs. non-HF
dyspnea or control

[66]

miR-31 Down-regulation in CAD [127]

miR-92a Down-regulation in CAD [128]

miR-92b Up-regulation in HF [131]

miR-103 Down-regulation in HF vs. non-HF
dyspnea or control

[66]

miR-122 Down-regulation in AMI [53]

miR-125b Down-regulation in AMI [133]

miR-126 Down-regulation in AMI [126]

Down-regulation in CAD [128]

miR-130a Up-regulation in PH [74]

miR-132 Down-regulation in UA [61]

miR-133a Up-regulation in AMI [53, 134]

Up-regulation in ACS [57, 64]

Up-regulation in CAD [134]

miR-133b Up-regulation in AMI [53]

miR-134 Up-regulation in AMI [135]

Up-regulation in APE vs. non-APE or
control

[78]

miR-142-3p Down-regulation in HF vs. non-HF
dyspnea or control

[66]

miR-145 Down-regulation in CAD [127, 128]

miR-150 Down-regulation in UA [61]

Down-regulation in PAH [73]

Down-regulation in atrial fibrillation [80]

miR-155 Down-regulation in CAD [128]

miR-181a Down-regulation in CAD [127]

miR-186 Up-regulation in UA [61]
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Circulating
miRNAs Expression in cardiovascular disease References

miR-191 Up-regulation in PH [74]

miR-195 Up-regulation in AMI [132]

miR-208a Up-regulation in AMI [55]

Up-regulation in ACS [64]

miR-208b Up-regulation in AMI [10, 58-60,
136]

miR-320a Up-regulation in AMI [59]

Up-regulation in HF [131]

miR-320b Down-regulation in AMI [133]

miR-323-3p Up-regulation in ACS [87]

miR-328 Up-regulation in AMI [135]

miR-342-3p Down-regulation in HF vs. non-HF
dyspnea or control

[66]

miR-375 Down-regulation in AMI [53]

miR-423-5p Up-regulation in HF vs. non-HF dyspnea
or control

[65]

Up-regulation in HF [131]

miR-433 Up-regulation in CAD [137]

miR-451 Down-regulation in PH [74]

miR-485-3p Up-regulation in CAD [137]

miR-499 Up-regulation in AMI [10, 53, 58, 59,
136]

Up-regulation in NSTEMI in elderly [130]

Up-regulation in ACS [60, 64]

Up-regulation in HF [136]

miR-1246 Down-regulation in PH [74]

let-7b Down-regulation in AMI [132]

Down-regulation in CTEPH [79]

ACS, Acute coronary syndrome; AMI, acute myocardial infarction; APE, acute pulmonary embolism; CAD, coronary artery disease; CTEPH, 
chronic thromboembolic pulmonary hypertension; HF, heart failure; NSTEMI, non-ST-segment elevation myocardial infarction; PAH, pulmonary 
arterial hypertension; PH, pulmonary hypertension; UA, unstable angina.
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Table 2

Circulating miRNAs as prognostic biomarkers for cardiovascular disease

Circulating
miRNAs Outcome parameter

Expression
associated with
poor outcome

References

miR-10 Allograft rejection after heart
transplantation

Down-
regulation

[72]

miR-16 LV contractility at 6 months
post-MI

Up-regulation [88]

miR-27a LV contractility at 6 months
post-MI

Up-regulation [88]

miR-29a LVEDV at 90 days post-MI Up-regulation [138]

miR-31 Allograft rejection after heart
transplantation

Up-regulation [72]

miR-34a HF within 1 year post-MI Up-regulation [139]

Mortality or HF within 6 months
post-MI

Up-regulation [89]

LVEDD at 1 year post-MI Up-regulation [139]

LVEDV at 6 months post-MI Up-regulation [89]

miR-92a Allograft rejection after heart
transplantation

Up-regulation [72]

miR-101 LV contractility at 6 months
post-MI

Down-regulation [88]

miR-126 Incident MI within 10 years Up-regulation [140]

miR-133a All-cause mortality within 6
months after ACS

Up-regulation [84]

MACE within 6 months post-MI Up-regulation [85]

miR-133b Early myocardial injury and
recovery after heart
transplantation

Up-regulation [141]

miR-134 Cardiac death or HF within 6
months post-MI

Up-regulation [135]

miR-150 LVEDV post-MI Down-
regulation

[86]

LV contractility at 6 months
post-MI

Down-
regulation

[88]

Survival in PAH Down-
regulation

[73]

miR-155 Cardiac death within 1 year
post-MI

Up-regulation [142]

Allograft rejection after heart
transplantation

Up-regulation [72]

miR-192 HF within 1 year post-MI Up-regulation [139]

miR-194 HF within 1 year post-MI Up-regulation [139]

LVEDD at 1 year post-MI Up-regulation [139]

miR-197 Incident MI within 10 years Down-
regulation

[140]

miR-208b Mortality or HF within 30 days
post-MI

Up-regulation [58]

Mortality or HF within 6 months
post-MI

Up-regulation [89]
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Circulating
miRNAs Outcome parameter

Expression
associated with
poor outcome

References

LVEDV at 6 months post-MI Up-regulation [89]

All-cause mortality within 6
months after ACS

Up-regulation [84]

miR-223 Incident MI within 10 years Down-
regulation

[140]

miR-328 Cardiac death or HF within 6
months post-MI

Up-regulation [135]

miR-380* Cardiac death within 1 year
post-MI

Up-regulation [142]

miR-499-5p Mortality or HF within 30 days
post-MI

Up-regulation [58]

miR-652 Readmission for HF post-ACS Down-
regulation

[87]

miR-1202 Response to LVAD therapy Up-regulation [71]

ACS, Acute coronary syndrome; HF, heart failure; LV, left ventricle; LVAD, left ventricular assist device; LVEDD, left ventricular end-diastolic 
dimension; LVEDV, left ventricular end-diastolic volume; MACE, major cardiovascular event; MI, myocardial infarction; PAH, pulmonary 
arterial hypertension.
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