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Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisi-
tions.
Methods: Motivated by the recent developments in low-rank matrix completion theory and its
applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of
undersampled multi-image data that uses prior image information is proposed. Instead of directly
minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix
values is minimized. The reordering is based on the prior image estimates. The method is tested on
brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data.
Results: Good quality images from data undersampled by a factor of three for diffusion imaging
and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained.
Reordering gave visually improved image quality over standard nuclear norm minimization recon-
structions. Root mean squared errors with respect to ground truth images were improved by ∼18%
and ∼16% with reordering for diffusion and perfusion applications, respectively.
Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers
improvements over a standard low-rank constraint for undersampled multi-image MRI reconstruc-
tions. C 2015 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4926777]

Key words: low rank, multi-image MRI, dynamic MRI, diffusion, cardiac perfusion, reordering,
compressed sensing

1. INTRODUCTION

Multi-image MRI encompasses a wide variety of imaging
scenarios such as dynamic imaging, diffusion imaging, real
time imaging, and T1 mapping. Accelerating multi-image
MRI acquisitions is a developing area that can have a high
practical impact. Many groups have applied acceleration
methods for dynamic (multiple time frame) MRI,1–7 although
the concepts typically also apply to other multi-image
acquisitions. These methods undersample k-space data and
then use algorithms beyond the inverse Fourier transform
(IFT) to exploit redundancies between images and obtain
high quality diagnostic images. These methods can be used to
reduce the total scan time or they can lead toward obtaining
new or additional clinical information. For example, higher
temporal resolution and increased slice coverage can be
obtained for dynamic contrast enhanced imaging of the heart.4

Recent developments in matrix completion theory8,9 have
translated to exciting results from low-rank reconstruction

methods applied to MRI.6,10–14 Rank constrained reconstruc-
tions have been applied in the context of static imaging15

as well as in dynamic MRI. Promising results have been
shown for myocardial perfusion MRI (Ref. 6) and breast
imaging,10 among other applications.11,13 The dynamic image
reconstruction methods are based on the assumption that the
matrix containing all of the images from a dynamic sequence
has a rank that is much lower than the number of images.
The idea of using the rank penalty is related to the partially
separable functions approach for dynamic imaging,16 which
exploits the fact that dynamic images can be represented using
relatively few underlying basis functions. Constraining the
temporal basis functions to be K-th order partially separable
translates to constraining the image matrix to be rank K .16

However, as shown in Refs. 6 and 17, the rank constraint
term by itself cannot preserve the quality of images at high
acceleration factors or when there is significant respiratory
motion in the data. In Ref. 6, the rank constraint was used in
conjunction with a total variation (TV) penalty term18 in a joint
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spectral-spatial framework. The method produced improved
image quality over standard rank constrained reconstruction.
In Ref. 17, the standard rank constraint applied to perfusion
data with breathing motion resulted in blurring of the images.
In that work, a large dictionary of temporal bases was used
with a sparsity constraint on the dictionary coefficients in
a blind compressed sensing (CS) framework to improve the
standard rank constrained reconstruction.

Here, we present a new reordering-based rank constrained
reconstruction method for undersampled multi-image MR
data that can improve the standard low-rank method especially
when the dynamic images do not have a very low rank before
reordering (for example, inter-frame motion can increase the
rank, requiring a larger number of basis functions19). The new
constraint implements a modification of the standard rank
constraint that incorporates prior multi-image information.
The reordering method can be thought of as a data-specific
transformation that enhances the low-rank property of the
images making the rank penalty a more powerful regular-
ization constraint. Similar intensity reordering approaches
have recently been proposed in the context of compressed
sensing reconstruction for improving image sparsity by
incorporating prior knowledge about the image into the
reconstruction.20–22 Here, we extend the reordering method to
low-rank reconstructions of multi-image MRI data.

2. METHODS
2.A. Theory

Consider data acquired in k–t space, d(k,t), which is
the complex k-space data acquired at instance “t” in a
multi-image acquisition. We use this notation to also include
diffusion imaging acquisitions, where in that case, t indexes
images with different diffusion weightings. More generally,
t is an index that can include all multi-image k-space data
acquisitions. Putting all of the acquired data together in a data
matrix D of size M×N , we have

D =



d(k1,t1) d(k1,t2) d(k1,t3) · ·· d(k1,tN)
d(k2,t1) d(k2,t2) d(k2,t3) · ·· d(k2,tN)
d(k3,t1) d(k3,t2) d(k3,t3) · ·· d(k3,tN)

...

d(kM,t1) d(kM,t2) d(kM,t3) · ·· d(kM,tN)



,

where M is the total number of k-space data points in a
given “time” frame and N is the total number of time frames.
Each column in D represents a vectorized version of a k-space
frame. The corresponding complex image matrix “I” obtained
by inverse Fourier transforming each k-space frame of fully
acquired data can be represented as the Casorati matrix,

I=



i(x1,t1) i(x1,t2) i(x1,t3) · ·· i(x1,tN)
i(x2,t1) i(x2,t2) i(x2,t3) · ·· i(x2,tN)
i(x3,t1) i(x3,t2) i(x3,t3) · ·· i(x3,tN)

...

i(xM,t1) i(xM,t2) i(xM,t3) · ·· i(xM,tN)



.

Each column in I represents a vectorized version of an
image frame. When k-space data are undersampled, the
missing entries in matrix D are not recovered here by directly
minimizing the rank of the matrix D, instead a rank penalty on
the image matrix I is used as a regularizer with fidelity to the
sampled entries in D. This approach works because images
in a multi-image acquisition are generally correlated resulting
in a significantly lower rank than the number of columns in
I. Low-rank constrained reconstruction from undersampled
data can be mathematically represented as

Ĩ=min
Ĩ

(�
E(Ĩ)− D̃

�2
2 + α(rank(Ĩ))) . (1)

The first data fidelity term in Eq. (1) ensures that the final
reconstructed image has its k-space match the acquired
data. In this term, D̃ is the undersampled k-space data
matrix, Ĩ is the reconstructed image estimate, and E is
the encoding operator that computes Fourier transform of
the image estimate at the sampled k-space locations. The
regularization constraint ensures that the image matrix Ĩ has
a low rank. Directly minimizing Eq. (1) is theoretically not
feasible due to the nonconvexity of the rank penalty term (L0

norm of the singular values of Ĩ), but in practice, methods
have been proposed to minimize the nonconvex functions.6,15

Also, the nonconvex constraint can be relaxed to a convex
version without a significant loss in practical performance8,9

by minimizing Ĩ ′s nuclear norm (NN) denoted as
�
Ĩ
�
∗ which

is the L1 norm of its singular values. A number of fast and
efficient algorithms23,24 have been proposed to minimize the
nuclear norm of a matrix in the context of matrix completion
to recover missing entries exactly. These algorithms can be
applied for reconstructing multi-image MRI data using a
relaxed rank constraint in Eq. (1).

2.A.1. Reordering for lowering the nuclear norm

Reordering image matrix values can lower the nuclear
norm of a matrix. That is, shuffling the elements in a matrix
based on a certain predetermined order for the indices can
lower the nuclear norm. For example, when each column’s
real and imaginary parts in a large rectangular matrix with
complex entries are reordered independently so that each
component is monotonic, its nuclear norm is significantly
lowered.

2.A.2. Row vs column reordering

Figure 1 shows the result of a Monte Carlo simulation with
several different randomly generated rectangular matrices of
a fixed size 16 384×60 (128*128 = 16 384). This size is on
the order of the sizes typically encountered in diffusion and
cardiac perfusion imaging. In these random matrices with
complex entries, real and imaginary parts were independently
picked from a uniformly random distribution and the nuclear
norms were computed before and after reordering. The
random distribution makes this initial example full rank and
thus a worst case for the nuclear norm. Reordering either
along columns or along rows was performed to make the
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F. 1. Illustration of nuclear norm reduction with reordering. Plots of nuclear norms for randomly generated complex matrices without and with reordering.
Corresponding zoomed regions of the plots are also shown.

values monotonically ascending. Reordering along columns
significantly reduced the nuclear norm (by ∼80%) for all
of the 100 000 experiments. While reordering along rows
also lowered the original nuclear norm, higher reductions
were obtained when reordering was done along columns.
This was expected since the number of values in a row
(N) was far fewer than the number of values in a column
(M). This figure serves only to introduce the method, since
such perfect reordering is not attainable without the true
image.

In actual scanner data as well, the nuclear norm
can be significantly reduced by reordering. Figure 2(a)
shows singular values and nuclear norms from a brain
diffusion imaging dataset matrix (size 4096× 64). Values
without reordering, with perfect reordering, and with
estimated reordering based on an initial compressed sensing
reconstruction are plotted in Fig. 2(a). “Perfect reordering”
means the sorting order that gives monotonic ascending values
when applied on the true underlying images (separately for

real and imaginary parts). The nuclear norm of the perfectly
reordered matrix is ∼66% lower than that for the original
matrix. The estimated reordering reduces the nuclear norm
by ∼24% and can be realized in practice.

Figure 2(b) shows an example for a dynamic myocardial
perfusion imaging matrix (size 18 432×80) that has significant
inter-frame respiratory motion. Perfect reordering reduces the
nuclear norm to approximately one-third of the original value.
Although not shown here, a similar trend was observed for
different slices and for different coils in these datasets. And
as in the Monte Carlo experiments in Fig. 1, reordering along
the columns lowered the nuclear norm more than reordering
along rows.

2.A.3. Mixing ascending and descending reorderings

While there are many options on how to reorder the data,
we tested two scenarios using the cardiac perfusion dataset (i)
if monotonic ordering of all of the columns gave a low rank

F. 2. Nuclear norm reduction in actual scanner data. Plot of singular values of image matrix obtained from (a) a fully sampled diffusion imaging dataset with
64 directions and (b) a fully sampled perfusion dataset with 80 time frames. Nuclear norms (NNs) without and with reordering are also shown. Corresponding
zoomed versions are also shown.
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F. 3. Determining optimal reordering of columns using Casorati matrix from a cardiac perfusion dataset. (a) Comparison of nuclear norms (i) without any
reordering (labeled original norm) with (ii) reordering all columns in an ascending fashion (labeled all columns ascend) and with (iii) reordering only a random
subset of columns in ascending fashion while the remaining columns reordered in descending fashion for 100 000 experiments. (b) Comparison of nuclear norms
with different ascending/descending reordering combinations for real and imaginary parts to determine optimal reordering within each column.

and (ii) if ordering the real and imaginary parts differently
within each column lowered the nuclear norm.

2.A.3.a. Across columns. Figure 3(a) shows the nuclear
norms of myocardial perfusion Casorati matrix in which
randomly selected columns are reordered to be ascending
and the remaining columns to be descending. For all of the
100 000 different sets of random selections, the nuclear norm
was lower when all of the columns were ascendingly or when
all of the columns were descendingly reordered.

2.A.3.b. Within a column. No significant differences in
nuclear norms were observed with different ascend-
ing/descending combinations for real and imaginary parts
within a column. Figure 3(b) compares the nuclear norms
for four possible scenarios in which reordering both real and
imaginary parts of each column independently to be ascending
(or descending) gave the lowest nuclear norm.

2.B. Reconstruction using a low-rank regularizer
with reordering

We now introduce a new and modified regularizer that
better satisfies the low-rank assumption given as min

�
O(Ĩ)�∗,

where O is an operator that reorders each column in multi-
image set Ĩ independently, based on a predetermined ordering
from a prior. Within each column, ordering is independent
for its real and imaginary components. O can be thought of
as a data-specific transformation operator that injects prior
image information to better suit the low-rank constraint.
Reconstruction is now performed as

Ĩ=min
Ĩ

(�
E(Ĩ)− D̃

�2
2 + α

�
O(Ĩ)�∗

)
. (2)

Figure 4 shows an example of reconstruction from R = 4
data with perfect reordering for diffusion and perfusion
datasets. Injecting the correct prior information into the
reconstruction significantly improves the image quality as
compared to standard rank constrained reconstruction with no
prior information.

2.B.1. Obtaining prior image information

In practice, it is not possible to obtain the exact ordering
to drastically reduce the nuclear norm. However, a number of

schemes can be used that can provide an “approximately
perfect” ordering. Here, we use a compressed sensing
reconstruction as a prior to obtain the ordering for the low-rank
reconstructions. Undersampled data are first reconstructed
using a spatiotemporal constrained reconstruction (STCR)20

with temporal and spatial total variation constraints by
minimizing the cost function C shown as follows:

C =
�
E(Ĩ)− D̃

�2
2+α1TVt(P(Ĩ))+α2TVs(Ĩ). (3)

TVt and TVs are the temporal and spatial TV constraints4

and P is a temporal reordering operator that uses the
central low resolution images obtained from variable density
undersampling for reordering each pixel’s “time curve.”20

Minimization of C is performed using an iterative gradient
descent method.20 Having the preliminary reordering in the
temporal TV term in Eq. (3) improves the image quality for
the prior generation step. α1 and α2 are the weighting factors
for “temporal” and spatial constraint terms, respectively,
and are chosen empirically. Figure 2 shows an example
of the effect of the reorderings based on reconstructions
from Eq. (3). The singular values labeled as “estimated
reordering” are from using Eq. (3) and those singular values
decay more rapidly compared to the original singular values,
though not as rapidly as with perfect reordering. This
effect holds for both the diffusion and perfusion imaging
cases.

2.B.2. Low-rank reconstruction with reordering

After the compressed sensing reconstruction, the real and
imaginary parts of these complex prior images are sorted
according to their pixel intensity values and the sorting
order is used subsequently for a reordered rank constrained
reconstruction. A projection onto convex sets (POCSs)
based alternating minimization scheme is used to minimize
Eq. (2). The current image estimate is projected on the
data fidelity term [step (iv) in the flowchart below] and
then a singular value thresholding (SVT) algorithm24 is
used to enforce the regularization. We note that the
reordering step in the algorithm injects prior information
into the nuclear norm constraint and does not change the
convexity of the cost function. The convergence of SVT
for nuclear norm minimization is established in Ref. 24.

Medical Physics, Vol. 42, No. 8, August 2015
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F. 4. Illustration of rank constrained reconstruction with perfect reordering. (a) Fully sampled data with IFT reconstruction. One diffusion encoding direction is
shown. (b) Corresponding R = 4 IFT reconstruction. (c) Corresponding R = 4 standard low-rank reconstruction. (d) Corresponding R = 4 low-rank reconstruction
with reordering. [(e)–(h)] Same as [(a)–(d)] but for a time frame in a perfusion dataset.

The reconstruction steps are summarized in the flowchart
below.

2.C. Application to multi-image data

The reordered rank constrained reconstruction method was
tested on two different multi-image MR acquisitions that could
benefit from an accelerated acquisition: (i) diffusion imaging
of the brain and (ii) dynamic cardiac perfusion imaging. All
of the data were acquired in accordance with Institutional
Review Board regulations at The University of Utah.

2.C.1. Diffusion imaging

Fully sampled diffusion imaging data of the brain of
a patient with a recent stroke were obtained using a
simultaneous image refocusing (SIR) sequence25 on a Siemens
1.5 T scanner. The SIR sequence allows acquisition of multiple
slices simultaneously, which is faster than a conventional slice
by slice EPI acquisition when the diffusion preparation period
is sizable, and is complemented by undersampling. A SIR
factor of two was used to image two slices in one EPI readout.
The scan parameters were TR = 5.7 s, TE = 138 ms, slice
thickness= 2.5 mm, matrix size= 128×64 (for two slices),
and in-plane pixel size was 1.8 mm2. One image with b-value
= 0 and 64 encoding directions with a b-value of 800 were
acquired for 36 slices. The k-space data for the two SIR slices
acquired in a single readout were undersampled offline in a
variable density random fashion by a factor of three with 13
lines fully sampled in the center and higher frequency lines
randomly sampled for different diffusion encoding directions.
A compressed sensing reconstruction prior from Eq. (3) with
total variation constraints was generated for each coil data
with α1 and α2 chosen as 0.02 and 0.005, respectively. The
low-rank reconstruction with reordering was then performed
using the sorting orders from the prior images and the
individual coil images were combined in a sum-of-squares
fashion.

Medical Physics, Vol. 42, No. 8, August 2015
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F. 5. Comparison of diffusion imaging reconstructions. (a) Ground truth image for a diffusion direction reconstructed using inverse Fourier transform from
fully sampled k-space data. [(b) and (c)] Corresponding R = 3 rank constrained reconstructions without and with reordering, respectively. [(d) and (e)] Absolute
difference images between (a) and (b) and between (a) and (c), respectively.

2.C.2. Dynamic cardiac perfusion imaging

Fully sampled dynamic cardiac perfusion data were ac-
quired on a Siemens 3 T scanner using a saturation recov-
ery sequence. The scan parameters were TR = 1.8 ms, TE
= 1.36 ms, slice thickness = 8 mm, in-plane resolution
= 2.2×3 mm2, matrix size= 192×96, and gadolinium DTPA-
BMA dose= 0.05 mmol/kg. Fully sampled k-space data for
each coil were undersampled in a variable density random
fashion by a factor of 3.5 with 14 fully sampled phase encodes
in the center. The phase encodes toward the outer regions of
k-space were sampled in a random fashion for different
time frames. The data had significant inter-frame motion due
to breathing. Compressed sensing reconstruction by Eq. (3)
with α1 and α2 chosen as 0.025 and 0.008, respectively,
was used to create the prior for rank reconstruction with
reordering.

For both of the applications, the α1 and α2 parameters
for generating the prior were chosen to minimize the
reconstruction error compared to the true reconstructions
using fully sampled data. For the low-rank reconstruction
stage, the reconstruction parameter τ was also chosen to
optimize the reconstruction error compared to the true
reconstructions using fully sampled data. We have found
in previous works that typically these same reconstruction
parameters work for prospectively undersampled datasets
of the same data type and size, without the need to tune
parameters for individual datasets.4,20

2.D. Evaluation of the reconstructions

Undersampled data reconstructions were compared to fully
sampled inverse Fourier reconstructions that were considered
as ground truth. General as well as application specific
evaluation metrics described below were used.

2.D.1. Diffusion imaging

Reconstructions from undersampled data were compared
to ground truth in terms of difference images for different
encoding directions to visualize any loss of structure or
resolution. Root mean squared errors were also computed as
a first-order error metric to compare the two rank constrained
reconstructions—without and with reordering—relative to
ground truth.

2.D.2. Dynamic cardiac perfusion imaging

The spatial and temporal characteristics of the undersam-
pled reconstructions were compared to those from ground truth
images from fully sampled IFT reconstructions. Reconstruc-
tion errors were quantified in terms of root mean squared
differences between estimated and true pixel intensities over
all time frames. Mean signal intensity time curves for regions
of interest in the left ventricular blood and the myocardium
were computed and compared.

3. RESULTS
3.A. Diffusion imaging

Figure 5 shows the results and evaluation of the proposed
reconstruction method for diffusion imaging. Figure 5(c)
shows that R= 3 reconstruction with reordered rank constraint
is sharper than the standard low-rank reconstructions shown
in Fig. 5(b), respectively. Absolute difference images cor-
responding to low-rank reconstruction without reordering
have more structures than those corresponding to reordered
rank constraint. Root mean squared error was 18% lower
for the proposed method than the low-rank method without
reordering.

3.B. Dynamic cardiac perfusion imaging

Figure 6 compares and evaluates the results obtained
from the undersampled rank constrained reconstructions
with reordering. Figure 6(b) from the standard low-rank
reconstruction is more blurred in the heart region compared
to the reordered rank reconstruction in Fig. 6(c). The RMS
error for reordering was lower than that without reordering
by 16%. In Fig. 6(d), the left ventricular blood pool time
curve for the reordered rank constraint, labeled “low rank
+ reordering,” matches the true time curve better at the peak
intensity. Lower peak intensity in the left ventricular blood
pool curve would cause inaccurate perfusion estimates when
performing quantitative analysis.26

4. DISCUSSION

We presented a novel framework to improve rank
constrained reconstructions of multi-image MRI data by
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F. 6. Comparison of perfusion imaging reconstructions—spatial and temporal characteristics. (a) Ground truth postcontrast image reconstructed using inverse
Fourier transform from fully sampled k-space data. ROIs are shown in the myocardium and left ventricular blood pool. Corresponding R = 3.5 reconstruction
with standard rank constraint (b) and with reordered rank constraint (c). (d) Mean intensity time curves from the blood pool and myocardium ROIs.

injecting prior information via intensity reordering. That is, a
data reordering derived from an initial image reconstruction
was used so that image estimates similar to the prior would
have a reduced nuclear norm. The method of reordering
employed here made the prior be monotonically increasing
along the columns of its Casorati matrix. However, reordering
a matrix along columns to make them monotonic may
not always lower the nuclear norm. For example, consider

1+ i −1− i
1− i −1+ i

0 0


. In this case, the matrix rank increases from

1 to 2 after reordering the real and imaginary components
independently along columns. Since similar examples can
be found in cases of relatively small matrices and rank
= 1 matrices where reordering increases the original nuclear
norm, we performed simulations to estimate how often an
increase in rank could occur. Figure 7 shows results of Monte
Carlo simulations in the form of error maps.

Each intensity in the error map indicates the number of
times (out of 100 000 randomly generated complex matrices
of a fixed size) that the reordered nuclear norm was equal to
or greater than the original norm. For example, a value of 1
means that in all of the 100 000 cases reordering increased or
did not change the nuclear norm. Any nonzero value in the
image reflects that reordering increased or did not change the
matrix’s original nuclear norm in at least 1 out of 100 000
matrices. The location in the error map represents the matrix
size. Reordering can increase or keep the original nuclear
norm for small sized matrices or for matrices with rank-1
or when the matrices already have extremely low rank and
are not compressible further. But as the matrix size increases
and becomes more rectangular, the fraction is zero. This is
consistent with the results in Fig. 1 that showed Monte Carlo
simulations for large rectangular matrices and for multi-image
data of interest, where reordering columns with a good prior

F. 7. Monte Carlo simulations using random matrices of smaller sizes to determine if reordering increases the nuclear norm. (a) Map in which color represents
the fraction of the number of times (out of 100 000 randomly generated complex matrices of a fixed size) reordering resulted in a nuclear norm that was equal to
or greater than the nuclear norm of the original matrix. The size of the matrix is given by the x and y coordinates of the location. (b) Detail of the top left corner
of the map for low values of N and M .
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always resulted in lowering the nuclear norm. Making the
columns monotonic is the only one way to reorder and lower
the nuclear norm of a complex Casorati matrix and other even
more data-specific ways to reorder entries of the Casorati
matrix could lead to lower nuclear norms.

Reordering all of the time frames with the same pixel
ordering in each would not change the nuclear norm, so it is
the differences in reordering relative to other image frames
(vectors) that is important. Promising results were shown
from R= 3 diffusion imaging data and from R= 3.5 perfusion
imaging data that had significant inter-frame respiratory
motion during contrast uptake. Note that undersampling
k-space data by a factor of three for diffusion imaging
does not directly translate to threefold scan time reduction
because of the predominant diffusion preparation time in echo
planar acquisitions. But the undersampling and reconstruction
scheme proposed here can be used in conjunction with SIR
or multiband acquisitions27,28 to give a true threefold scan
time reduction. Higher accelerations with reordering may be
possible with improved priors.

As well, higher acceleration factors (beyond 3.5) for
perfusion imaging may be possible when there is no motion
in the data. Acceleration factors up to 8 (that correspond
to a net factor of ∼5–6 due to training data) have been
reported for breath-hold cardiac perfusion acquisitions.29–31

However, good breath-hold acquisitions are not always
possible especially at stress imaging. We also note that the
“R” factor for a reconstruction method depends on the size of
the fully sampled acquisition matrix and the acquired spatial
and temporal resolution. Higher R may be possible if the fully
sampled matrix has a large number of phase encodes.

4.A. Relation to previous reordering
and motion-compensation methods

Reordering-based approaches have been proposed previ-
ously in the context of CS reconstructions in order to inject
prior information and enhance signal sparsity.20–22 In Ref. 20,
low resolution images were used to obtain the multi-image
ordering of each pixel. Monotonic reordering was used with
the TV constraint in the multi-image direction. We found
that using low resolution images for rank reconstructions
with reordering along columns was detrimental, reordering
along rows may be more appropriate in that case. This could
be due to the fact that low resolution images are better
at preserving overall temporal information as compared to
preserving spatial features of the images. Wu et al.21 used
SENSE (Ref. 32) reconstructions as a prior to determine
reorderings in order to improve static brain imaging CS
reconstructions. In Ref. 22, reordering of blocks of pixels led
to improvements in cardiac cine imaging reconstructions over
keyhole, sliding window and k–t BLAST methods. In contrast
to these previous methods, here, we (i) used reordering
based on CS priors and (ii) used reordering to reduce the
nuclear norm of the dataset for improved reconstructions.
As well, here, we do a vectorized spatial reordering for
each multi-image or time frame. This is because reordering
along columns outperformed reordering rows since the image

matrices are very rectangular. Depending on the application,
a “hybrid prior” can be generated by combining different
types of initial reconstructions that could then be used for
final reconstruction with reordering for improved quality.
Reconstruction for prior generation as well as the final
reconstruction could also conceivably benefit from nonconvex
formulations.6,33,34

Motion compensation methods that help improve standard
rank constrained reconstructions have also been proposed
recently.33,35,36 The methods require motion estimation and
compensation steps every iteration to reduce between-frame
motion and increase temporal correlations. Reordering can
be thought of as a different way to improve rank constrained
reconstructions, without the need to estimate and compensate
for motion. In this light, reordering may be more applicable
for multi-image datasets like diffusion imaging where the
signals can change significantly across diffusion directions
even without any inter-image motion.

4.B. Sensitivity to prior

Having a good quality prior is important to obtain
improvements with reordering for low-rank reconstructions.
While use of a high quality prior may not offer significant
improvements over the prior (for example, if the prior is very
close to the true image), injecting a poor image prior can be
detrimental to final reconstructions. Figure 8 shows the effect
of using different quality priors for low-rank reconstructions
with reordering.

When ordering from the optimal STCR prior [Eq. (3)] is
used, we obtained reconstruction shown in Fig. 8(b), RMS
error for this reconstruction was∼10-fold higher than the RMS
error for the reconstruction when using ground-truth/perfect
prior. Using a blurred prior shown in Fig. 8(c) (obtained by
smoothing of the optimal STCR prior) results in Fig. 8(d)
which although sharper (9% lower blur metric37) and with
12% lower RMS error than the prior, the result is blurred
compared to Figs. 8(a) and 8(b). A similar detrimental effect
is observed when a noisy prior is used. Figure 8(e) is obtained
by adding random Gaussian noise to the real and imaginary
parts of the complex valued optimal STCR prior. While Fig.
8(f) has 31% lower RMS error and 31% lower standard
deviation of pixels in a background ROI when compared
to its corresponding prior, the quality is degraded compared
to Fig. 8(b). In practice, for a given application, a rigorous
analysis can be performed using different priors to assess
the improvements before choosing a method for clinical
use.

4.C. Sensitivity to threshold parameter, τ

The threshold parameter τ in the singular value
thresholding algorithm [step (vi) in the flowchart] is an im-
portant parameter that affects the reconstructed image quality.
A significantly lower value than optimal does not remove
undersampling artifacts while a large value results in a loss of
temporal dynamics in multi-image acquisitions. Figure 9(b)
shows increased blurring with artifacts as compared to
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F. 8. Reconstruction sensitivity to prior image quality. (a) Ground truth
fully sampled time frame reconstructed using IFT. (b) Reordered rank con-
strained reconstruction with prior estimated using spatiotemporal TV recon-
struction [Eq. (3)]. (c) Overly smoothed version of the STCR prior obtained
with a spatial total variation filter. (d) Reordered rank constrained recon-
struction using the smoothed STCR prior in (c). (e) Noisy version of STCR
prior obtained by adding complex random Gaussian noise. (f) Reordered rank
constrained reconstructions using noisy STCR prior in (e).

Fig. 9(a) when the optimal τ value was scaled up by a factor
of five. Scaling down τ by a factor of five, to 0.2, increased
noise although imperceptibly. However, compared to standard
low-rank reconstruction, reordered rank reconstruction is less
sensitive to variations in optimal τ. As an example, the second
row of Fig. 9 shows reconstructions using orderings obtained
from fully sampled data. Figures 9(e) and 9(f) show images
corresponding to the same changes in τ values as in the top
row, but the image quality is not significantly different from
that obtained with the optimal τ, shown in Fig. 9(d).

F. 9. Reconstruction sensitivity to reconstruction parameter τ. (a) Low-
rank reconstruction with optimal τ value. Corresponding image with τ scaled
up by a factor of five (b) and scaled down by a factor of five (c). [(d)–(f)] Same
as [(a)–(c)] but with reordered rank constraint.

4.D. Increasing undersampling

For diffusion imaging of brain and perfusion imaging
of the heart with respiratory motion, the method achieved
acceleration factors of R= 3 and R= 3.5, respectively, without
a significant loss in image quality. Increasing the amount
of undersampling causes increased reconstruction error that
is almost linear with the undersampling factor. Figure 10
shows plots of normalized total reconstruction error with
respect to ground truth for different undersampling factors.
Ground truth images and images reconstructed using STCR
with TV constraints, Eq. (3), were used as priors for all
of the undersampling factors. While the errors increase
for both cases with increases in undersampling, the plots
with reordering estimated using STCR prior [Eq. (3)] have
lower errors than the corresponding plots without reordering.
The error increases are much lower and increase at a
slower rate for the perfect reordering case that uses ground
truth images. While dependent on the quality of the prior
used for reordering, the image quality degradation at large
undersampling factors could be comparable to the standard
rank constrained approach.

4.E. Computation time

Reordered rank constrained reconstruction was faster than
the standard low-rank reconstruction except for the additional
time required for generating the prior (which approximately
doubles the time). The main computational load for the rank
reconstruction is from the SVT step in each iteration. This
step took ∼0.3 s/iteration in  on a computer with 96 GB
RAM and an eight core processor for the perfusion dataset
with matrix size 18 432× 80 (192∗96× 80). Ordering and
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F. 10. Normalized reconstruction error plot for different undersampling factors without any reordering (labeled “low rank”) and with estimated and perfect
reordering for (a) diffusion imaging and (b) perfusion imaging data.

its inverse operations took an additional ∼0.1 s/iteration.
However, the reordering algorithm converged within 80
iterations while the standard low-rank reconstruction took
approximately 150 iterations to converge. We note that the
number of iterations for convergence can change depending
on the underlying data resolution, quality, and also the amount
of undersampling.

5. CONCLUSION

Use of a low-rank constraint with signal intensity reorder-
ing offers a flexible and relatively simple way to improve
low-rank constrained reconstructions of undersampled multi-
image acquisitions by injecting prior information in the form
of signal intensity ordering. While it is impossible to ascertain
a perfect reordering in practice, approximate orderings
gleaned from existing reconstruction schemes can offer
improvements. While similar to published methods applying
reordering with CS methods, low rank with reordering has
different trade-offs and different ordering options for reducing
the nuclear norm. Reordering done column-wise on each
image vector in the Casorati matrix with separate real and
imaginary orderings gave improved results for low-rank
reconstructions.
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