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Abstract

Whnt signaling controls various aspects of developmental and cell biology, as well as contrib-
uting to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is
regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in
oncogenic transformation and regulation of cytoskeletal dynamics. We performed develop-
mental genetic analysis of the single Caenorhabditis elegans ortholog of Chp and Wrch,
CHW-1. Using a transgenic assay of the distal tip cell migration, we found that wild-type
CHW-1 is likely to be partially constitutively active and that we can alter ectopic CHW-1-
dependent migration phenotypes with mutations predicted to increase or decrease intrinsic
GTP hydrolysis rate. The vulval P7.p polarity decision balances multiple antagonistic Wnt
signals, and also uses different types of Wnt signaling. Previously described cooperative
Wnt receptors LIN-17/Frizzled and LIN-18/Ryk orient P7.p posteriorly, with LIN-17/Fz con-
tributing approximately two-thirds of polarizing activity. CHW-1 deletion appears to equalize
the contributions of these two receptors. We hypothesize that CHW-1 increases LIN-17/Fz
activity at the expense of LIN-18/Ryk, thus making the contribution of these signals unequal.
For P7.p to polarize correctly and form a proper vulva, LIN-17/Fz and LIN-18/Ryk antago-
nize other Wnt transmembrane systems VANG-1/VanGogh and CAM-1/Ror. Our genetic
data suggest that LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror, while LIN-
18/Ryk represses only VANG-1. These data expand our knowledge of a sophisticated sig-
naling network to control P7.p polarity, and suggests that CHW-1 can alter ligand gradients
or receptor priorities in the system.
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Introduction

Rho family small GTPases are intracellular signaling molecules that regulate cytoskeletal rear-
rangements and transcription, and which affect diverse cellular processes including cell adhe-
sion, polarity, and migration [1]. Historically, the large majority of studies concerning Rho
family GTPases have focused on the canonical members RhoA, Racl, and Cdc42. However,
other family members have been identified by strong sequence conservation, and many of
them have unique functions [2]. Two of the less studied Rho family GTPases are the closely
related Cdc42 subfamily proteins Wnt-regulated Cdc42 homolog-1 (Wrch-1/RhoU) and
Cdc42 homologous protein (Chp/Wrch-2/RhoV). Wrch-1 was first identified as a gene whose
expression increased when the Wnt signaling pathway was activated [3]. Wrch-1 is thought to
be a key Wnt target in oncogenesis, as over-expression of Wnt-1 increases Wrch-1 expression
and expression of activated Wrch-1 caused transformation similar to Wnt transformation [3,
4]. Wnt-dependent expression of Wrch-1 does not require B- catenin, but does require c-Jun
N-terminal kinase (JNK), implicating the non-canonical Wnt/Planar Cell Polarity (PCP) path-
way [3, 5].

The Wnt/PCP pathway guides developing epithelial tissues in orienting their cell divisions
in the plane of the epithelium, and thus Wnt/PCP is critical for normal animal development [6,
7]. Misregulation of the Wnt/PCP pathway is linked to cancer development and progression
[8, 9]. While the Wnt/PCP pathway is known to utilize Rho family GTPases, including Cdc42,
as effectors [10-13], the role of Wrch-1 is unknown. However, a possible role of Wrch-1 in this
pathway is consistent with its previously described role in epithelial apical-basal polarity,
where Wrch-1 is asymmetrically distributed and binds as an effector the antero-posterior
(A-P) and Planar polarity regulating protein Par6 [14, 15].

The Wnt/PCP signaling pathway in C. elegans is implicated largely in anterior- posterior
axon guidance and neuronal polarity [16]. Wnt/PCP components VANG-1/Van Gogh, PRKL-
1/prickle, FMI-1/flamingo and DSH-1/dishevelled have been shown to function in neuronal
polarity and neurite guidance [17, 18], but have also been implicated in other polarity-based
events [19, 20]. Additionally, the polarization of cells during development of the vulval struc-
ture may involve an analogous mechanism [21]. The vulva develops from the invariant divi-
sions of three vulval precursor cells (VPCs), P5.p, P6.p, and P7.p (Fig 1 A; reviewed in [22]).
The combination of Wnt, EGF, and Notch signaling pathways instruct P6.p to adopt the 1° cell
fate and P5.p and P7.p to adopt the 2° cell fate. The presumptive 1° cell (P6.p) undergoes three
cell divisions to generate an A-P symmetrical lineal group of eight cells that forms the central
third of the vulva. In contrast, the flanking P5.p and P7.p undergo three divisions to form A-P-
asymmetrical lineal groups of seven cells each that form the anterior and posterior thirds of the
vulva, respectively. Importantly, P5.p and P7.p must be polarized in opposite directions, with
mirror symmetry centered on the non-polarized central P6.p, to generate a functional vulva.

Part of the redundant molecular mechanism of VPC polarization was revealed by loss-of-
function mutations in genes encoding the Frizzled receptor (lin-17) and the Ryk/Derailed
receptor (lin-18), which reverse the polarity of P7.p, but not P5.p [23-27].

Redundant actions of diverse Wnt ligands (LIN-44, MOM-2 and CWN-2) also contribute
to this process [28]. The phenotype was named P-Rvl (posterior-reversed vulval lineage). Inter-
estingly, loss of two other Wnt homologs, EGL-20 and CWN-1, and orthologs of the PCP com-
ponents Ror (CAM-1) and Van Gogh (VANG-1) suppress P- Rvl defects caused by removing
LIN-17/Fz. Sophisticated control of multiple Wnt ligand gradients has a strong impact on P7.p
polarization as well as contribution to vulval induction and competence [29, 30]. In the absence
of all Wnt activity, all P7.p cells exhibit the P-Rvl phenotype, revealing that removal of a redun-
dant Wnt signal that confers vulval-oriented polarity reveals an underlying signal that confers
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Fig 1. Two Wnt pathways regulate VPC polarization. A. Schematic of vulval precursor cells in the whole animal. B. Schematic of refined (central) and
ground (posterior) Wnt signals regulating VPC polarity. C. A schematic of polarized 2°-1°-2° VPC lineages (P5.p (left), P6.p (center), and P7.p (right)). P5.p
and p7.p lineages are asymmetric and mirror one another around a central axis (dotted line). (D-F) lllustration and images of vulval lineages, model polarity
signals and morphology in animals that are (D) wild type, (E) egl-20(n585) using only refined polarity, or (F) lin-17(n671); lin-18(€620) using only ground
polarity. Arrows represent putative Wnt polarity signals received by VPCs, grayed arrows are inactivated polarity signals, and dotted lines represent central

vulval axis.

doi:10.1371/journal.pone.0133226.9001

posterior- oriented polarity. Further analyses suggest that the posterior-oriented polarity sys-
tem is governed by mechanistically dissimilar Wnt signaling. [21].

These data suggest a model in which distinct Wnt signals control P5.p and P7.p polarization
(Fig 1B) [21]. The first pathway, termed the “ground polarity” signal, polarizes both P5.p and
P7.p towards the posterior, and utilizes Wnt/EGL-20, Wnt/CWN-1, Ror/CAM-1, and Van
Gogh/VANG-1. A second pathway, termed the “refined polarity” signal, polarizes both P5.p
and P7.p towards the centrally located P6.p along a (P-Rvl)-distal (P-D) axis, and utilizes a
Wnt signaling pathway involving ligands Wnt/LIN-44 and Wnt/MOM-2 and receptors Fz/
LIN-17 and Ryk/LIN-18 [25, 28]. For the sake of clarity, in this study we will refer to “ground
(posterior) polarity” and “refined (central) polarity.” Thus, in the normally posteriorly oriented
P5.p, ground (posterior) polarity and refined (central) polarity Wnt signals collaborate redun-
dantly to promote the same polarity outcome, and A-P and P-D axes are aligned with the
invaginated portion of the 2° lineage oriented towards the 1° lineage, posteriorly. Consequently
when single components of either ground (posterior) polarity or refined (central) polarity are
lost there are no P5.p A-Rvl phenotypes, because each polarity system maintains P5.p posterior
orientation in the absence of the other. In contrast, in P7.p the ground (posterior) polarity and
refined (central) polarity Wnt pathways act in opposition; the refined (central) polarity path-
way specifying P-D polarity completely overrides the ground (posterior) polarity pathway with
high fidelity to orient P7.p anteriorly, towards the 1° lineage and the center of the developing
vulva (Fig 1C). Consequently, loss of refined polarity components results in P7.p polarity rever-
sal; loss of either LIN-17/Fz or LIN-18/Ryk displays a partially penetrant P-Rvl phenotype,
while loss of both results in 100% P-Rvl [25], suggesting that it is collaboration of LIN-17/Fz
and LIN-18/Ryk that interprets external Wnt signals and correctly orients P7.p [21].

Here, we characterize the role of the gene chw-1, which encodes the sole C. elegans ortholog
of Chp and Wrch-1. Using an in vivo cell migration assay, we present evidence that wild-type
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CHW-1 signaling is partially constitutively active, unlike most Rho family members, whose
activities are tightly regulated. Therefore, transcriptional regulation of CHW-1 may suffice to
activate CHW-1-dependent pathways. Using genetic epistasis analysis we show that CHW-1
affects LIN-17/Fz and LIN-18/Ryk differently; loss of chw-1 suppresses the lin-17 P-Rvl pheno-
type, but enhances the lin-18 P-Rvl phenotype, a pattern not yet described for any other pro-
teins functioning in this system. The contributions of LIN-17/Fz and LIN-18/Ryk to P7.p
polarity are unequal, with LIN-17/Fz responsible for roughly two-thirds of the polarizing activ-
ity and LIN-18/Ryk for one-third. But in the absence of CHW-1, LIN-17/Fz and LIN-18/Ryk
contributions are presumed to be equal. The ground (posterior) polarity receptors CAM-1/Ror
and VANG-1/Van Gogh also have genetically distinguishable pathway interactions: loss of
CAM-1 suppresses lin-17 but not lin-18 mutations, while VANG-1 loss suppresses both lin-17
and lin-18 P-Rvl defects. A chw-1 promoter::GFP fusion construct is excluded from the three
VPCs assuming vulval fates, including the polarized P5.p and P7.p, but is expressed in unin-
duced VPCs. We hypothesize that CHW-1 non-autonomously promotes the contribution of
LIN-17/Fz to P7.p polarity at the expense of LIN-18/Ryk contribution.

Results
CHW-1 is the C. elegans ortholog of human Chp/Wrch

The C. elegans genome contains a single gene, F22E12.2, that encodes a protein similar to
human Rho family small GTPases Chp/RhoV and Wrch-1/RhoU (Fig 2A-2C). We have
named this gene chw-1 (Chp and Wrch). By amino acid identity, the GTPase domain of CHW-
1 is most similar to that of Wrch-1 (Fig 2B). Furthermore, the core effector-binding motifs of
CHW-1 and Wrch-1 are nearly identical, while that of Chp has notable differences (Fig 2A).
These differences may be reflected by CHW-1 effector selectivity resembling that of Wrch-1 as
opposed to Chp. While the CHW-1 GTPase domain is highly conserved, the N- and C-termini
are divergent (Fig 2A). First, the N-terminal extension found in Wrch-1 and Chp, which func-
tions to auto-inhibit the proteins (Fig 2A)[31, 32], is mostly absent in CHW-1. Second, whereas
Rho family GTPase C-termini generally terminate in CAAX signals for prenyl lipid modifica-
tions essential for membrane targeting and protein function [33, 34], Wrch-1 and Chp lack
any CAAX motif but terminate instead in CXX motifs that specify palmitoylation and support
their membrane targeting and biological activity [4, 31]. However, the CHW-1 protein lacks
CAAX, CXX or other lipid modification motifs, suggesting that CHW-1 does not require mem-
brane targeting for its function.

Native CHW-1 protein may be partially constitutive active

Given these differences, we first assayed CHW-1 activity by testing whether ectopic CHW-1
expression imposed any biological defects. Migration of gonadal distal tip cells (DTCs) is regu-
lated by Rho family GTPases [35, 36], and we have shown that ectopic mutationally activated
CED- 10/Rac or CDC-42/Cdc42 were sufficient to perturb migration [37], while control
expression of wild-type CED-10/Rac and CDC-42 were phenotypically inconsequential. For
these assays we used the lag-2 promoter [38] to drive expression of CHW-1 or GFP in DTCs
and evaluated disrupted DTC migration as a readout of CHW-1 activity. We found that
expression of wild-type CHW-1 significantly increased the frequency of errant DTC migration,
as compared to expression of GFP (Fig 2D). Wild-type CHW-1 proteins from C. elegans, C.
briggsae and C. remanei contain an alanine at position 18, analogous to position 12 in most Ras
and Rho small GTPase superfamily members (Fig 2A; S1 Fig). In Wrch-1 and most Rho family
GTPases, the wild type residue at this position is a glycine. Mutation of this glycine in small
GTPases generally disrupts intrinsic GTPase activity/ GAP interaction, thus locking the protein
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Fig 2. CHW-1 is the C. elegans ortholog of human Wrch-1/RhoU and Chp/Wrch-2/RhoV. A. Sequence alignment of CHW-1, human Wrch-1, and human
Chp. Identical residues have a black background, conservative changes have a gray background, and non-conservative changes have a white background.
CHW-1 lacks the N-terminal extension found in Wrch-1 and Chp (gray bracket). CHW-1 also contains an atypical residue (alanine; arrowhead) at position 18
(analogous to position 12 in Cdc42 and most Rho and Ras family members). The core effector domain (black bracket) is most similar to that of Wrch-1, with
one conservative variant (V—I) between CHW-1 and Wrch-1. Indicated with a gray caret are the atypical A residue at position 18 and the typical Q residue at
position 69, both of which we mutated for our DTC locomotion studies in panel D. B. An identity and similarity comparison of the GTPase-domain sequences
of CHW-1 with Wrch-1, Chp and Cdc42. C. Gene structure of chw-1 and an overlapping gene prediction (F22E12.3). Below, sequences deleted in chw-1
(0k697) and sequences used for feeding RNAI are indicated. D. An assessment of CHW-1 activity by ectopic expression in DTCs. The lag-2 promoter was
used to drive ectopic CHW-1 expression in DTCs and migration defects were analyzed by DIC microscopy. A total of 200 DTC migrations were analyzed for
each construct. Expression of wild-type CHW-1 caused significantly more frequent migration defects than did expression of GFP or CHW-1(A18G).
Expression of CHW-1(A18V) or CHW-1(Q61L) caused significantly more DTC migration defects than did expression of WT CHW-1. Tests of statistical
significance were performed using Fisher’s exact test.

doi:10.1371/journal.pone.0133226.9002

in the GTP-bound state, derepressing the protein and activating downstream signaling. Expres-
sion of CHW-1(A18G) abolished the ability of ectopic CHW-1 to cause DTC migration
defects, suggesting that the wild-type CHW-1 protein is at least partially active. In contrast,
introduction of theoretically stronger activating mutations in residues required for GTPase
function [39], A18V and Q69L, disrupted DTC migration more than the wild- type protein
(Fig 2D).

Observed gonadal tube-shaped morphology was normal, but the DTC migration was aber-
rant, as we previously described for defects in CED-10/Rac, and PAK-1 or MAX-2 Pak mutant
combinations or ectopically expressed mutationally activated CED- 10/Rac and CDC-42 [37].
In conjunction with this prior study, we hypothesize thatectopically expressing mutationally
activated CED-10/Rac, CDC-42 or CHW-1 disrupts spatial recognition of guidance cues, but
expression of a non-activated GTPase is neutral, due to the tight regulation of the GTP-GDP
cycle typical of Rho family small GTPases [39]. Deletion of chw-1 (see below) caused no DTC
migration defects, nor did we observe P, ;::¢fp expression in the DTCs or other parts of the
gonad. Though not an in vitro assay of GTP loading of CHW-1, this assay has the benefits of
being an in vivo assessment of intrinsic CHW-1 activity, particularly since the experiment is
controlled with expression of wild-type and A18G mutant proteins, the latter of which com-
pares with similar ectopic expression of wild-type CED-10/Rac and CDC-42 [37]. We hypothe-
size that the presence of alanine 18 in wild-type CHW-1 confers partially compromised GTP
hydrolysis, and hence CHW-1 may be partially activated in the absence of stimulation by
GEFs. Thus, expression of CHW-1 may be sufficient to activate CHW-1 effectors. But the abil-
ity to mutate the protein to stronger activation argues that CHW-1 retains some GTP hydroly-
sis capability and negative regulatory input, presumably from a GTPase activating protein
(GAP).

Loss of CHW-1 suppresses the lin-17 P-Rvl mutant phenotype

Wnt/PCP signaling induces expression of Wrch-1 in vertebrates [5]. Therefore, we hypothe-
sized that CHW-1 expression is likely to function in the Wnt-dependent polarization of vulval
precursor cells that bears some resemblance to PCP. However, using the 0k697 deletion muta-
tion that removes most of the chw-1 coding sequences or RNA interference (RNAi) targeting
the chw-1 genomic region, we detected no vulval polarity defects (Table 1). In double mutant
strains, chw-1(0k967) suppressed by one-third the P-Rvl defect conferred by two different lin-
17 alleles (Table 1; S2 Fig). The suppression of the lin-17(0) P-Rvl phenotype by chw-1(0k697)
was similar in strength to the suppression of lin-17(0) by vang-1(0) (VanGogh) and cam-1(0)
(Ryk), but weaker than suppression of lin-17(0) by egl-20(n585) (Wnt) [21]. chw-1(RNAi) cor-
roborated the chw-1(0k697) suppression of the lin-17(n671) P-Rvl defect, while control gfp-
directed RNAi was neutral.
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Table 1. Loss of CHW-1 suppresses P7.p polarity defects caused by loss of LIN-17/Fz. Animals were
grown at 23°C and scored by DIC at late L4 stage. n is number of animals scored. Analyses of statistical sig-
nificance were performed using Fisher's exact test.

Genotype % P-Rvl N P value
Wild type (N2) 0 78 -
chw-1(0k697) 0 142 -
lin-17(n671) 72 98 <0.001%
lin-17(sy277) 76 187 <0.001%
lin-17(n671); chw-1(0k697) 50 117 0.001°
lin-17(sy277); chw-1(0k697) 48 97 <0.001°¢
9gfp(RNAI) 0 44 -
chw-1(RNAI) 0 64 -
lin-17(n671); gfo(RNAI) 75 52 -
lin-17(n671); chw-1(RNA) 54 89 0.019¢

& compared to N2

b compared to lin-17(n671)

¢ compared to lin-17(sy277)

9 compared to lin-17(n671); gfo(RNA)

doi:10.1371/journal.pone.0133226.t001

Loss of CHW-1 enhances the lin-18 P-Rvl mutant phenotype

Our observed lin-17 genetic interactions with chw-1 were consistent with CHW-1 functioning
with EGL-20/Wnt, VANG-1/VanGogh, and CAM-1/Ror to promote refined (central) polarity
in opposition to ground (posterior) polarity. Previous studies suggested that the partially
redundant refined (central) polarity receptors LIN-17/Fz and LIN-18/Ryk function in pre-
empting EGL-20/Wnt-mediated ground (posterior) polarity [21, 25]. Therefore we tested the
hypothesis that CHW-1 functions in ground (posterior) polarity by examining the genetic
interaction between chw-1 and lin-18 mutations. Approximately 35% of lin-18(e620) animals
are P-Rvl [25], and we corroborated this observation with lin-18(n1051) (Table 2; S3 Fig).

Table 2. Loss of CHW-1 enhances P7.p polarity defects caused by loss of LIN-18/Ryk. Animals were
grown at 23°C and scored by DIC at late L4 stage. n is number of animals scored. Analyses of statistical sig-
nificance were performed using Fisher's exact test.

Genotype % P-Rvl N P value
Wild type (N2) 0 78 -
chw-1(0k697) 0 142 -
lin-18(e620) 34 174 < 0.001?
lin-18(n1051) 35 236 < 0.001%
chw-1(0k697); lin-18(e620) 50 94 0.013°
chw-1(ok697); lin-18(n1051) 52 131 0.002°
gfp(RNAI) 0 44 -
chw-1(RNAI) 0 64 -
9gfo(RNAI); lin-18(e620) 33 67 -
chw-1(RNAI); lin-18(€620) 47 101 0.041¢

& compared to N2

b compared to lin-18(e620)

¢ compared to /in-18(n1051)

9 compared to lin-18(e620); gfo(RNA)

doi:10.1371/journal.pone.0133226.t002
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Counter-intuitively, we found that loss of chw-1 enhanced rather than suppressed P-Rvl defects
conferred by loss of lin-18 (Table 2), suggesting that CHW-1 does not function as part of the
ground (posterior) polarity program in opposition to refined (central) polarity.

Interpretation of chw-1 genetic interactions with lin-17 and lin-18 was complicated by the
structure of the overlapping gene, F22E12.3, whose first two exons are predicted to lie within
intron 1 of chw-1. In addition to disrupting chw-1, the 0k697 deletion removes these two
F22E12.3 exons (wormbase.org release WS246; Fig 2C). Similarly, the original library clone
for bacterially mediated feeding RNAi (“chw-1 + F22E12.3 RNAi{”)[40] targets both chw-1 and
the first two exons of F22E2.3. Therefore, it is theoretically possible that the observed suppres-
sion of lin-17 P-Rvl and enhancement of lin-18 P-Rvl phenotypes was due to loss of chw-1,
F22E12.3, or both. We resolved this issue by using F22E12.3-specific feeding RNAi, which
failed to suppress lin-17 or enhance lin-18 mutants (Table 3). Conversely, we constructed chw-
I-directed feeding RNAi targeting only the full-length chw-1 cDNA, and this RNAi suppressed
lin-17 and enhanced /in-18 mutants. We conclude that it is loss of chw-1 that caused lin-17 sup-
pression and /in-18 enhancement.

Taken together, our results 1) corroborate that LIN-17/Fz and LIN-18/Ryk are both quanti-
tatively non-equivalent in directing refined (central) vulval polarity and 2) suggest that the
function of CHW-1 is to equalize the signaling contributions of these two refined (central)
polarity Wnt receptor signals.

As reported, partially redundant LIN-17/Fz and LIN-18/Ryk functions govern refined (cen-
tral) polarity, such that loss of both LIN-17/Fz and LIN-18/Ryk results in a 100% P-Rvl defect,
as all P7.p cells orient toward the sole remaining Wnt signal, the Egl-20/Wnt-mediated ground
(posterior) polarity pathway. Consequently, loss of EGL- 20/Wnt in the lin-17; lin-18 double
mutant background resulted in suppression (and randomization) of the P-Rvl phenotype to
~50%, and occurrence of low numbers of A- Rvl and A+P-Rvl animals. Similarly, loss of
CWN-1/Wnt, a minority contributor to the EGL-20/Wnt ground (posterior) polarity pathway,
in a lin-17; lin-18 double mutant results in suppression of the P-Rvl phenotype weaker than

Table 3. Effects on P7.p polarity are chw-1-specific. Animals were grown at 23°C and scored by DIC at
late L4 stage. n is number of animals scored. Data for strains marked with an asterisk (*) are from Table 1
(lin-17) or Table 2 (lin-18). Analyses of statistical significance were performed using Fisher’s exact test.

Genotype % P-Rvl N P value
lin-17(n671)* 72 98 —
lin-17(n671); chw-1(0k697)* 50 117 0.0012
lin-17(n671); gfp(RNAI)* 75 52 0.847%
lin-17(n671); chw-1(RNAi)* 54 89 0.019°
lin-17(n671); F22E12.3(RNAI) 72 54 0.827°
lin-17(sy277); chw-1+F22E12.3(RNAI) 51 78 0.010°
lin-18(620)* 34 174 -
chw-1(0k697); lin-18(e620)* 50 94 0.013°
gfp(RNAI); lin-18(e620)* 33 67 0.880°
chw-1(RNAJ); lin-18(e620)* 47 101 0.041¢
F22E12.3(RNAI); lin-18(e620)* 3 42 0.856¢
chw-1+F22E12.3(RNAJ); lin-18(e620)* 48 80 0.051°

& compared to lin-17(n671)
b compared to lin-17(n671); gfo(RNAI)
¢ compared to /in-18(€620)
9 compared to fin-18(e620); gfo(RNA))

doi:10.1371/journal.pone.0133226.t003
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that observed for loss of EGL- 20/Wnt. Thus, loss of ground (posterior) polarity components
suppressed the 100% P- Rvl phenotype of the lin-17; lin-18 double mutant [21]. To further test
whether CHW-1 functions as part of the EGL-20/Wnt (and CWN-1/Wnt) ground (posterior)
polarity pathway, we constructed the lin-17; chw-1; lin-18 triple mutant strain. We found no
suppression of the 100% P-Rvl phenotype by chw-1(0k697) (Table 4), suggesting that CHW-1
does not play a substantial role in ground (posterior) polarity signaling.

To test further whether CHW-1 functions in parallel to EGL-20/Wnt, we built chw- I triple
mutants with lin-17; egl-20 or egl-20; lin-18. Loss of CHW-1 did not cause a synthetic pheno-
type in a double mutant combination with egl-20(n585), and did not suppress the lin-17; egl-20
double mutant (Table 4), suggesting that loss of Egl-20/Wnt blocks the ability of chw-1(0) sup-
pression. In contrast, loss of CHW-1 weakly suppressed the egl-20; lin-18 double mutant phe-
notype, arguing that CHW-1 can regulate LIN-17/Fz activity in the absence of EGL-20/Wnt.
Notably, although loss of CHW-1 enhanced the lin-18 P-Rvl single mutant defect, loss of
CHW-1 did not enhance the egl-20; lin-18 double mutant P-Rvl defect. Therefore, though
CHW-1 does not appear to be involved in the ground (posterior) polarity signal, EGL-20/Wnt
activity may be required for chw-1(0k697) enhancement of LIN-18/Ryk loss.

CHW-1 function may be non-autonomous

To assess the endogenous CHW-1 expression pattern, we constructed a plasmid with chw-1
promoter sequences driving green fluorescent protein (GFP), and generated the rels3 transgene
containing this plasmid. Prior to vulval induction, the rels3 P, ;::gfp-containing transgene
failed to express GFP in the six VPCs, but is visible in surrounding cells (Fig 3A and 3B). Upon
EGF induction GFP was expressed in non-vulval (3°) VPC lineages and surrounding cells, but
was excluded from VPC lineages that had been induced to form vulva (P5-7.p and subsequent
2°-1°-2° lineages; Fig 3C and 3D). The exclusion extended throughout larval development, and
all expression faded after the L4 stage.

We hypothesized that Wnt pathway activity might actively exclude GFP and presumably
CHW-1 expression from vulval lineages, and tested this hypothesis with single and double

Table 4. Loss of CHW-1 does not disrupt ground polarity. Animals were maintained at 23°C and scored
by DIC at late L4 stage. n is number of animals scored. Analyses of statistical significance were performed
using Fisher’s exact test.

Genotype % P-Rvl n P value
lin-17(n671); lin-18(e620) 100 67 -
lin-17(n671); chw-1(0k697); lin-18(e620) 100 78 =
egl-20(n585) 0 52 -
egl-20(n585); chw-1(0k697) 0 198 -
lin-17(n671) 72 98 =
lin-18(e620) 34 174 -
lin-17(n671); egl-20(n585) 11 157 <0.001%
egl-20(n585); lin-18(e620) 6 67 <0.001°
lin-17(n671); egl-20(n585); chw-1(0k697) 8 86 0.654°
egl-20(n585); chw-1(0k697); lin-18(€620) 0 75 0.047¢

& compared to lin-17(n671)
b compared to lin-18(e620)
¢ compared to lin-17(n671); egl-20(n585)
9 compared to egl-20(n585); lin-18(e620)

doi:10.1371/journal.pone.0133226.t004
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Fig 3. chw-1 promoter-driven GFP is absent from induced VPCs during vulval development, but is expressed in uninduced, 3° cells after
induction. A, B. Fluorescent images (600x) of a rels3[Px,,-1::9fp]-bearing animals. C, D. DIC images corresponding to A and B, respectively. A and C show
an animal at the Pn.p (undivided) stage of vulval development prior to. VPCs (Pn.p cells) are indicated by white arrows in A and black arrows in C, and the
anchor cell is indicated by a black arrowhead. B and D show an animal at the Pn.pxx (2 divisions) stage during ingression onset of induced VPC progeny, just
prior to the last round of division. Differentiated vulval progeny starting to coalesce and ingress are indicated by a white bar in B and a black bar in D.
Uninduced 3° cells have divided once and are indicated by solid white arrows in B and solid black arrows in D. Note that 3° cells express GFP, with stronger
nuclear GFP signal due to a single nuclear localization signal in the construct. Induced vulval lineages (1°s and 2°s) do not express GFP. In both animals
anterior is right, ventral is down.

doi:10.1371/journal.pone.0133226.9003

mutant combinations harboring the reIs3[P ,,. ;:gfp] transgene. However, all genotypes tested
failed to alter GFP expression to vulval lineages. We tested lin-17(n671), lin-18(e620), cam-1
(gm122), and vang-1(ok1142) single mutant animals harboring the transgene, as well as cwn-1
(0k546); egl-20(n585) double mutant (Wnts required for ground (posterior) polarity) and lin-
17(n671); lin-18(e620) double mutant combinations. We also tested Wnt signaling mutants
bar-1(ga80) (encoding B- catenin) and pry-1(mu38) (encoding axin). No mutant combination
had an effect on GFP expression (S3 Fig).

It is difficult to reconcile P, ;:gfp expression with LIN-17/Fz and LIN-18/Ryk activity in
VPCs. Perhaps CHW-1 non-autonomously regulates Wnt ligand activity, and thus loss of
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CHW-1 has differential effects on lin-17 and lin-18 mutants. Alternatively, our promoter
fusion construct may not accurately represent endogenous CHW-1 expression. We were lim-
ited in our inclusion of upstream promoter sequences by transgene toxicity; we were unable to
isolate live transgenic animals harboring constructs containing F22E12.3 exon 3 or further
upstream sequences, or chw-I intron 1, implying the existence of regulatory elements that
titrate essential transcription factors. This genomic region also harbors non-coding RNA genes
F22E12.7 and F22E12.13, whose over-expression could also cause toxicity.

It has been reported that T-cell acute lymphoblastic leukaemia, a strongly Notch- dependent
cancer, up-regulates Wrch-1/RhoU in a Notch activity-dependent manner to promote cell
migration and chemotaxis [41]. A large set of putative C. elegans Notch- LAG-1/CSL transcrip-
tional client genes were identified computationally [42]. We searched this dataset, but the chw-
I promoter was not identified as a putative Notch transcriptional target, consistent with our
rels3 reporter not evincing expression in 2° cells.

LIN-17/Fz antagonizes both VANG-1/VanGogh and CAM-1/Ryk, while
LIN-18/Ryk antagonizes only VANG-1/VanGogh

Consistent with their acting as receptors for EGL-20/Wnt and CWN-1/Wnt in the ground
(posterior) polarity signal, loss of CAM-1/Ror or VANG-1/VanGogh suppressed the lin-17
(Fz) mutant P-Rvl mutant phenotype [21] (Table 5 lines 3 vs. 2, 8 vs. 7 and 12 vs. 11, respec-
tively; S4 Fig), but cam-1 and vang-1 mutant suppression of lin-18 mutations was not tested.
We found that disruption of vang-1 suppressed the lin-18(e620) P-Rvl phenotype (Table 5,
lines 21 vs. 20), but cam-1(gm122) failed to suppress either lin-18 allele (Table 5, lines 16, 17 vs.
15). Collectively, the LIN-17/Fz and LIN-18/Ryk refined (central) polarity signals need to over-
whelm the VANG-1/VanGogh and CAM-1/Ror ground (posterior) polarity signals to correctly
polarize P7.p. We therefore hypothesize that LIN-18 signal represses VANG-1/VanGogh,
while LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror (Fig 4). Thus, in the
absence of LIN-18/Ryk VANG-1 signaling is elevated, and so mutation of VANG-1 abolishes
that signal. Since CAM-1/Ror is not repressed by LIN-18/Ryk, further CAM-1/Ror mutation in
a LIN-18/Ryk mutant background has no effect. Conversely, if LIN-17/Fz represses both
VANG-1 and CAM-1/Ror, LIN-17/Fz mutants are partially suppressed by loss of either.

We also found that loss of CHW-1 had different effects in cam-1 or vang-1 mutant back-
grounds (Table 5). chw-1-directed RNAi did not alter suppression of lin-17; by cam-1 in the tri-
ple mutant compared to the gfp-directed RNAi control (Table 5, line 5 vs. 4). In contrast, chw-
I-directed RNAi was additive with vang-1I in suppressing the lin- 17 P-Rvl phenotype com-
pared to the gfp RNAi baseline: the chw-1 or vang-1 single mutant or RNAi suppressed the lin-
17 mutant, while the chw-1; vang-1 double knockout suppressed the lin-17 mutant even further
(Table 5, lines 8 vs. 9 vs. 10 and 12 vs. 13 vs. 14). We note that the degree of the lin-17; chw-1;
vang-1 P-Rvl phenotype, 35%, is the same as the lin-18 single mutant phenotype, also 35%.
Whether this value represents a coincidence or reflects a fundamental property of the signaling
system is unknown.

We additionally observed that P-Rvl phenotype of cam-I; lin-18 mutant animals we
enhanced by chw-1 loss (Table 5, lines 18 vs. 19). Yet the P-Rvl phenotype of vang-1 lin-18 was
unaltered by chw-1 loss (Table 5, lines 21 vs. 22 vs. 23 vs. 24). Based on these interactions we
can make models interpreting CHW-1 interactions with LIN-17 and LIN-18, and also models
interpreting LIN-17 and LIN-1 interactions with VANG-1 and CAM-1, but we cannot recon-
cile both models with the data we have. We propose that missing information is required to
make sense of these inconsistencies. However, we still consider the model that CHW-1 pro-
motes LIN-17/Fz signaling at the expense of LIN-18/Ryk signaling to best describe the data.
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Table 5. Loss of VANG-1 but not CAM-1/Ror in the lin-17 (Fz) mutant background retains sensitivity to
CHW-1 activity. Also, loss of CAM-1 but not VANG-1 in the lin-18 (Ryk) background retains sensitivity to
CHW-1 activity. In other words, VANG-1 loss abolishes the ability of /in-18 mutant animals to respond to chw-
1 mutation or RNAI. Animals were maintained at 23°C and scored by DIC at late L4 stage. n is number of ani-
mals scored. Analyses of statistical significance were performed using Fisher’s exact test.

Genotype % P-Rvl N P Value
1 cam-1(gm122) 0 77 =
2 lin-17(n671)% 72 113 -
3 lin-17(n671); cam-1(gm122) 46 54 0.005
4 lin-17(n671); cam-1(gm122); gfo(RNAI) 49 135 =
5 lin-17(n671); cam-1(gm122); chw-1(RNAI) 47 116 —
6 vang-1(ok1142) 0 46 —
7 lin-17(n671) 72 98 =
8 lin-17(n671); vang-1(ok1142)S 48 60 0.005
9 lin-17(n671); gfp(RNAI); vang-1(ok1142) 49 139 -
10 lin-17(n671); chw-1(RNAI); vang-1(ok1142) 34 172 0.008%
11 lin-17(n671); gfo(RNAI) 68 158 -
12 lin-17(n671); vang-1(RNAI) 45 159 <0.001°
13 lin-17(n671); chw-1(0k697); gfp(RNAI) 50 296 -
14 lin-17(n671); chw-1(0k697); vang-1(RNAI) 35 212 <0.001°
15 lin-18(n1051)% 35 236 =
16 cam-1(gm122); lin-18(n1051) 35 77 =
17 cam-1(gm122); lin-18(e620) 38 63 =
18 cam-1(gm122); gfo(RNAI); lin-18(e620) 30 101 —
19 cam-1(gm122); chw-1(RNAI); lin-18(e620) 50 163 <0.0019°
20 lin-18(e620) 34 174 -
21 vang-1(ok1142) lin-18(e620) 3 121 <0.001"
22 vang-1(ok1142) lin-18(e620); gfp(RNAI) 0 87 -
23 chw-1(RNAI); vang-1(ok1142) lin-18(e620) 4 116 -
24 chw-1(0k697); vang-1(ok1142) lin-18(e620) 8 71 -

& compared to lin-17(n671); gfpo(RNAI); vang-1(ok1142)
b compared to lin-17(n671); gfo(RNAI)

¢ compared to lin-17(n671); chw-1(0k697); gfo(RNAI)
9 compared to cam-1(gm122); lin-18(e620)

¢ compared to cam-1(gm122); gfo(RNAI); lin-18(e620)
f compared to /in-18(e620)

$ Data previously published [21]

doi:10.1371/journal.pone.0133226.t005

Discussion

In the absence of CHW-1, the relative contributions of LIN-17/Fz and LIN-18/Ryk to P7.p
polarity appear to be roughly equivalent. We therefore hypothesize that CHW-1 regulates
relative contribution of LIN-18/Ryk and LIN-17/Fz receptors to the refined (central) polarity
decision, or to antagonism of the ground (posterior) polarity decision, which may be the same
thing. We propose that CHW-1 boosts LIN-17/Fz signaling at the expense of LIN-18/Ryk, or
shifts ligand signaling to favor LIN-17/Fz activation over LIN-18/Ryk activation. Thus, in a lin-
17 mutant loss of CHW-1 increases LIN-18/Ryk contribution, thus partially compensating for
LIN-17/Fz loss. Conversely, in a lin-18 mutant, loss of CHW-1 decreases LIN-17/Fz contribu-
tion, thus exacerbating the lin-18 mutant P-Rvl phenotype. It is unknown why P7.p would
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Fig 4. CHW-1 regulates relative LIN-17/Fz and LIN-18/Ryk signaling in refined (central) polarity, and LIN-17/Fz and LIN-18/Ryk execute a specific
repressive program to exclude activity of the ground (posterior) polarity system. Shown is a schematic of P7.p with anterior, the direction of refined
(central) polarization, to the left and posterior, the direction of ground (posterior) polarization to the right.

doi:10.1371/journal.pone.0133226.g004

need non-equivalent signaling of these diverse Wnt receptor systems, or mechanistically how
CHW-1 could act to make their contributions nonequivalent.

Use of unexpected signaling input to regulate receptor activity or output has multiple prece-
dents in growth cone guidance. The UNC-40/DCC and SAX-3/Robo transmembrane recep-
tors, which canonically regulate dorsal-ventral axon guidance in response to UNC-5/Netrin
and SLT-1/8lit ligands, respectively, can be modulated by VAB-8/kinesin-related, UNC-73/
RhoGEF and MIG-2/RhoG signaling input to regulate anterior-posterior migrations instead
[43, 44]. The EVA-1 co-receptor alters SAX-3/Robo interactions with UNC-40/DCC signaling
[45], and the UNC-129/TGF-p-related protein regulates UNC-6/Netrin outcomes through
UNC-40/DCC or UNC-5/Netrin receptors [46]. We hypothesize that CHW-1 could perform
a similar function in regulating LIN- 17/Fz versus LIN-18/Ryk receptor contributions to P7.

p polarity. CAM-1/Ror and VANG- 1/Van Gogh receptors also contribute differentially to
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LIN-17/Fz versus LIN-18/Ryk signaling in P7.p polarity, and the interactions of these pathways
are likely complex.

However, these mechanisms are cell autonomous, and our data suggest that CHW-1 func-
tions non-autonomously, though combined early non-vulval and later 3°- specific expression
preclude the use of heterologous promoter expression of CHW-1 to conclusively resolve this
question. If CHW-1 function is non-autonomous, we hypothesize that it controls the composi-
tion of Wnt gradients. There is a precedent for control Wnt gradients impacting P-Rvl pheno-
types. CAM-1/Ror has been argued to sequester Wnts, thus impacting P-Rvl phenotype [21].
This phenomenon is so pronounced that even anterior displacement of the CAM-1/Ror-
expressing canal- associated neurons (CANSs) and their axons disrupts Wnt gradients and
impacts the P- Rvl phenotype. This observation led to the intriguing model that alteration of
nervous system architecture impacts subsequent epithelial cell development [29]. With this in
mind we scrutinized chw-1(0k697) mutant animals using pan-neural and CAN/HSN GFP
markers, but observed no alterations in nervous system structure, CAN axon extension or
CAN cell migration. FGF was found to induce the SM cells to secrete CWN-1/Wnt, thus con-
tributing to P7.p polarization [47]. We did not observe GFP expression in the SMs using the
rels3 transgene. Additional players in this system are the PAK-1 S/T kinase, NCK-1/Nck adap-
tor, and CED-10/Rac [48]. The PAK S/T kinase is an established effector of mammalian Chp/
Wrch [3, 32, 49-51], [52], suggesting that C. elegans PAK-1 could function as a CHW-1 effec-
tor. Thus CHW-1 may signal through a different cascade than the implied Rac-Pak signal or
interact somehow with PAK-1.

VANG-1/VanGogh and CAM-1/Ror respond to LIN-44 and MOM-2 Wnts to establish
ground (posterior) polarity. Cooperative LIN-17/Fz and LIN-18/Ryk respond to EGL-20 and
CWN-1 Wats to override the ground (posterior) polarity system to orient P7.p anteriorly
towards the Anchor Cell, thus comprising the basics of the refined (central) polarity system
(Fig 1; 21). The genetic interactions among LIN-17/Fz, LIN- 18/Ryk, VANG-1/VanGogh and
CAM-1/Ror transmembrane protein systems can be incorporated into a formal, repressive P7.
p polarity model of refined (central) polarity and ground (posterior) polarity (Fig 4). We pres-
ent inferred LIN-17/Fz and LIN- 18/Ryk repressive activities, but not functions of VANG-1
and CAM-1/Ror, since they cannot be inferred by our genetics results. In Fig 4 VANG-1 and
CAM-1 are arbitrarily placed above/below; their placement is not meant to infer specific
VANG-1 or CAM-1 outputs. Loss of LIN-18/Ryk was suppressed by mutation of VANG-1 but
not CAM-1/Ror (Table 5). Consequently, we infer that VANG-1 is derepressed by LIN- 18/
Ryk loss, thus re-directing P7.p posteriorly in the LIN-18/Ryk mutant background.

And so concomitant VANG-1 loss suppressed the LIN-18/Ryk mutant phenotype. Since
CAM-1/Ror loss did not suppress the LIN-18/Ryk mutant, we infer that CAM-1 is not
repressed by LIN-18/Ryk loss. Conversely, loss of LIN-17/Fz is suppressed by mutation of
either CAM-1/Ror or VANG-1, and furthermore the vang-1; cam-1 double mutant additively
represses the lin-17 mutant more than either single mutant. We hypothesize that LIN-17/Fz
represses both VANG-1 and CAM-1/Ror; loss of LIN-17/Fz derepressed both VANG-1 and
CAM-1/Ror, and hence additive vang-1 and cam-1 loss additively represses the lin-17 P-Rvl
phenotype. Since the lin-17 P-Rvl phenotype is not completely additively suppressed by the
vang-1; cam-1 double mutant, we hypothesize the existence of a third ground (posterior) polar-
ity signal, also suppressed by LIN-17/Fz, in parallel to VANG-1 and CAM-1/Ror posterior-ori-
enting signals (not shown).

We also incorporate the CHW-1 modulating activity into this model, proposing that CHW-
1 promotes activation of LIN-17/Fz at the expense of LIN-18/Ryk. Given the observed GFP
expression pattern driven by transgenic chw-1 promoter with rels3, we hypothesize that CHW-
1 functions non-autonomously to impact multiple Wnt gradients or receptor activity. There
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exist two precedents for non-autonomous impacts on refined (central) polarity Wnt gradients.
FGF secreted by the induced presumptive 1° VPC, P6.p, induced the SMs, neighboring the
Anchor Cell, to secrete Wnts in support of AC polarizing signal [47]. Nervous system develop-
ment and placing of potential Wnt sinks like the CAN’s and their axons can also sculpt Wnt
gradients, thus impacting refined (central) polarity and perhaps ground (posterior) polarity
[29]. It is currently unclear how CHW-1 fits into this paradigm, but future studies will fit
CHW-1 amongst the many emerging players.

Materials and Methods
Nematode strains and analysis

C. elegans strains were cultured using standard techniques [53]. All strains used were deriva-
tives of wild-type Bristol strain N2 and were maintained at 23°C.

Genetics and RNAI

chw-1(0k697) homozygotes were identified by PCR using primers TK12 (5’-aatctttgtcgccacg-
taatca), TK13 (5’-aaccgcagaaaaagcaaaagag), and TK14 (5’-ccggcaatctaaaattgaagga). This com-
bination amplifies a 638 bp product (TK12/TK14) when chw-1(+) is present and an 818 bp
product (TK12/TK13) when chw-1(0k697) is present (see S2 Fig).

When constructing double mutants between lin-17 and chw-1 or egl-20, lin-17 was balanced
with the GFP-tagged hT2 qIs48[Pmyo-2::GFP+Ppes-10::GFP+gut::GFP] (LIII) translocation
and homozygotes were identified as GFP negative. When constructing double mutants with
lin-18(e620), candidate homozygotes were identified based on the P-Rvl phenotype, and the
lin-18(e620) molecular lesion was confirmed by HpyCH4V digestion of a PCR product gener-
ated using primers TK25 (5’- gcaaacatcgactacctctcg) and TK26 (5°-ccgagectctcttcaagtttt).
Digestion of the lin-18(+) PCR product yields bands of 270, 190, and 40 bp, while digestion of
the lin-18(e620) PCR product yields bands of 460 and 40 bp (S3 Fig). cam-1(gm122) homozy-
gotes were selected based on the withered tail (Wit) phenotype [54].

vang-1(ok1142) was detected using primers TK29 (5’-tgaccagattttcaaccgaaat), TK30 (5-
aaaagctttgaaccgccataa), and TK32 (5’-gcttgcteggtcaaattgaag). This combination amplifies a
1121 bp product (TK29/TK30) when vang-1(+) is present and a 1035 bp product (TK29/
TK32) when vang-1(ok1142) is present (54 Fig).

Bacterial-mediated RNAi was performed essentially as described previously [55]. Briefly, L4
animals were placed on a lawn of E. coli (strain HT115(DE3)) expressing dsRNA from plasmid
14440, and their progeny were scored at the L4 stage. RNAi constructs targeting both chw-1
and F22E12.3 (Wormbase RNAi ID WBRNAi000113757) were described previously [40]. Con-
structs to specifically target either chw-1 or F22E12.3 were generated for this work (details
below). A construct targeting GFP was used as a negative control [56].

Phenotypic analysis

Defects in DTC migration were scored at the late L4 stage using DIC microscopy. Each gonad
arm was analyzed separately and was considered abnormal if the gonad arm deviated from the
typical “U” shape [57]. The significance of differences in the frequency of DTC migration
defects was analyzed using Fisher’s exact test.

Vulval phenotypes were scored at the mid-L4 larval stage using DIC microscopy. Animals
were classified as P-Rvl if we observed an ectopic posterior invagination that was separated
from the primary vulval invagination by adherent cells. Additionally, we examined the putative
reversed P7.p lineage for number of cells, to account for the possibility of ectopic induction.
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None was found. For some genotypes, we did observe a small number of animals (<2%) with
abnormal vulval morphology distinct from VPCpolarization. These animals were included in
the normal category because VPCs were properly polarized. The significance of differences in
P-Rvl frequency between strains was analyzed using Fisher’s exact test.

Plasmids and transgenes

To generate a chw-I-specific RNAIi construct, the entire chw-1 ORF was amplified from oligo-
dT primed cDNA and cloned into pBluescript SK+. The chw-1 ORF was then shuttled into the
bacterial-mediated RNAi plasmid, pPD129.36 (L4440; A. Fire, personal communication),
using Not I and Sal I. We attempted to clone a full F22E12.3 ORF, but were unable to amplify
any F22E12.3 fragments from cDNA. Therefore, an F22E12.3-specific feeding RNAi construct
was generated by cloning a PCR fragment amplified from genomic DNA lacking chw-1 coding
sequences into pPD129.36 using Bgl II. The F22E12.3 PCR product was amplified from cosmid
DNA (F22E12) using primers TK35 (5’-ttttagatctttgcctttgtaggctggatt) and TK36(5'-tttta-
gatctttccgacattaattggaaattg). All inserts were confirmed by sequencing.

To express chw-1 cDNA ectopically in DTCs, we used the pJK590 vector, which contains
lag-2 promoter sequences that drive expression in DTCs [38]. To clone chw-1 into pJK590, we
first used site-directed mutagenesis to eliminate a Bsm I site in the promoter (pJK590-mut),
thus allowing use of the polylinker Bsm I site for cloning the chw-1 cDNA. We then amplified
chw-1 cDNA yk1263f9 with primers DJR543 (AAAAAAaccggtGGCCGGCCgaaaaaATGG
CAAAAGAAGAAGATGAGAAATG) and DJR544(AAAAAAgaatgct GCGGCCGClttaattaa
TCAAATGAGGTTGCGTGTACG) and cloned the resulting product into pJK590-mut using
Age I and Bsm I to create plasmid pCM14.1. Mutagenesis of the resulting construct yielded
plasmids pCM14.2 (A18G), pCM14.3(A18V) and pCM14.4(Q69L).

Transgenes for ectopic DTC-specific CHW-1 expression were generated by co- injection in
the dpy-20(e1282ts) strain with marker plasmids pPD118.33 (Pmyo-2::gfp) 20 ng/pl and
pMHS6 (dpy-20(+)), while Plag-2::chw-1 plasmids were injected at 10 ng/ul. Transgenes were
tracked by rescue of the Dpy phenotype and by pharyngeal GFP expression.

The chw-1 promoter plasmid was constructed by PCR amplification and subcloning of chw-
I promoter sequences. We attempted to use primers within the F22E12.3 gene upstream of
chw-1, but resulting constructs caused lethality, preventing isolation of transgenes. Instead we
used primers VM59 (forward) TCGAGTATTTCGAACCGTTACTGGTGGAGG (with Xma I
site) and DJR412 (reverse) TCGAAGTTTTTCCAACTGCC (with Xma I site) to amplify pro-
moter sequences not including F22E12.3 coding sequences, and subcloned the resulting prod-
uct into plasmid pPD95.67, which contains GFP and an unc-54 3’UTR (A. Fire, personal
communication). This plasmid was injected at 100 ng/pl with co-injection marker plasmid
pRF4 (rol-6(su1006d)) (80 ng/pl) to make extrachromosomal array reEx6, which was then inte-
grated by UV irradiation to form rels3. rels3 was outcrossed 5x to the wild type (N2) by follow-
ing its Rol phenotype, and the resulting strain was used to construct all subsequent strains.

Since rels3-bearing transgenic animals are Rol, it is difficult to see all ventrally located VPCs
in one animal. We therefore scored rels3 GFP expression in animals grown on sqt-1-directed
RNAI, which mitigates the rels3 Rol phenotype. We independently verified that sqt-1(RNAi)
did not alter GFP expression patterns.

3'RACE

Because the predicted CHW-1 protein lacked typical C-terminal sequences, we performed 3’
RACE experiments to detect all possible 3’ exons. We used forward primers DJR557 in exon 3
(GGAGCTGAATTTTTTGAATGTTCAGC), DJR556 in exon 4
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(ATGTTTGACGCAGCAATTTTGGCC) and DJR555 spanning the exon 4/putative 3’UTR
boundary (GATTCATCACACGTACTCGCAACC) to amplify from reverse transcriptase-syn-
thesized reverse strand cDNA generated by an Invitrogen 3’ RACE kit using total C. elegans
RNA. In each case only one significant 3’RACE band was identified, and sequence analysis
indicated that the band corresponded to the Wormbase-predicted gene structure for exon 4,
which was also independently validated by cDNA (Wormbase WS226). This predicted gene
structure also corresponds to CHW-1 homologs from related nematode species.

Supporting Information

S1 File. An accompanying file contains the list of C. elegans strains used in this study.
(DOCX)

S1 Fig. CHW-1 gene structure and sequence in Caenorhabditis species. Alignment of pre-
dicted CHW-1 proteins from C. elegans (Ce), C. briggsae (Cb), and C. remanei (Cr). Conserva-
tive substitutions have gray background and non- conservative substitutions have a white
background. The conserved atypical alanine at position 18 is marked with a black arrow.

(TTF)

S2 Fig. Detection of chw-1 (0k697) by PCR. A. chw-1 gene structure, deletion, and primer
location. (B) Gel showing unique band profile of WT (+/+), chw-1 deletion heterozygotes
(0k697/+), and chw-1 deletion homozygotes (0k697/0k697).

(TTF)

S3 Fig. Molecular verification of lin-18(e620). A. Representation of PCR products amplified
from lin-18 locus in the wild type and e620 mutant animals. HpyCH4V restriction sites are
denoted with a black triangle B. Gel showing unique band profile of WT (+/+), lin-18(e620)
heterozygotes (e620/+), and lin-18(e620) homozygotes (€620/e620).

(TIF)

S4 Fig. Detection of vang-1 (ok1142) by PCR. A. vang-1 gene structure, deletion, and primer
location. B. Gel showing unique band profile of WT (+/+), vang-1(ok1142) deletion heterozy-
gotes (0k1142/+), and vang-1(ok1142) deletion homozygotes (ok1142/0k1142).

(TIF)

S5 Fig. The lin-17; lin-18 double mutant does not alter P, ;::gfp expression. A. Fluorescent
image of lin-17(n671); rels3;lin-18(e620) animal (1000x) at the Pn.px stage, after one cell divi-
sion. 2°-1°-2° vulval lineages indicated by open white arrows, neighboring non-vulval VPC
daughters indicated by solid black arrows. B. DIC image of the same animal, with vulval VPC
daughters indicated by open black arrows.

(TIF)
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