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Abstract

Motivation: Post-sequencing DNA analysis typically consists of read mapping followed by variant

calling. Especially for whole genome sequencing, this computational step is very time-consuming,

even when using multithreading on a multi-core machine.

Results: We present Halvade, a framework that enables sequencing pipelines to be executed in par-

allel on a multi-node and/or multi-core compute infrastructure in a highly efficient manner. As an

example, a DNA sequencing analysis pipeline for variant calling has been implemented according

to the GATK Best Practices recommendations, supporting both whole genome and whole exome

sequencing. Using a 15-node computer cluster with 360 CPU cores in total, Halvade processes the

NA12878 dataset (human, 100 bp paired-end reads, 50� coverage) in <3 h with very high parallel

efficiency. Even on a single, multi-core machine, Halvade attains a significant speedup compared

with running the individual tools with multithreading.

Availability and implementation: Halvade is written in Java and uses the Hadoop MapReduce 2.0

API. It supports a wide range of distributions of Hadoop, including Cloudera and Amazon EMR. Its

source is available at http://bioinformatics.intec.ugent.be/halvade under GPL license.

Contact: jan.fostier@intec.ugent.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The speed of DNA sequencing has increased considerably with the

introduction of next-generation sequencing platforms. For example,

modern Illumina systems can generate several hundreds of gigabases

per run (Zhang et al., 2011) with a high accuracy. This, in turn,

gives rise to several hundreds of gigabytes of raw sequence data to

be processed.

Post-sequencing DNA analysis typically consists of two major

phases: (i) alignment of reads to a reference genome and (ii) variant

calling, i.e. the identification of differences between the reference

genome and the genome from which the reads were sequenced.

For both tasks, numerous tools have been described in literature,

see e.g. Fonseca et al. (2012) and Nielsen et al. (2011) for an over-

view. Especially for whole genome sequencing, applying such tools

is a computational bottleneck. To illustrate this, we consider the re-

cently proposed Best Practices pipeline for DNA sequencing analysis

(Van der Auwera et al., 2013) that consists of the Burrow-Wheeler

Aligner (BWA) (Li and Durbin, 2009) for the alignment step, Picard

(http://picard.sourceforge.net) for data preparation and the Genome

Analysis Toolkit (GATK) (Depristo et al., 2011; McKenna et al.,

2010) for variant calling. On a single node, the execution of this

pipeline consumes more time than the sequencing step itself: a data-

set consisting of 1.5 billion paired-end reads (Illumina Platinum

genomes, NA12878, 100 bp, 50-fold coverage, human genome)
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requires over 12 days using a single CPU core of a 24-core machine

(dual socket Intel Xeon E5-2695 v2 @ 2.40 GHz): 172 h for the

alignment phase, 35 h for data preparation (Picard steps) and 80 h

for GATK, including local read realignment, base quality score reca-

libration and variant calling. When allowing the involved tools to

run multithreaded on the same machine, the runtime decreases only

by a factor of roughly 2.5 to �5 days, indicative of a poor scaling

behavior in some of the steps of the pipeline.

To overcome this bottleneck, we developed Halvade, a modular

framework that enables sequencing pipelines to be executed in par-

allel on a multi-node and/or multi-core compute infrastructure. It is

based on the simple observation that read mapping is parallel by

read, i.e. the alignment of a certain read is independent of the align-

ment of another read. Similarly, variant calling is conceptually par-

allel by chromosomal region, e.g. variant calling in a certain

chromosomal region is independent of variant calling in a different

region. Therefore, multiple instances of a tool can be run in parallel

on a subset of the data. Halvade relies on the MapReduce program-

ming model (Dean and Ghemawat, 2008) to execute tasks concur-

rently, both within and across compute nodes. The map phase

corresponds to the read mapping step while variant calling is per-

formed during the reduce phase. In between both phases, aligned

reads are sorted in parallel according to genomic position. By mak-

ing use of the aggregated compute power of multiple machines,

Halvade is able to strongly reduce the runtime for post-sequencing

analysis. A key feature of Halvade is that it achieves very high paral-

lel efficiency which means that computational resources are effi-

ciently used to reduce runtime. Even on a single, multi-core

machine, the runtime can be reduced significantly as it is often more

efficient to run multiple instances of a tool, each instance with a lim-

ited number of threads, compared with running only a single in-

stance of that tool with many threads. As an example, both whole

genome and whole exome variant calling pipelines were imple-

mented in Halvade according to the GATK Best Practices recom-

mendations (i.e. using BWA, Picard and GATK).

The MapReduce programming model has been used before in

CloudBurst (Schatz, 2009) and DistMap (Pandey and Schlötterer,

2013) to accelerate the read mapping process and in Crossbow

(Langmead et al., 2009a) to accelerate a variant calling pipeline

based on modified versions of Bowtie (Langmead et al., 2009b) and

SOAPsnp (Li et al., 2008). The Halvade framework extends these

ideas, enabling the implementation of complex pipelines while sup-

porting different tools and versions. The software is designed to

achieve a good load balance, maximize data locality and minimize

disk I/O by avoiding file format conversions. As a result, Halvade

achieves much higher parallel efficiencies compared with similar

tools.

More recently, MapReduce-like scripts were used in MegaSeq

(Puckelwartz et al., 2014), a workflow for concurrent multiple gen-

ome analysis on Beagle, a Cray XE6 supercomputer at Argonne

National Laboratories. Like Halvade, MegaSeq implements a whole

genome analysis pipeline based on the GATK Best Practices recom-

mendations. However, whereas MegaSeq focuses on a high through-

put of many genomes using a specific, extreme-scale compute

platform, Halvade aims to maximally reduce the analysis runtime

for the processing of a single genome, while supporting a wide var-

iety of computer clusters. This approach is particularly of use in a

clinical setting, where the analysis step will typically be performed

on a local cluster within a hospital environment, and where the time

between obtaining a DNA sample from a patient and diagnosing

should be kept as small as possible. The source code of Halvade is

publicly available.

2 Methods

2.1 Halvade framework
Halvade relies on the MapReduce programming model (Dean and

Ghemawat, 2008) to enable parallel, distributed-memory computa-

tions. This model consists of two major phases: the map and reduce

phase. During the map phase, different map tasks are executed in

parallel, each task independently processing a chunk of the input

data and producing as output a number of intermediate <key, val-

ue> pairs. Next, the intermediate <key, value> pairs emitted by all

map tasks are sorted, in parallel, according to key by the

MapReduce framework. During the reduce phase, different reduce

tasks are executed in parallel, each reduce task independently pro-

cessing a single key and its corresponding values.

Conceptually, a read alignment and variant calling pipeline can be

cast into the MapReduce framework: read alignment is then per-

formed in the map phase where the different map tasks are processing

part of the input FASTQ files in parallel, while the variant calling and,

if required, additional data preparation steps, are handled in the re-

duce phase where the different reduce tasks are processing chromo-

somal regions in parallel. Using the MapReduce framework, the reads

are sorted according to their aligned position and grouped by chromo-

somal region in between the two phases. The Halvade framework

provides access to data streams for individual tools that run in parallel

during read mapping and variant calling. An overview of the Halvade

framework is depicted in Figure 1. The different computational steps

are described in more detail below.

2.1.1 Input data preparation

The input data typically consist of paired-end reads stored in two

distinct, compressed FASTQ files. We provide a separate tool called

‘Halvade Uploader’ which interleaves the paired-end reads, storing

paired reads next to each other, and splits the data in chunks of

�60 MB of compressed data. These chunks are transferred on-the-

fly to the file system from which they can be accessed by the worker

nodes. In case a generic Hadoop system is used, this is the Hadoop

Distributed File System (HDFS); in case Amazon EMR is used,

chunks are uploaded to the Amazon Simple Storage Service

(Amazon S3) using the Amazon S3 API. The number of input chunks

corresponds to the number of map tasks that will be executed during

the map phase. The rationale behind the Halvade Uploader is that

data have to be copied or uploaded onto the compute infrastructure

anyhow, and that decompressing, interleaving, splitting and again

compressing can easily overlap with this transfer, thus reducing file

I/O to its minimum. The interleaving of paired-end reads ensures

that both pairs are accessible in a single task, which is required for

the read alignment. The Halvade Uploader is multithreaded and op-

erates on data streams, which means that its execution can overlap

with the data generation (i.e. sequencing) step itself.

Prior to the actual execution of the MapReduce job, additional

preparatory steps are required. First, the reference genome is parti-

tioned into a pre-determined number of non-overlapping chromo-

somal regions of roughly equal size. The number of chromosomal

regions corresponds to the total number of reduce tasks that will be

executed during the reduce phase and can be configured by the user

based on the size of the reference genome in question. Next,

Halvade ensures that all required binaries and configuration files are

available on each worker node. It does so by adding all required

files, in a compressed archive, to the distributed cache which is then

copied to each worker node and again decompressed. Note that

when these files are persistently stored onto the worker nodes, this

preparatory step can be omitted.
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2.1.2 Map phase read alignment

For the map phase, one map task is created per input FASTQ chunk.

These tasks are in turn executed in parallel on the worker nodes by a

number of mappers. Typically, the number of map tasks� the num-

ber of mappers which means that each mapper will process many

tasks. Key to the MapReduce model is that a map task will prefer-

ably be executed by a worker node that contains the input chunk lo-

cally on disk (as a part of the HDFS) in order to minimize remote

file access and thus network communication. Each mapper first

checks if the indexed reference genome is locally available and re-

trieves it from HDFS or Amazon S3 when this is not the case. At this

point, the reference genome itself is not partitioned, i.e. the complete

index is used by each individual mapper. The input FASTQ chunks

are read from HDFS or S3 and parsed into input <key, value> pairs

using the Hadoop-BAM (Niemenmaa et al., 2012) API. The values

of these pairs contain the FASTQ entries and are streamed to an in-

stance of the alignment tool.

Halvade requires that the alignments are accessible in SAM for-

mat and provides a SAM stream parser that will create the required

intermediate <key, value> pairs. This intermediate key represents a

composite object that contains the chromosome number and align-

ment position of a read, along with the identifier of the chromo-

somal region to which it aligns. The value contains the

corresponding SAM record, i.e. the read itself and all metadata.

Reads that cannot be aligned are optionally discarded. For individ-

ual or paired-end reads that span the boundary of adjacent chromo-

somal regions, two intermediate <key, value> pairs are created, one

for each chromosomal region. This redundancy ensures that all

required data for the data preparation and variant calling is avail-

able for each reduce task.

After all map tasks are completed, the MapReduce framework

sorts, in parallel, the intermediate pairs according to chromosomal

region (as part of the key). This way, all reads that align to the same

chromosomal region are grouped together thus forming the input of

a single reduce task. Halvade uses secondary sorting to further sort

the SAM records for each chromosomal region by genomic position.

Both grouping and sorting effectively replace the sorting of SAM

records typically performed by tools such as Picard or SAMtools (Li

et al. 2009) and are performed in a highly efficient manner by the

MapReduce framework.

2.1.3 Reduce phase—variant calling

When all data have been grouped and sorted, the different reduce

tasks are executed in parallel by different reducers. Again, the num-

ber of reduce tasks � the number of reducers. Before the reads are

processed, Halvade can copy to each worker node additional files or

databases that are required for variant calling. A specific task takes

as input all (sorted) intermediate <key, value> pairs for a single

chromosomal region and converts it to an input stream in SAM for-

mat. Halvade iterates over the SAM records and creates a BED file

(Quinlan and Hall, 2010) containing position intervals that cover all

SAM records in the chromosomal region. This file can optionally be

used to specify relevant intervals on which tools need to operate.

Finally, instances of these tools are created in order to perform the

actual variant calling.

Typically, at the end of each reduce task, a Variant Call Format

(VCF) file has been produced which contains all variants identified

in the corresponding chromosomal region. Halvade provides the op-

tion to merge these VCF files using an additional MapReduce job. In

this second job, the map phase uses the individual VCF files as input

and the variants are parsed as <key, value> pairs using Hadoop-

BAM. The key contains the chromosome identifier and the position

of the variant, while the value contains all other meta-information.

These values are collected in a single reduce task, which writes the

aggregated output to either HDFS or Amazon S3. At the interface of

adjacent chromosomal regions, it is possible that overlapping vari-

ants are called twice by GATK (once in each chromosomal region).

This is due to SAM records that span this interface and that were

thus sent to both regions. During the VCF merging step, Halvade as-

signs a unique name to each of the overlapping variants, thus keep-

ing all of them, or, optionally, retains only the variant with the

highest Phred-scaled quality score. Such overlapping variants

are rarely observed. Note that this second MapReduce job is very

light-weight.

Fig. 1. Overview of the Halvade framework. The entries of pairs of input FASTQ files (containing paired-end reads) are interleaved and stored as smaller chunks.

Map tasks are executed in parallel, each task taking a single chunk as input and aligning the reads to a reference genome using an existing tool. The map tasks

emit <key, value> pairs where the key contains positional information of an aligned read and the value corresponds to a SAM record. The aligned reads are

grouped and sorted per chromosomal region. Chromosomal regions are processed in parallel in the reduce phase, this includes data preparation and variant de-

tection again using tools of choice. Each reduce task outputs the variants of the region it processed. These variants can optionally be merged into a single VCF

file. Note that the names of the tools shown correspond to those of the GATK Best Practices DNA-seq implementation in Halvade

2484 D.Decap et al.
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2.2 Best practices DNA-seq implementation
In Halvade, a DNA-seq variant calling pipeline has been imple-

mented according to the Best Practices recommendations by Van der

Auwera et al. (2013). Table 1 lists the different steps involved.

During the map phase, read alignment is performed by BWA;

both BWA-mem and BWA-aln with BWA-sampe are supported in

our implementation. In case BWA-aln is used, paired-end reads are

again separated and aligned individually by two instances of BWA-

aln after which BWA-sampe is used to join these partial results. The

standard output stream of either BWA-sampe or BWA-mem is cap-

tured, and its SAM records are parsed into intermediate <key, val-

ue> pairs.

In the reduce phase, the SAM stream is first prepared according

to GATK’s requirements, i.e. the readgroup information is added,

read duplicates (i.e. reads that are sequenced from the same DNA

molecule) are marked and the data is converted to the binary, com-

pressed BAM format. Note that in the Best Practices recommenda-

tions, readgroup information is added during read alignment. In

Halvade, this is postponed to the reduce phase in order to avoid

sending this extra meta-information (as part of the SAM record)

over the network during sorting. For data preprocessing, Halvade

can use either Picard or elPrep (http://github.com/exascience/elprep)

with SAMtools (Li et al., 2009). ElPrep is a tool that combines all

data preparation steps and outputs a SAM file that conforms to the

GATK requirements. When using elPrep, the input SAM records are

streamed directly to elPrep for marking duplicate reads and adding

of readgroup information. Its resulting SAM file is then converted to

BAM format using SAMtools. When using Picard, Halvade first

writes the input SAM stream to local disk in a compressed BAM file

and then invokes the Picard MarkDuplicates and AddReadGroups

modules. Note that both options (elPrep/SAMtools or Picard) pro-

duce identical output. However, the combination of elPrep and

SAMtools is considerably faster than Picard.

Next, the actual GATK modules are executed. To correct poten-

tially misaligned bases in reads due to the presence of insertions or

deletions, the RealignerTargetCreator module is used to identify

intervals that require realignment followed by the IndelRealigner

module to perform the actual realignment. Next, using the dbSNP

database of known variants (Sherry et al., 2001), the

BaseRecalibrator module is used to generate co-variation data tables

that are then used by the PrintReads module to recalibrate the base

quality scores of the aligned reads. Finally, the actual variant calling

is done using either the HaplotypeCaller or UnifiedGenotyper

module.

The DNA-seq analysis pipeline implementation in Halvade sup-

ports both whole genome and exome sequencing analysis. One

important difference to note is that an additional BED file is

required, containing the coordinates of the exome regions to be pro-

cessed by GATK. Additionally, the dbSNP database file used for the

base quality score recalibration must be compatible with the exome

being targeted.

2.3 Optimizations
In order to get the best performance out of the available resources,

two crucial factors come into play. First, one needs to determine the

optimal number of mappers and reducers per node. This determines

the number of map and reduces tasks that will be executed concur-

rently on a worker node. Second, the user needs to select appropriate

map and reduce task sizes. This determines the total number of map

and reduce tasks that will be executed. Both factors are described

below.

To exploit parallelism in a workstation with one or more multi-

core CPUs, one can either run a single instance of a tool with multi-

threading on all available CPU cores, or run multiple instances of

that tool, each instance using only a fraction of the CPU cores. To il-

lustrate the difference in performance, the parallel speedup for dif-

ferent GATK modules as a function of number of threads was

benchmarked on a 16-core machine (dual socket Intel Xeon CPU

E5-2670 @ 2.60 GHz) with 94 GB of RAM (see Fig. 2). The bench-

marks show that the maximum speedup gained by any of the GATK

modules, using 16 threads, is <10, with one module exhibiting no

speedup at all. Most modules show good scaling behavior up to 4 or

8 threads, but show only moderate reduction in runtime when the

number of threads is increased further. It is thus more beneficial to

start multiple instances of GATK, each instance using only a limited

number of threads. Note that this is also true for Picard (which is

single-threaded) and to a lesser extent, also for BWA. This concept

is used in Halvade, which leads to better use of available re-

sources and a higher overall parallel efficiency (see Supplementary

Data S1.1). On the other hand, the maximum number of parallel in-

stances of a tool than can be run on a machine might be limited due

to memory constraints.

A second important factor is the optimal task size, which in turn

determines the total number of tasks. For the map phase, the task

size is determined by the size of a FASTQ chunk. Very few, large

chunks will lead to a high per-task runtime but an unevenly

Table 1. Overview of the steps and tools involved in the DNA-

sequencing pipeline according to the GATK Best Practices recom-

mendations described by Van der Auwera et al. (2013)

step program input output

align reads BWA FASTQ SAM

convert SAM to BAM Picard SAM BAM

sort reads Picard BAM BAM

mark duplicates Picard BAM BAM

identify realignment intervals GATK BAM Intervals

realign intervals GATK BAM and intervals BAM

build BQSR table GATK BAM table

recalibrate base quality scores GATK BAM and table BAM

call variants GATK BAM VCF
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Fig. 2. The parallel speedup (multithreading) of five GATK modules used in

the Best Practices pipeline on a 16-core node with 94 GB of RAM. The limited

speedup prevents the efficient use of this node with more than a handful of

CPU cores. Option -nt denotes data threads while option -nct denotes CPU

threads (cfr. GATK manual)
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balanced workload, whereas many little files will result in a large

task scheduling and tool initialization overhead. After extensive test-

ing, we determined that a file size of �60 MB leads to the lowest

runtime (see Supplementary Data S1.2). Such chunk size is suffi-

ciently big to define a meaningful task size, and small enough for a

chunk to fit into a single HDFS block (default¼64 MB) which is en-

tirely stored on a single worker node. If that worker node processes

the corresponding map task, network traffic is avoided. Similarly,

for the reduce phase, the task size is determined by the size of the

chromosomal regions.

For data preparation, Picard can be replaced by elPrep. This tool

combines all data preparation steps needed in the Best Practices

pipeline. Whereas Picard requires file I/O for every preparation step,

elPrep avoids file I/O by running entirely in memory and merges the

computation of all steps in a single pass over the data. Using elPrep

for data preparation again gives a significant speedup for this phase

in Halvade.

3 Results

Halvade was benchmarked on a whole genome human dataset

(NA12878 from Illumina Platinum Genomes). The dataset consists

of 1.5 billion 100 bp paired-end reads (50-fold coverage) stored in

two 43 GB compressed (gzip) FASTQ files. The software was bench-

marked on two distinct computer clusters, an Intel-provided big-

data cluster located in Swindon, UK and a commercial Amazon

EMR cluster. Table 2 provides an overview of the runtime on these

clusters. For these benchmarks, GATK version 3.1.1, BWA (-aln and

-sampe) version 0.7.5a, BEDTools version 2.17.0, SAMtools version

0.1.19 and Picard version 1.112 were used. The dbSNP database

and human genome reference found in the GATK hg19 resource

bundle (ftp://ftp.broadinstitute.org/bundle/2.8/hg19/) were used.

The reference genome was stripped of all alternate allele informa-

tion and contains chromosomes 1 through 22, M, X and Y.

3.1 Intel big data cluster benchmark
This cluster consists of 15 worker nodes, each containing 24 CPU

cores (dual-socket Intel Xeon CPU E5-2695 v2 @ 2.40 GHz) and

62 GB of RAM. The nodes each dispose of four hard drives with a

total capacity of 4 TB, intended as HDFS storage and a single

800 GB solid-state drive (SSD) that is intended for local storage dur-

ing MapReduce jobs. The nodes are interconnected by a 10 Gbit/s

Ethernet network. Cloudera 5.0.1 b which supports MapReduce 2.3

was used. Initially, the input FASTQ files were present on a local

disk of a single node. Using the Halvade Uploader, both files were

decompressed, interleaved, compressed into separate files of

�60 MB each (1552 chunks in total) and copied onto the local

HDFS storage. This pre-processing step required �1.5 h using eight

threads and can, in principle, overlap with the generation of the se-

quence data itself. For the chromosomal regions, a size of 2.5 Mbp

was used, corresponding to 1261 reduce tasks in total.

On this cluster, Halvade runs four mappers/reducers per node in

parallel to achieve optimal performance (see Supplementary Data

S1.3), each mapper/reducer having 6 CPU cores and �15.5 GB of

memory at its disposal. The scalability of Halvade was assessed by

running the analysis pipeline with an increasing number of 1–15

nodes. As Cloudera reserves one slot for scheduling and job manage-

ment, this corresponds to running 3 parallel tasks (1 node) to 59

parallel tasks (15 nodes) in total. Figure 3 depicts the parallel

speedup as a function of the number of parallel tasks and provides

an accurate view of the scalability and efficiency. When using 59

tasks (15 nodes), we observe a speedup of a factor 18.11 compared

with using 3 tasks (1 node). This corresponds to a parallel efficiency

of 92.1%. In absolute terms, the runtime reduces from �48 h (single

node) to 2 h 39 min.

It is important to note that Halvade already attains a significant

speedup when applied to a single node (3 tasks and 18 CPU cores),

compared with the scenario of running the multithreaded versions

of the individual tools using all 24 CPU cores. Indeed, whereas

Halvade requires �48 h on a single node, �120 h are required when

Halvade is not applied (speedup of a factor 2.5). This is due to the

limited multithreaded scaling behavior of certain tools or modules

(see ‘Methods’ section). It is hence far more efficient to run multiple

instances of e.g. GATK with a limited number of threads per in-

stance than letting GATK make use of all available cores.

Ultimately, Halvade achieves a �45-fold speedup when applied to

15 nodes (2 h 39 min) compared with running the pipeline on a sin-

gle node using only multithreading (120 h).

3.2 Amazon EMR benchmark
Amazon Elastic Compute Cloud (Amazon EC2) provides, as a web

service, a resizeable compute cluster in the cloud. MapReduce can

be used on this compute cluster with a service called Amazon EMR.

This provides access to a Hadoop MapReduce cluster which can be

chosen according to the requirements of the task at hand, e.g. the

number of nodes and the node type. The EMR cluster was initialized

Table 2. Runtime as a function of the number of parallel tasks

(mappers/reducers) on the Intel Big Data cluster and Amazon EMR

Cluster No.

worker

nodes

No.

parallel

tasks

No.

CPU

cores

Runtime

Intel Big Data cluster 1 3 18 47 h 59 min

4 15 90 9 h 54 min

8 31 186 4 h 50 min

15 59 354 2 h 39 min

Amazon EMR 1 4 32 38 h 38 min

2 8 64 20 h 19 min

4 16 128 10 h 20 min

8 32 256 5 h 13 min

16 64 512 2 h 44 min

The time for uploading data to S3 over the internet is not included in the

runtimes for Amazon EMR.
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Fig. 3. The speedup (primary y-axis) and parallel efficiency (secondary y-axis)

of Halvade as a function of number of parallel tasks (cluster size) on both an

Intel Big Data cluster and Amazon EMR
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with the Amazon Machine Images v3.1.0, providing access to

Hadoop MapReduce v2.4, which takes �5 min. One node is

reserved for job scheduling and management while the remainder is

used as worker nodes.

Using the Halvade Uploader, the input data were preprocessed

and uploaded to S3, the Amazon cloud storage system, again as

1552 chunks. The uploading speed is highly dependent on internet

network conditions, which varies greatly. Again, this step can over-

lap with the generation of the sequence data itself. As data stored on

S3 is directly accessible by worker nodes, one can chose whether or

not to copy these data to HDFS prior to starting the MapReduce

job. According to Deyhim (2013), data can be copied between S3

and HDFS at a rate of 50 GB per 19 min. However, for these bench-

marks, data was read directly from S3, as copying would increase

the overall runtime considerably.

For this benchmark, worker nodes of the type c3.8�large were

used. Each node provides 32 CPU cores (Intel Xeon E5-2680 v2 @

2.80 GHz), 60 GB of RAM and two 320 GB SSDs which are avail-

able for both HDFS and intermediate data. To obtain optimal per-

formance, Halvade again assigned four parallel tasks per node, with

each task disposing of 8 CPU cores and 15 GB of memory. The scal-

ability was assessed by running Halvade with an increasing number

of 1–16 worker nodes. When using 64 tasks (16 nodes), a speedup

of a factor 14.16 is achieved compared with using 4 tasks (1 node)

(see Fig. 3). This corresponds to a parallel efficiency of 88.5%. In

absolute terms, the total runtime is reduced from 38 h 38 min (4

tasks) to 2 h 44 min (64 tasks) (see Table 2).

The runtime on Amazon EMR is slightly higher than that ob-

tained using the Intel Big Data cluster, even though a higher number

of CPU cores was used. This is because the Intel Big Data cluster is

configured with a persistent HDFS, whereas for the Amazon cluster,

the HDFS is created on-the-fly when the MapReduce job starts. On

the Intel Big Data cluster, we can therefore instruct the Halvade

Uploader to copy data directly to the HDFS after which only limited

network communication is required for map tasks to access the

data. On Amazon, Halvade accesses the data straight from S3,

which requires network communication and explains the increased

runtime. With a total runtime of <3 h, the financial cost of a whole

genome analysis on Amazon EMR with 16 worker nodes amounts

to 111.28 US dollar (based on the pricing of May 2014), which is in

a similar price range as running the pipeline on a single, smaller

Amazon instance without the use of Halvade (based on an expected

runtime of �5 days on a c3.4�large instance).

3.3 Exome sequencing analysis benchmark
To assess the performance of Halvade on an exome sequencing data-

set (Illumina HiSeq NA12878), the same Amazon EMR cluster was

used. The dataset consists of 168 million 100 bp paired-end reads

stored in eight �1.6 GB compressed (gzip) FASTQ files.

Using an Amazon EMR cluster with eight worker nodes (32 par-

allel tasks), Halvade can call the variants in under 1 h for a total cost

of 19.64 US dollar (based on the pricing of May 2014). As the input

for exome analysis is considerably smaller, the load balancing is

more challenging as there are only 225 map tasks and 469 reduce

tasks in total. A high parallel efficiency of �90% is obtained when

using 8 worker nodes; the efficiency drops to �70% when using 16

worker nodes (see Fig. 3).

4 Discussion and conclusion

Especially for whole genome sequencing, the post-sequencing ana-

lysis (runtime of �12 days, single-threaded) is more time-consuming

than the actual sequencing (several hours to a few days). Individual

tools for mapping and variant calling are maturing and pipeline

guidelines such as the GATK Best Practices recommendations are

provided by their authors. However, existing tools currently have no

support for multi-node execution. Even though some of them sup-

port multithreading, the parallel speedup that can be attained might

be limited, especially when the number of CPU cores is high. As

whole genome analysis is increasingly gaining attention, the need for

a solution is apparent.

Halvade provides a parallel, multi-node framework for read

alignment and variant calling that relies on the MapReduce pro-

gramming model. Read alignment is then performed during the map

phase, while variant calling is handled in the reduce phase. A variant

calling pipeline based on the GATK Best Practices recommendations

(BWA, Picard and GATK) has been implemented in Halvade and

shown to significantly reduce the runtime. On both a Cloudera clus-

ter (15 worker nodes, 360 CPU cores) and a commercial Amazon

EMR cluster (16 worker nodes, 512 CPU cores), Halvade is able to

process a 50-fold coverage whole genome dataset in under 3 h, with

a parallel efficiency of 92.1 and 88.5%, respectively. To the best of

our knowledge, these are the highest efficiencies reported to date

(see Supplementary Data S1.4 for a comparison with Crossbow).

Like Halvade, MegaSeq supports a pipeline which is based on the

GATK Best Practices recommendations. As the source code of

MegaSeq is not publicly available, a direct comparison to Halvade is

difficult. Puckelwartz et al. (2014) estimate, based on benchmarks

on 61 whole genomes, that 240 whole genomes could be processed

in 50.3 h, using a supercomputer with 17 424 CPU cores (AMD

Magny-Cours @ 2.1 GHz). When rescaling this to 360 CPU cores @

2.4 GHz, an average runtime of 8.9 h is obtained for a single gen-

ome. Halvade processes such dataset in 2 h and 39 min and thus pro-

vides for a more cost-effective way to minimize runtime. It should

be noted that (i) MegaSeq used the GATK HaplotypeCaller whereas

Halvade relied on the (much) faster UnifiedGenotyper during bench-

marking, (ii) additional variant annotation was performed in

MegaSeq, (iii) a comparison based on the number of CPU cores and

clock frequency alone has its limitations as also disk speed, available

RAM, network speed and other hardware aspects may play a role.

To enable multi-node parallelization of sequencing pipelines,

Halvade provides and manages parallel data streams to multiple in-

stances of existing tools that run on the different nodes. No modifi-

cations to these tools are required; they can thus easily be replaced

by newer versions. The same holds for replacing the current tools by

alternatives: if input/output formats are not affected, the interchange

of tools is straightforward. For the map phase (read alignment), the

use of tools other than the natively supported BWA(-aln and -mem)

should be possible with minimal effort, provided that they output

SAM records either to disk or standard output. For the reduce phase

(variant calling), it is more invasive to make modifications as the

steps involved and the (intermediate) input and output formats are

not standardized across tools. Making major changes to this analysis

step will require modification to the source code (Java) of Halvade.

However, Halvade provides all functionality to partition the refer-

ence genome in chunks and provides functionality to copy external

dependencies (files or databases) to the worker nodes. This should

greatly facilitate the implementation of variant calling pipelines

using other tools.

To achieve optimal performance on computer clusters with

multi-core nodes, Halvade can be configured to run multiple parallel

instances of a tool per node, each instance using a limited number of

threads. This approach significantly increases the per-node perform-

ance as the multithreaded scaling behavior of certain tools is limited.
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Indeed, on a single 24-core node with three parallel tasks, Halvade

already attains a speedup of 2.5 compared with a multithreaded exe-

cution of the same tools in a single task. A second key factor in at-

taining a high efficiency is the choice of appropriate task sizes. Few,

large tasks might result in an unevenly balanced load whereas lots of

small tasks result in scheduling and tool initialization overhead.

In Halvade, it is assumed that read alignment is parallel by read

and that variant calling is parallel by chromosomal region. Certain

tools, however, produce slightly different results when they operate

on only part of the data. We have analyzed these sources of vari-

ation in detail (see Supplementary Data S1.5). As for the accuracy of

whole genome analysis, the variants found by Halvade match

>99% with variants in the validation set created by a sequential run

of the GATK Best Practices pipeline. Additionally, almost all the

1% different variants have a very low variant score.

In the implementation of the GATK Best Practices pipeline, the lat-

est versions of BWA, Picard and GATK are supported. Both whole

genome and exome analysis are supported. An RNA-seq variant call-

ing pipeline is currently in development. Halvade is built with the

Hadoop MapReduce 2.0 API and thus supports all distributions of

Hadoop, including Amazon EMR and Cloudera, the latter which can

be installed on a local cluster. The Halvade source code is available at

http://bioinformatics.intec.ugent.be/halvade under GPL license.
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