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Continuous-time Markov processes over finite state-spaces are widely used to model dynamical
processes in many fields of natural and social science. Here, we introduce a maximum likelihood
estimator for constructing such models from data observed at a finite time interval. This estimator is
dramatically more efficient than prior approaches, enables the calculation of deterministic confidence
intervals in all model parameters, and can easily enforce important physical constraints on the models
such as detailed balance. We demonstrate and discuss the advantages of these models over existing
discrete-time Markov models for the analysis of molecular dynamics simulations. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4926516]

I. INTRODUCTION

Estimating the parameters of a continuous-time Markov
jump process model based on discrete-time observations
of the state of a dynamical system is a problem which
arises in many fields of science, including physics, biology,
sociology, meteorology, and finance.1–4 Diverse applications
include the progression of credit risk spreads,5 social mobility,6

and the evolution of DNA sequences in a phylogenetic
tree.7 In chemical physics, these models, also called mas-
ter equations, describe first-order chemical kinetics, and
are the principal workhorses for modeling chemical reac-
tions.8

For complex physical systems, the derivation of kinetic
models from first principles is often intractable. In these
circumstances, the parameterization of models from data
is often a superior approach. As an example, consider the
dynamical behavior of solvated biomolecules, such as proteins
and nucleic acids. Despite the microscopic complexity of
their equations of motion, relatively simple multi-state kinetics
often arise, as exemplified by the ubiquity of two- and few-
state Markov process models for protein folding.9–14

Due in part to the unavailability of computationally
efficient and numerically robust estimators for continuous-
time Markov models, in the field of computational biophysics,
discrete-time Markov models have been widely used to fit and
interpret the output of molecular dynamics (MD) simulations.
Also called Markov state models (MSMs), these methods
describe the molecular kinetics observed in a MD simulation
as a jump process with a discrete-time interval generally on
the order of∼10–100 ns.15,16 These models provide convenient
estimators for key quantities of interest for molecular systems,
such as the free energies of various metastable conformational
states, the time scales of their interconversion, and the
dominant transition pathways.17–20

In this work, we introduce an efficient maximum like-
lihood estimator for continuous-time Markov models on a

finite state space from discrete-time data. The source of data
used here is identical to that employed in fitting discrete-
time Markov chain models—namely, the number of observed
transitions between each pair of states within a specified time
interval. We demonstrate the properties of these models on
simple systems, and apply them to the analysis of the folding
of the FiP35 WW protein domain.

II. BACKGROUND

Consider a time-homogenous continuous-time Markov
process {X(t) : t ≥ 0} over a finite state space, S = {1, . . . ,
n}. The process is determined completely by an n × n matrix
K, variously called its rate matrix, infinitesimal generator,21

substitution matrix,22 or intensity matrix.23

For an interval τ > 0, begin with the n × n matrix, T(τ),
of probabilities that the process jumps from one state, i, to
another state, j,

T(τ)i j = P(X(t + τ) = j | X(t) = i), (1)

which, by time-homogeneity is assumed to be independent of
t. The rate matrix of the process, K, is defined as

K ≡ lim
τ→0+

T(τ) − In
τ

. (2)

Given K and any time interval, τ, the transition probability
matrix, T(τ), can be expressed as a matrix exponential,

T(τ) = exp(Kτ) ≡
∞
i=0

τiKi

i!
. (3)

A particular rate matrix K corresponds to a valid
continuous-time Markov process if and only if its off-diagonal
elements are non-negative and its row sums equal zero.
These constraints are necessary to ensure that the probabilities
propagated by the dynamics remain positive and sum to one.
We denote by K this set of admissible rate matrices,
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K =




K = {ki j} ∈ Rn×n : ki j ≥ 0 for all i , j, kii = −

j,i

ki j


. (4)

Furthermore, we denote by T the set of all embeddable
transition probability matrices, that is, those which could
originate as the transition probability matrix, T(τ), induced
by some continuous-time Markov process,

T =
�
T ∈ Rn×n : ∃ K ∈ K s.t. T = exp(K)	 . (5)

It is well-known that set T is a strict subset of the
set of all stochastic matrices; not all stochastic matrices are
embeddable.24,25 A complete description of the topological
structure of T as well as the necessary and sufficient
conditions for a stochastic matrix to be embeddable are open
problems in the theory of Markov processes.

Although Eq. (2) serves as the definition of the rate
matrix of a continuous-time Markov process, it is generally
not directly suitable as a method for parameterizing Markov
models, particularly for applications in chemical kinetics.
The attempt to numerically approximate the limit in Eq. (2)
from empirically measured transition probabilities would be
valid if the generating process were exactly Markovian.
However, in chemical kinetics, a Markov process model—
the chemical master equation—is an approximation valid
only for time scales longer than the molecular relaxation
time.26,27 A suitable Markov model which is predictive
over long time scales must capture both the instantaneous
kinetics as well as, to use the vocabulary of Mori-Zwanzig
formalism, the effective contribution of the integrated memory
kernel.28,29

Our goal is to address this parameterization problem. The
primary contribution of this work is an efficient algorithm for
estimating K from observed discrete-time observations. We
adopt a direct maximum likelihood approach, with O(n3) work
per iteration. Many constraints on the solution, such as detailed
balance or specific sparsity patterns on K, can be introduced
in a straightforward manner without additional cost.

Prior work on this subject is numerous. Crommelin
and Vanden-Eijnden proposed a method for estimating K
in which a discrete-time transition probability matrix is first
fit to the observed data, followed by the determination of
the rate matrix, K such that exp(Kτ) is nearest to the target
empirical transition probability matrix.30,31 The nature of this
calculation depends on the norm used to define the concept of
“nearest”: under a Frobenius norm, this problem has a closed
form solution, while the norm of Crommelin and Vanden-
Eijnden leads to a quadratic program. A similar approach was
advocated by Israel et al.32

Kalbfleisch and Lawless proposed a maximum likelihood
estimator for K.33 Without constraints on the rate matrix,
their proposed optimization involves the construction and
inversion of an n2 × n2 Hessian matrix at each iteration of the
optimization, rendering it prohibitively costly (O(n6) scaling
per iteration) for moderate to large state spaces.

A series of expectation maximization (EM) algorithms
are described by Asmussen, Nerman and Olsson, Holmes and
Rubin, Bladt and Sørensen, and Hobolth and Jensen.22,23,34,35

These algorithms treat the state of the system between
observation intervals as an unobserved latent variable, which
when interpolated via EM leads to more efficient estimators. A
review of these algorithms is presented by Metzner et al.21 At
best, each iteration of the proposed methods scales as O(n5).

III. MAXIMUM LIKELIHOOD ESTIMATION

A. Log-likelihood and gradient

We take our source of data to be one or more observed
discrete-time trajectories from a Markov process, x = {x0,
xτ, . . . , xNτ}, in a finite state space, observed at a regular
time interval.

The likelihood of the data given the model and the initial
state is given in terms of the transition probability matrix as
the product of the transition probabilities assigned to each of
the observed jumps in the trajectory,

P(x |K, x0) =
N−1
k=0

T(τ)xkτ, x(k+1)τ. (6)

When more than one independent trajectory is observed, the
data likelihood is a product over trajectory with individual
terms given by Eq. (6).

Because many transitions are potentially observed mul-
tiple times, Eq. (6) generally contains many repeated terms.
Define the observed transition count matrix C(τ) ∈ Rn×n,

C(τ)i j =
N−1
k=0

1(xkτ = i) · 1(x(k+1)τ = j). (7)

Collecting repeated terms, the likelihood can be rewritten more
compactly as

P(x |K, x0) =

i, j

T(τ)C(τ)i j
i j . (8)

Suppose that the rate matrix, K is parameterized by a
vector, θ ∈ Rb of independent variables, K = K(θ). In the most
general case, every element of the rate matrix may individually
be taken as an independent variable, with b = n2 − n. As
discussed in Section III B, other parameterizations may be
used to enforce certain properties on K. The logarithm of data
likelihood is

L(θ; τ) ≡ ln P(x |K(θ), x0) (9)

=

i, j

Ci j(τ) ln T(τ)i j (10)

=

i, j

(
C(τ) ◦ ln exp

�
τ K(θ)�)

i j
, (11)
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where ln(X) is the element-wise natural logarithm, exp(X)
matrix exponential, and X ◦ Y is the Hadamard (element-
wise) matrix product. Note that the element-wise logarithm
and matrix exponential are not inverses of one another.

The most straightforward parameter estimator—the max-
imum likelihood estimator (MLE)—selects parameters which
maximize the likelihood of the data,

θMLE = arg max
θ

L(θ; τ). (12)

To maximize Eq. (12), we focus our attention on quasi-
Newton optimizers that utilize the first derivatives of L(θ; τ)
with respect to θ. This requires an efficient algorithm for
computing ∇θL(θ; τ). We achieve this by starting from the
eigendecomposition of K,

K = Vdiag(λ)UT , (13)

where the columns of U and V contain the left and right
eigenvectors of K, respectively, jointly normalized such that
V−1 = UT , and λ are the corresponding eigenvalues. Assuming
that K has no repeated eigenvalues, the directional derivatives
of induced transition probability matrix, ∂T(τ)i j/∂θu are given
by33,36

∂T(τ)i j
∂θu

= V
�(UT(∂K/∂θu)V) ◦ X(λ, t)� UT , (14)

where X(λ, t) is an n × n matrix with entries

[X(λ, t)]i j =



τ exp(τλi), i = j,

exp(τλi) − exp(τλ j)
λi − λ j

, i , j.
(15)

The elements of the gradient of the log-likelihood can
then be constructed as
∂L(θ; τ)

∂θu
=


i j

(
D ◦ V

( �
UT(∂K/∂θu)V�

◦ X(λ, t))UT
)
i j
,

(16)

where Di j = C(τ)i j/Ti j.
A direct implementation of Eq. (16) requires at least 4

n × n matrix multiplies for each element of θ, indexed by u.
If the parameter vector, θ, contains O(n2) parameters, then
computing the full gradient will require O(n5) floating point
operations (FLOPs). However, two properties of the Hadamard
product and matrix trace can be exploited to dramatically
reduce the computational complexity of constructing the
gradient vector to O(n3) FLOPs,

i j

(A ◦ B)i j = Tr
�
ABT

�
, (17)

Tr
�
AT(B ◦ C)� = Tr

�
BT(A ◦ C)� . (18)

Using these identities, the gradient of the log-likelihood
can be rewritten as
∂L(θ; τ)

∂θu
=


i j

(
∂K/dθu ◦

(
U

((VTDU) ◦ X(λ, t))VT
)                                                          

Z

)
i j

.

(19)

Note that because Z is independent of u, it can be
constructed once at the beginning of a gradient calculation

at a cost of O(n3) FLOPs, and reused for each index, u. The
remainder of the work involves constructing the derivative
matrix ∂K/∂θu, which is generally quite sparse, and a
single inexpensive sum of a Hadamard product. Overall, this
rearrangement reduces the complexity of constructing the full
gradient vector from O(n5) to O(n3) FLOPs.

B. Reversible parameterization

In the application of these models to domain-specific
problems, additional constraints on the Markov process may
be known, and enforcing these constraints during parameteri-
zation can enhance the interpretability of solutions as well as
provide a form of regularization.

For many molecular systems, it is known that the
underlying dynamics are reversible, and this property can
be enforced in Markov models as well. A Markov process
is reversible when the rate matrix, K, satisfies the detailed
balance condition with respect to a stationary distribution, π,
towards which the process relaxes over time,

πK = 0, (20)
πiki j = π jk j i ∀ i , j. (21)

This constraint can be enforced on solutions through
the design of the parameterization function, K(θ). If K is
reversible, Eq. (21) implies that a real symmetric n × n matrix,
S, can be formed, which we refer to as the symmetric rate
matrix, such that

S = ST = diag(√π)Kdiag(√π)−1. (22)

Because of this symmetry and the constraint on the row
sums of K, only the upper triangular (exclusive of the main
diagonal) elements of S, and the stationary vector, π, need to be
directly encoded by the parameter vector, θ, to fully specify
K. Furthermore, since the elements of π are constrained to
be positive, working with the element-wise logarithm of π
can enhance numerical stability. For the elements of S, which
are only constrained to be non-negative, the same logarithm
transformation is inapplicable, as it is incompatible with
sparse solutions that set one or more rate constants equal to
zero. For these reasons, we use a parameter vector, of length
b =

(
n+1

2

)
, with θ = (θ(S), θ(π)). The first

� n
2

�
elements, notated

θ(S), encode the off-diagonal elements of S. The remaining
n elements are notated θ(π), and are used to construct the
stationary distribution, π. From S and π, the off-diagonal and
diagonal elements of K are then constructed from Eq. (22). In
explicit notation, the construction is

vech(S)i = θ
(S)
i , i ∈ {1, . . . ,n(n − 1)/2}, (23)

πi =
exp(θ(π)i )n
j=1 exp(θ(π)j )

, i ∈ {1, . . . ,n}, (24)

Ki j =




[D(√π)−1SD(√π)]i j, i , j

−


j,i
Ki j, i = j

, (25)

where vech(A) is the row-major vectorization of the elements
of a symmetric n × n matrix above the main diagonal,
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vech(A) = [a1,2, . . . ,a1,n,a2,3, . . . ,a2,n, . . . ,an−1,n]T . (26)

The necessary gradients of Eq. (25), ∂Ki j/dθu are sparse.
For fixed 1 ≤ u ≤

� n
2

�
, the n × n matrix ∂Ki j/dθu over all

i, j contains only four nonzero entries, whereas for
� n

2

�
< u

≤
(
n+1

2

)
, the same matrix contains 3n − 2 nonzero entries.

The sum of its Hadamard product with Z in Eq. (19) can thus
be computed in O(1) or O(n) time. For the remainder of this
work, we focus exclusively on this reversible parameterization
for K(θ).

C. Optimization

Equipped with the log-likelihood and an efficient algo-
rithm for the gradient, we now consider the construction
of maximum likelihood estimates, Eq. (12). Among the
first-order quasi-Newton methods tested, we find Limited-
memory Broyden-Fletcher-Goldfarb-Shanno optimizer with
bound constraints (L-BFGS-B) to be the most successful and
robust.37,38

To begin the optimization, we choose the initial guess
for θ according to the following procedure. First, we fit the
maximum likelihood reversible transition probability matrix
computed using Algorithm 1 of Prinz et al.39 Next, we compute
its principal matrix logarithm, K, using an inverse scaling and
squaring algorithm, and scaling by τ.40 Generally, the MLE
reversible transition matrix is not embeddable, and thus the
principal logarithm is complex or has negative off-diagonal
entries, and does not correspond to any valid continuous-time
Markov process. We take the initial guess from θ(π) directly
from the stationary eigenvector of the MLE transition matrix,
and θ(S) from the nearest (by Frobenius norm) valid rate matrix
to K, given by max(Re(K),0).25

The optimization problem is non-convex in the general
case and may have multiple local minima. Varying the opti-
mizer’s initialization procedure can thus mitigate the risk of
convergence to a low quality local minimum. One alternative
initialization K is the pseudo-generator, Kp = (T(τ) − In)/τ,
which arises from a first-order Taylor approximation to the
matrix exponential. After the optimization has terminated,
a useful check is to compare the maximum likelihood
transition matrix T(τ) estimated during initialization with
the exponential of the recovered rate matrix, exp(τKMLE).
Large differences between the two matrices, or their eigen-
spectra/relaxation time scales, may be symptomatic of non-
embedability of the data or a convergence failure of the
optimizer. If the data are available at a lag time shorter than
τ, convergence failures can often also be circumvented by
using a converged rate matrix obtained from a model at a
shorter lag time as an initial guess for a model at a longer lag
time.

D. Implementation notes

Because S is symmetric, it can be diagonalized efficiently
at cost of O(4n3/3) FLOPs. The eigenvectors can then be
rotated by D(√π) to give the eigenvectors of K. Compared to
diagonalizing the non-symmetric matrix K directly, this can
yield a speedup of 2-10× in the critical diagonalization step
required to compute the gradient vector.

For each pair of states with an observed transition count,
(i, j) such that C(τ)i j > 0, gradient expressions Eqs. (16) and
(19) are only defined when Ti j > 0. A sufficient condition to
ensure this property is that K be irreducible,41 but this cannot
be straightforwardly ensured throughout every iteration of the
L-BFGS-B optimization without heavy-handed measures such
as complete positivity of K. In practice, we find that replacing
any zero values in T with a small constant, such as 1 × 10−20,
when computing the matrix D in Eq. (19) is sufficient to avoid
this instability.

Furthermore, note that calculation of X(λ, t) by direct
implementation of Eq. (15) can suffer from a substantial
loss of accuracy for close-lying eigenvalues. The matrix can
instead be computed in a more precise manner using the
exprel(x) ≡ (ex − 1)/x or exmp1 ≡ ex − 1 routines, which
are designed to be accurate for small x and are available in
numerical libraries such as SLATEC, GSL, and the upcoming
release of SciPy.42–44

IV. QUANTIFYING UNCERTAINTY

Since all data sets are finite, statistical uncertainty in any
estimate of a probabilistic model is unavoidable. Therefore,
key quantities of interest beyond the maximum likelihood rate
matrix itself, KMLE = K(θMLE), are estimates of the sampling
uncertainty in KMLE, and estimates of the sampling uncertainty
in quantities derived from KMLE, such as its stationary
eigenvector, π, its eigenvalues, λi, and relaxation time scales.

In the large sample size limit, the central limit theorem
guarantees that the distribution of θMLE converges to a
multivariate normal distribution with a covariance matrix
which can be estimated by the inverse of the Hessian of the log-
likelihood function evaluated at θMLE, assuming that the MLE
does not lie on a constraint boundary.45 This can be thought
of as a second order Taylor expansion for the log-likelihood
surface at the MLE; the log-likelihood is approximated as a
paraboloid with negative curvature whose peak is at the MLE
and whose width is determined by the Hessian matrix at the
peak. The exponential of the log-likelihood, the likelihood
surface, is then Gaussian, and the multivariate delta theorem
can be used to derive expressions for the asymptotic variance
in scalar functions of θMLE.45 Computationally, the critical
component is the computation of the Hessian matrix,

Huv(θ; τ) = ∂2L(θ; τ)
∂θu∂θv

(27)

=

n
i

n
j

Ci j
*
,

∂2Ti j/∂θu∂θv

Ti j
−
(∂Ti j/∂θu)(∂Ti j/∂θv)

T2
i j

+
-
, (28)

and its inverse.
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A. Approximate analytic Hessian

Direct calculation of the Hessian requires both the
evaluation of the first derivatives of T as well as the more costly
second derivatives. A more efficient alternative, as pointed out
by Kalbfleisch and Lawless, is to approximate the second
derivatives by estimates of their expectations.33

Let Ci =


j Ci j. Taking the expected value of Ci j

conditional on Ci, we approximate Ci j ≈ Ti jCi. This makes
it possible to factor Ci j out of the summation over j in
Eq. (28), and exploit the property that

n
j ∂

2Ti j/∂θu∂θv = 0,
simplifying Eq. (28) to

Huv(θ; τ) ≈ −

i j

Ci

Ti j

∂Ti j

∂θu

∂Ti j

∂θv
. (29)

Equipped with approximator Eq. (29), the asymptotic
variance-covariance matrix of θ is calculated as the matrix
inverse of the Hessian, Σ = H−1, and the asymptotic variance
in each derived quantity g(θ) is estimated using the multivar-
iate delta method,45

Var(g(θ)) ≈ ∇g(θMLE)T Σ∇g(θMLE). (30)

For example, the asymptotic variance in the stationary
distribution can be calculated as

Var(πk) ≈
n
i, j

∂πk

∂θ
(π)
i

Σ
(π)
i j

∂πk

∂θ
(π)
j

, (31)

where Σ(π) represent the lower n × n block of the asymptotic
variance covariance matrix and

∂πi

∂θ
(π)
j

=



πi − π2
i , i = j,

−πiπ j, i , j.
(32)

Other key quantities of interest for biophysical applica-
tions include the exponential relaxation time scales of the
Markov model,

τi = −(λi)−1, i ∈ {2, . . . ,n}. (33)

The asymptotic variance in the relaxation time scales, τi, is

Var(τi) ≈

uv

∂τi
∂θu
Σuv

∂τi
∂θv

, (34)

where ∂τi
∂θu

follows from standard expressions for derivatives
of eigensystems,46

∂τi
∂θu
=

1
λ2
i


UT ∂K(θ)

∂θu
V



ii

. (35)

The sampling uncertainty in other derived properties
which depend continuously on θ can be calculated similarly.

When the MLE solution lies at the boundary of the
feasible region, with one or more elements of θ(S) equal to zero,
we adopt an active set approach to approximate Σ. We refer to
the elements of θ(S) which do not lie on a constraint boundary
as free parameters. The Hessian block for the free parameters
is constructed and inverted, and the variance and covariance
of the constrained elements as well as their covariance with
the free parameters are taken to be zero.

V. NUMERICAL EXPERIMENTS

We performed numerical experiments on three datasets,
which demonstrate different aspects of our estimator for
continuous-time Markov processes. Where appropriate, we
compare these models to reversible discrete-time Markov
models which directly estimate T(τ), parameterized via
Algorithm 1 of Prinz et al.39

A. Recovering a known rate matrix

First, we constructed a simple synthetic eight state
Markov process with known rates. The network is shown in
Fig. 1. The largest non-zero eigenvalue of K is λ2 ≈ −9.40
× 10−3, which corresponds to a slowest exponential relaxation
time scale, τ2 ≈ 106.4 (arbitrary time units).

From this model, we simulated discrete-time data with
a collection interval of 1 time unit by calculating the matrix
exponential of K and propagating the discrete-time Markov
chain. In Fig. 2, we show the convergence of the models
estimated from these simulation data to the true model, as
the length of the simulated trajectories grows. As expected,
the fit parameters get more accurate as the size of the data set
grows. We observe approximately power law convergence as
measured by the 2-norm and Frobenius norm over the range
of trajectory lengths studied.

The true rate matrix for this continuous time Markov
process is sparse—only 7 of the 28 possible pairs of distinct
states are directly connected in Fig. 2. Can this graph structure
be recovered by our estimator? This task is challenging
because of the nature of the discrete-time data. The observation
that the system transitioned from state i (at time t) to state j
(at time t + 1) does not imply that Ki j is non-zero. Instead,
the observed i → j transition may have been mediated by one
or more other states—the process may have jumped from i

FIG. 1. A simple eight state Markov process. Connected states are labeled
with the pairwise rate constants, Ki j. Self transition rates (not shown), Kii,
are equal to the negative sum of each state’s outgoing transition rates, in
accordance with Eq. (4).
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FIG. 2. Convergence of the estimated rate matrix, K̂, to the true generating
rate matrix in Fig. 1 for discrete-time trajectories of increasing length simu-
lated from the process in Fig. 1 with a time step of 1. Using either a 2 norm
(blue) or Frobenius norm (red), we see roughly power law convergence over
the range of trajectory lengths studied.

to k, and then again from k to j, all within the observation
interval.

When the rate matrix, K is irreducible, the corresponding
transition probability matrix T(τ) is strictly positive for every
positive lag time, τ.41 This implies that in the limit that the
trajectory length, N , approaches infinity, at least 1 transition
count will almost surely be observed between any pair of
states, regardless of the sparsity of K.

In Fig. 3, we attempt to resolve the underlying graph
structure using the model estimated with a trajectory of
length N = 107. The plot compares the estimated rate matrix
elements with the true values. We find that all of the true
connections are well-estimated, and that many of the zero
rates are also correctly identified. However, the maximum
likelihood estimator also identifies very low, but non-zero rates
between many of the states which are in fact disconnected.

We computed 95% (1.96σ) confidence intervals for each
of the estimated rate matrix elements, KMLE

i j . For each of
the spuriously non-zero elements, these confidence intervals
overlapped with zero. None of the confidence intervals for

FIG. 3. Comparison of the estimated and true off-diagonal rate matrix ele-
ments for a trajectory of length N = 107 simulated from the process in Fig. 1
with a time step of 1. The true non-zero elements of K are well-estimated, as
shown in the right portion of the plot; here, error bars are small enough to be
fully obscured by point markers. On the other hand, the estimator spuriously
estimates non-zero rates between many of the states which are not connected
in the underlying process. However, the 95% confidence intervals for these
spurious rates each overlap with zero.

FIG. 4. Brownian dynamics on the 2-dimensional Müller potential was dis-
cretized by projecting the simulated trajectories onto an 8×8 grid. A typical
trajectory is shown in black. The resulting discrete-state process can be
approximated as a continuous-time Markov process.

the properly non-zero rates overlapped with zero. These
uncertainty estimates can therefore be used, in combination
with the MLE, to identify the underlying graph structure.

This example demonstrates that some degree of sparsity-
inducing regularization or variable selection may be required
to robustly identify the underlying graph structure in Markov
process.

B. Accuracy of uncertainty estimates

How accurate are the approximate asymptotic uncertainty
expressions derived in Section IV? To answer this question, we
performed a numerical experiment with twenty independent
and identically distributed collections of trajectories of Brow-
nian dynamics on a two-dimensional potential. One of those
trajectories is shown superimposed on the potential in Fig. 4,
along with the 8 × 8 grid used to discretize the process. The
Brownian dynamics simulations were performed following
the same procedure described in McGibbon, Schwantes, and
Pande.47

To assess the accuracy of the asymptotic approximations,
we compare the empirical distribution of the estimated
parameters over the separate data sets with the theoretical
distribution which would be expected based on the Gaussian
approximation. Consider a scalar model parameter g, such as
one of the relaxation time scales or equilibrium populations.
Fitting a model separately on each of the twenty data sets
yields estimates, {(ĝ1,σ

2
ĝ1
), . . . , (ĝ20,σ

2
ĝ20

)}. If these estimates
are accurate, then ĝ is normally distributed, ĝ ∼ N (g,σ2

ĝ). Our
goal is to examine the accuracy of the estimated variances, σ2

ĝ .
Note that the true value of g is unknown, but subtracts out when
examining standardized differences between the estimates,
which, assuming normality, should follow a standard normal
distribution,

zi j =
ĝi − ĝj
σ2
ĝ i
+ σ2

ĝ j

?∼N (0,1). (36)

In Fig. 5, we compare the empirical and theoretical
distributions of zi j, (i, j) : 1 ≤ i ≤ 20, i < j ≤ 20, for estimates



034109-7 R. T. McGibbon and V. S. Pande J. Chem. Phys. 143, 034109 (2015)

FIG. 5. Quantile-quantile plot of the standardized differences, Eq. (36),
between estimated relaxation time scales, τ2 and τ3, on twenty i.i.d.
datasets. If the estimated time scales are normally distributed with the cal-
culated asymptotic variances, the quantiles of their standardized differences
would match exactly with the theoretical quantiles of the standard normal
distribution.

of the first two relaxation time scales using a quantile-quantile
(Q-Q) plot, a powerful method of comparing distributions.
The observation that Q-Q plot runs close to the y = x line is
encouraging, and shows that the observed deviates are close
to normally distributed, and that the approximator’s variance
estimates are of the appropriate magnitude. This suggests that
the asymptotic error expressions can be of practical utility for
practitioners.

C. Comparison with discrete-time MSMs

In a data-limited regime, are continuous-time Markov
models more capable than discrete-time MSMs? We extended
the analysis in Section V A to a larger class of generating
processes in order to address this question. We began by
sampling random 100-state Markov process rate matrices from
scale free random graphs.48 Details of the random rate matrix
generation are described in the Appendix.

From each random rate matrix, K, we sampled three
discrete-time trajectories of different lengths. Each trajectory
was used individually to fit both a continuous-time and
discrete-time Markov model, and the parameterized models
were then compared to the underlying system from which
the trajectories were simulated to assess the convergence
properties of the approaches.

In Fig. 6, we consider two notions of error. The first
norm measures error in the elements of the estimated transition
matrix, ∥T̂ − T∥F. Unlike the experiment in Fig. 2, we used
the T̂ as the basis of the measure so that the continuous-
time and discrete-time models could be compared on an equal
footing. The second error norm we consider is the max-norm
error in the estimated relaxation time scales, maxi |τ̂i − τi |,
which measures a critical spectral property of the models.
In both panels of Fig. 6, the distribution of the difference in
error between the continuous-time and discrete-time models
is plotted; values below zero indicate that the continuous-time
model performed better for a particular class of trajectories,
whereas values above zero indicate the reverse. For each
condition, we performed N = 30 replicates.

FIG. 6. Violin plots of the relative error between continuous-time and
discrete-time Markov models for kinetics on random graphs. Values below
zero indicate lower error for the continuous-time model, whereas values
above zero indicate the reverse. The shape displays the data density, com-
puted with a Gaussian kernel density estimator. Panel (a): as measured by
the Frobenius-norm error in the estimated transition matrices, ∥T̂−T∥F,
the continuous-time model achieves lower errors, with a larger advantage
for shorter trajectories. Panel (b): as measured by the max-norm error in
the estimated relaxation time scales, maxi |τ̂i−τi |, the two models are not
distinguishable.

Our results show that as measured by the transition matrix
error, the continuous-time Markov process model is more
accurate in the regimes considered. A binomial sign test rejects
the hypothesis that the two estimators give the same error
for all three conditions (two-sided p values of [2 × 10−9,2
× 10−9,1 × 10−3] for trajectories of length [103,104,105] steps,
respectively). The relative advantage of the continuous-time
Markov model decreases as the trajectory length increases—
its advantage is in the sparse data regime when no transition
counts have been observed between a significant number of
pairs of states.

In contrast, as measured by the relaxation time scale
estimation error, we observe no significant difference between
the continuous-time and discrete-time estimators. A binomial
sign test does not definitively reject the hypothesis that the two
estimators give the same error for any of the three conditions
(two-sided p values of [0.02,0.36,0.85] for trajectories of
length [103,104,105] steps, respectively). Neither estimator
is consistently more accurate in recovery of the dominant
spectral properties of the dynamics.

D. Application to protein folding and lag time
selection

How can these models be applied to the analysis of MD
simulations of protein folding? We obtained two independent
ultra-long 100 µs MD simulations of the FiP35 WW protein,50

a small 35 residue β-sheet protein (Fig. 7), performed by D.E.
Shaw Research on the ANTON supercomputer.49

In order to focus on the construction of discrete-state
Markov models, we initially projected every snapshot of the
MD trajectories, which were available at a 200 ps time interval,
into a discrete state space with 100 states in a way consistent
with prior work.47 Briefly, this involved the extraction of the
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FIG. 7. The FiP35 WW protein, in its native state. We analyzed two 100 µs
MD trajectories of its folding performed by D.E. Shaw Research to estimate
a Markov process model for its conformational dynamics.49

distance between the closest non-hydrogen atoms in each
pair of amino acids in each simulation snapshot,51 followed
by the application of time-structure independent components
analysis (tICA) to extract the four most slowly decorrelating
degrees of freedom,52,53 which were then clustered into 100
states using the k-means algorithm.54,55

Although the equations of motion for a protein’s dynamics
in a MD simulation are Markovian, the generating process of
the data analyzed by our model is not. The pre-processing
procedure which projects the original dynamics from a high-
dimensional continuous state space (the position and momenta
of the constituent atoms) into a lower dimensional continuous
space or discrete state space is not information preserving,
and destroys the Markov property.28,29 For chemical dy-
namics, qualitative features of the non-Markovianity are well-
understood. Consider, for example, a metastable system with
two states, A and B, the system in state A may stochastically
oscillate across the boundary surface many times without
committing to state B. Whereas for a Markov process, the
probability distribution of the waiting time that the system
spends in any states before exiting is exponential, chemical
dynamics are expected to show a higher propensity for short
waiting times, corresponding to so-called recrossing events.27

This effect is more pronounced when viewing the process
at short lag times—the bias induced by approximating the
process as Markov decreases with lag time.57

For the FiP35 WW domain, we observe that the change in
the relaxation time scales of the continuous-time and discrete-
time Markov models with respect to lag time is essentially
identical, as shown in Fig. 8. For both model classes, the
estimated relaxation time scales increase and converge with
respect to lag time. This is consistent with our results in
Fig. 6(b), which suggest that the estimated time scales are
the same for both models, especially as the length of the
trajectories grow. While fitting the models in Fig. 8, we
observed a small number (2-4) of convergence failures at long
lag times, which were notable due to a dramatic discontinuity
in the relaxation time scale curve. This problem was solved
by reinitializing the optimization at these lag times from the
converged solutions at adjacent lag times.

Because of the essentially unchanged nature of the
relaxation time scale spectrum, we suggest that when choosing
a particular lag time, the same approach be used for
discrete-time and continuous-time Markov models. Ideally,
this entails the selection of a lag time large enough that the
relaxation time scales are independent of lag time.58,59 For
the continuous-time Markov model, other techniques may
be appropriate as well. For example, in Fig. 9 we show the
convergence of selected diagonal entries of the rate matrix
as a function of lag time. As described in the context of
transition state theory, these rate constants should plateau with
increasing τ, which provides another related basis to select the
parameter.60,61

The most significant difference between the continuous-
time and discrete-time estimators in this case is the sparsity
of the parameterized models. In Fig. 8(c), we compare
the number of non-zero independent parameters for both
models as a function of τ. Of the

(
n+1

2

)
= 5050 independent

parameters for both the continuous-time and discrete-time
models, only ≈1200 are nonzero for the continuous-time
model, regardless of lag time. In contrast, the number of
nonzero parameters for the discrete-time model continues to
increase with lag time.

We anticipate that the sparsity of K may aid in the analysis
and interpretation of Markov models. In Fig. 10, we show the

FIG. 8. Implied exponential relaxation time scales of parameterized (a) continuous-time Markov process model and (b) discrete-time Markov model as a function
of lag time. The relaxation time scales computed by the two algorithms coincide almost exactly (r2= 0.999 978). (c) The number of free (non-zero) parameters
estimated by the discrete-time and continuous-time models, respectively; the continuous-time Markov model achieves a more parsimonious representation of
the data.
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FIG. 9. Convergence of selected rate matrix elements as a function of lag
time. A plausible method for lag time selection would be to choose τ such
that some or all of these entries are determined to have plateaued.

MLE rate matrix computed at τ = 100 ns. The state indices
were sorted such that states grouped together via Peron cluster
cluster analysis (PCCA) were given adjacent indices.56 The
evident block structure of the matrix visually indicates that
the protein’s conformational space consists of a small number
of regions with generally high within-region rate constants, but
weak between-region coupling. Although a detailed analysis
of the biophysics of these conformations is beyond the scope
of this work, visual analysis of these structures indicates that
the model resolves folded and unfolded, as well as partially
folded intermediate states.

In interpreting the 1.96σ error bars on the relaxation
time scales in Fig. 8(a), cautionary note is warranted. Our
error analysis considers the number of observed transitions
between states but does not take into account any notion of
uncertainty in the proper definitions of the states themselves, or
the error inherent in approximating a non-Markovian process
with a Markov process. The observation in Fig. 8(a) that
the magnitude of the systematic shift in the time scales with
respect to lag time is much larger than the error bars suggests
that the Markov approximation (a model misspecification) is
a larger source of error, for this dataset, than the statistical
uncertainty in model parameters. For these reasons, we caution

FIG. 10. The maximum likelihood rate matrix, K̂, computed at a lag time, τ,
of 100 ns. The state indices were sorted in seven macrostates using the PCCA
algorithm.56

FIG. 11. Performance of our Markov process estimator, as compared to the
Holmes-Rubin EM estimator.22 Each iteration of our O(n3) estimator takes
on the order of 1 ms, while the O(n5) Holmes-Rubin estimator takes over
10 s per iteration for a 100 state model. Using default convergence criteria,
our estimator often achieves a solution long before the EM estimator finishes
a single iteration.

that these error bars should be interpreted as lower bounds
rather than upper bounds.

E. Performance

In order to assess the performance of our maximum
likelihood estimator, we compared it with an algorithm by
Holmes and Rubin, which solves the same Markov process
parameterization problem using an expectation-maximization
approach.22 Because the original code was unavailable, we
reimplemented the algorithm following the description by
Metzner et al., where it is denoted “Algorithm 4: Enhanced
MLE-method for the reversible case.”21 The algorithm scales
as O(n5), where n is the number of states. Its rate limiting step
involves an O(n5) FLOP contraction of five n × n matrices
into a rank-4 tensor of dimension n on each axis.62 For
benchmarking, we constructed a variant of the FiP35 WW
protein dataset from Section V D, in which we varied the
number of states between 10 and 100 during clustering. All
models were fit on an Intel Xeon E5-2650 processor using a
single thread.

As shown in Fig. 11, and expected on the basis of the
O(n5) vs. O(n3) scaling, the performance difference between
the algorithms is substantial. For n = 100, our algorithm is
roughly four orders of magnitude faster per iteration; our
algorithm takes on the order of 1 ms per iteration, while the
Holmes-Rubin estimator’s iteration takes over 10 s. Using the
L-BFGS-B optimizer’s default convergence criteria, roughly
three quarters (68/91) of the runs of our algorithm converge
in fewer than 100 iterations; a solution is often achieved long
before the EM estimator has performed a single iteration.

VI. CONCLUSIONS

In this work, we have introduced a maximum likelihood
estimator for continuous-time Markov processes on discrete
state spaces. This model can be used to estimate transition
rates between various substates in a dynamical system based
on observations of the system at a discrete time interval.
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Various constraints on the solution, such as detailed balance,
can be easily incorporated into the model, and asymptotic error
analysis can give confidence intervals in model parameters and
derived quantities.

With the efficient parameterization problem solved, these
continuous-time Markov models offer several advantages over
existing MSM methodologies. As compared to discrete-time
MSMs, these models are more interpretable for chemists
and biologists because they do not arbitrarily discretize time.
Although a lag time is used internally during parameterization,
the final estimated quantities are familiar rate constants from
chemical kinetics, as opposed to the somewhat unintuitive
transition probabilities in a discrete-time MSM. Furthermore,
these models are more parsimonious, and unlike the discrete-
time MSM are able to detect that many pairs of states are not
immediately kinetically adjacent to one another. This makes it
possible to more clearly recover the underlying graph structure
of the kinetics. For applications such as the determination of
transition pathways in protein dynamics, we anticipate that
this property will be valuable.

Many extensions of this model are possible in future work.
The simple nature of the constraints on θ make Bayesian
approaches, especially Hamiltonian Monte Carlo, particularly
attractive.63 In particular, because of the separation of θ(π) and
θ(S) in the parameterization, strong informative priors on π
may be added to extend the work of Trendelkamp-Schroer
and Noé.64 The appropriate sparsity inducing priors on θ(S)
may be a topic of future work.

An implementation of this estimator is available in
the MSMBuilder software package at http://msmbuilder.org/
under the GNU Lesser General Public License.
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APPENDIX: RANDOM RATE MATRICES

Scale-free random graphs with 100 states were generated
using the Barabási–Albert preferential attachment model with
m = 3.48 From the graph’s adjacency matrix, we generated
a symmetric rate matrix S by sampling a log-normally
distributed random variable (µ = −3, σ = 2) for each con-
nected edge. The stationary distribution, π, was sampled
from Dirichlet(α = 1). The matrix S was then scaled by
50 · (i j Si j)−1, which tuned the relaxation time scales in the
range between 102 and 103 time steps, and used with π in
Eq. (25) to construct K.

1B. Singer and S. Spilerman, Am. J. Sociol. 82, 1 (1976).
2H. Madsen, H. Spliid, and P. Thyregod, J. Clim. Appl. Meteorol. 24, 629
(1985).

3C. M. Turner, R. Startz, and C. R. Nelson, J. Financ. Econ. 25, 3 (1989).

4V. N. Minin and M. A. Suchard, J. Math. Biol. 56, 391 (2008).
5R. A. Jarrow, D. Lando, and S. M. Turnbull, Rev. Financ. Stud. 10, 481
(1997).

6S. Spilerman, Am. J. Sociol. 78, 599 (1972).
7M. Kimura, J. Mol. Evol. 16, 111 (1980).
8D. F. Anderson and T. G. Kurtz, Design and Analysis of Biomolecular
Circuits (Springer, 2011), pp. 3–42.

9A. Ikai and C. Tanford, Nature 230, 100 (1971).
10R. Zwanzig, Proc. Natl. Acad. Sci. U. S. A. 94, 148 (1997).
11I. E. Sánchez and T. Kiefhaber, J. Mol. Biol. 325, 367 (2003).
12H. S. Chan and K. A. Dill, Proteins: Struct., Funct., Bioinf. 30, 2 (1998).
13M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, and G. Haran,

Nat. Commun. 2, 493 (2011).
14K. A. Beauchamp, R. T. McGibbon, Y.-S. Lin, and V. S. Pande, Proc. Natl.

Acad. Sci. U. S. A. 109, 17807 (2012).
15K. A. Beauchamp, G. R. Bowman, T. J. Lane, L. Maibaum, I. S. Haque, and

V. S. Pande, J. Chem. Theory Comput. 7, 3412 (2011).
16M. Senne, B. Trendelkamp-Schroer, A. S. Mey, C. Schütte, and F. Noé, J.

Chem. Theory Comput. 8, 2223 (2012).
17R. Banerjee and R. I. Cukier, J. Phys. Chem. B 118, 2883 (2014).
18D. Shukla, C. X. Hernández, J. K. Weber, and V. S. Pande, Acc. Chem. Res.

48, 414 (2015).
19F. Noé and S. Fischer, Curr. Opin. Struct. Biol. 18, 154 (2008).
20J. D. Chodera and F. F. Noé, Curr. Opin. Stuct. Biol 25, 135 (2014).
21P. Metzner, E. Dittmer, T. Jahnke, and C. Schütte, J. Comput. Phys. 227, 353

(2007).
22I. Holmes and G. Rubin, J. Mol. Biol. 317, 753 (2002).
23M. Bladt and M. Sørensen, J. R. Stat. Soc., Ser. B 67, 395 (2005).
24J. F. C. Kingman, Probab. Theory Relat. Fields 1, 14 (1962).
25E. Davies, Electron. J. Probab. 15, 1474 (2010).
26J. Adams and J. Doll, Surf. Sci. 103, 472 (1981).
27A. F. Voter and J. D. Doll, J. Chem. Phys. 82, 80 (1985).
28H. Mori, Prog. Theor. Phys. 33, 423 (1965).
29R. Zwanzig, Phys. Rev. 124, 983 (1961).
30D. Crommelin and E. Vanden-Eijnden, J. Comput. Phys. 217, 782 (2006).
31D. Crommelin and E. Vanden-Eijnden, Multiscale Model. Simul. 7, 1751

(2009).
32R. B. Israel, J. S. Rosenthal, and J. Z. Wei, Math. Finance 11, 245 (2001).
33J. D. Kalbfleisch and J. F. Lawless, J. Am. Stat. Assoc. 80, 863 (1985).
34S. Asmussen, O. Nerman, and M. Olsson, Scand. J. Stat. 23, 419 (1996),

available at www.jstor.org/stable/4616418.
35A. Hobolth and J. L. Jensen, Stat. Appl. Genet. Mol. Biol. 4, 1 (2005).
36R. I. Jennrich and P. B. Bright, Technometrics 18, 385 (1976).
37R. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM J. Sci. Comput. 16, 1190

(1995).
38C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, ACM Trans. Math. Software 23,

550 (1997).
39J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera,

C. Schütte, and F. Noé, J. Chem. Phys. 134, 174105 (2011).
40A. Al-Mohy and N. Higham, SIAM J. Sci. Comput. 34, C153 (2012).
41D. Bakry, I. Gentil, and M. Ledoux, Analysis and Geometry of Markov

Diffusion Operators, Grundlehren der mathematischen Wissenschaften Vol.
348 (Springer International Publishing, 2014).

42W. H. Vandevender and K. H. Haskell, SIGNUM Newsl. 17, 16 (1982).
43B. Gough, GNU Scientific Library Reference Manual (Network Theory Ltd.,

2009).
44E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools

for Python,” 2001.
45Linear Statistical Inference and its Applications, edited by C. R. Rao (John

Wiley & Sons, Inc., 1973).
46D. V. Murthy and R. T. Haftka, Int. J. Numer. Methods Eng. 26, 293 (1988).
47R. T. McGibbon, C. R. Schwantes, and V. S. Pande, J. Phys. Chem. B 118,

6475 (2014).
48A.-L. Barabási and R. Albert, Science 286, 509 (1999).
49D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P.

Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers,
Science 330, 341 (2010).

50F. Liu, D. Du, A. A. Fuller, J. E. Davoren, P. Wipf, J. W. Kelly, and M.
Gruebele, Proc. Natl. Acad. Sci. U. S. A. 105, 2369 (2008).

51R. T. McGibbon, K. A. Beauchamp, C. R. Schwantes, L.-P. Wang, C. X.
Hernández, M. P. Harrigan, T. J. Lane, J. M. Swails, and V. S. Pande,
“MDTraj: A modern, open library for the analysis of molecular dynamics
trajectories,” preprint bioRxiv (2014).

52C. R. Schwantes and V. S. Pande, J. Chem. Theory Comput. 9, 2000 (2013).

http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://msmbuilder.org/
http://dx.doi.org/10.1086/226269
http://dx.doi.org/10.1175/1520-0450(1985)024<0629:MMIDAC>2.0.CO;2
http://dx.doi.org/10.1016/0304-405X(89)90094-9
http://dx.doi.org/10.1007/s00285-007-0120-8
http://dx.doi.org/10.1093/rfs/10.2.481
http://dx.doi.org/10.1086/225366
http://dx.doi.org/10.1007/BF01731581
http://dx.doi.org/10.1038/230100a0
http://dx.doi.org/10.1073/pnas.94.1.148
http://dx.doi.org/10.1016/S0022-2836(02)01230-5
http://dx.doi.org/10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO;2-R
http://dx.doi.org/10.1038/ncomms1504
http://dx.doi.org/10.1073/pnas.1201810109
http://dx.doi.org/10.1073/pnas.1201810109
http://dx.doi.org/10.1021/ct200463m
http://dx.doi.org/10.1021/ct300274u
http://dx.doi.org/10.1021/ct300274u
http://dx.doi.org/10.1021/jp412130d
http://dx.doi.org/10.1021/ar5002999
http://dx.doi.org/10.1016/j.sbi.2008.01.008
http://dx.doi.org/10.1016/j.sbi.2014.04.002
http://dx.doi.org/10.1016/j.jcp.2007.07.032
http://dx.doi.org/10.1006/jmbi.2002.5405
http://dx.doi.org/10.1111/j.1467-9868.2005.00508.x
http://dx.doi.org/10.1007/BF00531768
http://dx.doi.org/10.1214/EJP.v15-733
http://dx.doi.org/10.1016/0039-6028(81)90278-8
http://dx.doi.org/10.1063/1.448739
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1016/j.jcp.2006.01.045
http://dx.doi.org/10.1137/080735977
http://dx.doi.org/10.1111/1467-9965.00114
http://dx.doi.org/10.1080/01621459.1985.10478195
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://www.jstor.org/stable/4616418
http://dx.doi.org/10.2202/1544-6115.1127
http://dx.doi.org/10.1080/00401706.1976.10489469
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1063/1.3565032
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1145/1057594.1057595
http://dx.doi.org/10.1002/nme.1620260202
http://dx.doi.org/10.1021/jp411822r
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.1187409
http://dx.doi.org/10.1073/pnas.0711908105
http://dx.doi.org/10.1101/008896
http://dx.doi.org/10.1021/ct300878a


034109-11 R. T. McGibbon and V. S. Pande J. Chem. Phys. 143, 034109 (2015)

53G. Pérez-Hernández, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé, J.
Chem. Phys. 139, 015102 (2013).

54S. Lloyd, IEEE Trans. Inf. Theory 28, 129 (1982).
55D. Arthur and S. Vassilvitskii, in Proceedings of the Eighteenth

Annual ACM–SIAM Symposium on Discrete Algorithms (SIAM, 2007),
pp. 1027–1035.

56P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte, Linear Algebra Appl.
315, 39 (2000).

57M. Sarich, F. Noé, and C. Schütte, Multiscale Model. Simul. 8, 1154 (2010).
58W. C. Swope, J. W. Pitera, and F. Suits, J. Phys. Chem. B 108, 6571

(2004).
59G. R. Bowman, X. Huang, and V. S. Pande, Methods 49, 197 (2009).

60D. Chandler, J. Chem. Phys. 68, 2959 (1978).
61D. Chandler, in Classical and Quantum Dynamics in Condensed Phase

Simulations, edited by B. J. Berne, G. Ciccotti, and D. J. Coker (World
Scientific, Singapore, 1998), pp. 3–23.

62Both our algorithm and Holmes-Rubin estimator were implemented
the Cython language and compiled to C++. Our implementation of
the Holmes-Rubin estimator is available at https://github.com/rmcgibbo/
holmes_rubin.

63R. M. Neal, in Handbook of Markov Chain Monte Carlo, edited by S. Brooks,
A. Gelman, G. L. Jones, and X.-L. Meng (Chapman & Hall / CRC, 2011),
pp. 113–162.

64B. Trendelkamp-Schroer and F. Noé, J. Chem. Phys. 138, 164113 (2013).

http://dx.doi.org/10.1063/1.4811489
http://dx.doi.org/10.1063/1.4811489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1016/S0024-3795(00)00095-1
http://dx.doi.org/10.1137/090764049
http://dx.doi.org/10.1021/jp037421y
http://dx.doi.org/10.1016/j.ymeth.2009.04.013
http://dx.doi.org/10.1063/1.436049
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
https://github.com/rmcgibbo/holmes_rubin.
http://dx.doi.org/10.1063/1.4801325

