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Abstract

Analyzing neural signals and providing feedback in realtime is one of the core characteristics of a 

brain–computer interface (BCI). As this feature may be employed to induce neural plasticity, 

utilizing BCI technology for therapeutic purposes is increasingly gaining popularity in the BCI 

community. In this paper, we discuss the state-of-the-art of research on this topic, address the 

principles of and challenges in inducing neural plasticity by means of a BCI, and delineate the 

problems of study design and outcome evaluation arising in this context. We conclude with a list 

of open questions and recommendations for future research in this field.

1. Introduction

While in the past decade research on brain–computer interfaces (BCIs) was primarily 

focused on providing alternative communication devices, recent years have witnessed a 

growing interest in extending the application range of BCI technology. Among these new 

research directions, the use of BCIs for inducing neural plasticity and restoring function has 

gained particular attention, as it substantially enlarges the size of the population that may 

benefit from BCI technology. A particular emphasis of this paper will be on stroke 

rehabilitation, as stroke is one of the leading causes of long-term motor disability among 

adults. Furthermore, despite intensive rehabilitative efforts, about one-third of affected 

patients show poor recovery 1 year post-stroke [1]. Here, BCI technology could complement 

traditional rehabilitation efforts by providing patients with feedback on their brain states, 

which may be utilized to support the process of cortical reorganization required for 

functional recovery. The potential utility of BCI technology, however, is certainly not 

limited to stroke rehabilitation. In general, BCI technology may be applicable whenever the 

long-term changes of cortical connectivity, induced by some form of feedback, can be 

expected to have a beneficial impact on quality-of-life measures. Many open questions and 
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technological problems remain to be addressed, however, before BCI technology may be 

routinely used for such purposes.

In this paper, we summarize the discussions of the one-day workshop that was held on this 

topic at the 4th International BCI Meeting 2010 in Asilomar, CA, USA. In particular, we 

review the state-of-the-art as discussed at the workshop in section 2, address the problems 

and technical challenges in inducing neural plasticity in section 3, and broach the intricate 

issue of study design in section 4. We conclude with a list of open problems and 

recommendations that the workshop participants considered crucial for establishing a 

beneficial impact of BCI technology on therapeutic efforts.

2. State-of-the-art

In this section, we give a brief overview of the state-ofthe-art in this field as discussed at the 

workshop. A more general overview can be found in [2]. In general, diverse patient groups 

with a variety of cognitive disorders may benefit from receiving feedback on their neural 

states, including but not limited to those affected by stroke, epilepsy, ADHD, chronic pain, 

Parkinson's disease, schizophrenia, and anxiety disorders. Unfortunately, for most patient 

groups, empirical evidence for a positive impact of BCI technology is scarce. Notable 

exceptions are in the domain of epilepsy research and treatment of ADHD. In [3], evidence 

is presented that the volitional modulation of slow cortical potentials (SCPs) positively 

affects the seizure frequency of epileptic patients. Also utilizing SCPs, Strehl et al [4] 

demonstrate a beneficial effect of neuro-feedback on ADHD symptoms. While these studies 

provide proof of principles for a positive impact of BCI technology in specific patient 

groups, such studies remain outstanding in other domains. There have been substantial 

efforts in utilizing BCI technology for stroke rehabilitation, and stroke patients have been 

shown to be capable of operating a BCI based on MEG [5] and ECoG [6]. Empirical 

evidence to date, however, does not provide a convincing demonstration of a positive impact 

of BCI technology on functional recovery in this patient group [5, 7]. Potential explanations 

for this are discussed in section 3. For most potential patient groups, convincing 

demonstrations of the utility of BCI technology thus remain outstanding.

3. Inducing neural plasticity

When speaking of the induction of neural plasticity, it is important to be aware that neural 

plasticity may refer to a multitude of different processes of reorganization within the brain, 

each of which affects the way information is processed and may ultimately result in 

behavioral changes. These processes include, but are not limited to, the sprouting of new 

axons, changes in synaptic strengths, or even the formation of new neurons [8]. When 

investigating neural plasticity, it is thus crucial to precisely define what kind of metric is 

being used to measure experimental outcomes, e.g., whether changes are measured on a 

neuro-physiological or behavioral level. This issue will be discussed in more detail in 

section 4. In this paper, we define the induction of neural plasticity as the process by which 

lasting—if not permanent—changes leading to desirable behavioral outcomes are caused by 

feedback of neural states. We consider any signal that is derived from recordings of the 

neural activity as a representation of a neural state. Note that there exists some controversy 
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about what qualifies a system as a BCI [9]. Here, we consider a BCI to represent a system 

that provides a signal to its user that is a deterministic function of her or his brain activity. 

According to this definition, any BCI constitutes a neuro-feedback system that may possess 

the capability of inducing neural plasticity.

These considerations naturally lead to the question why neuro-feedback procedures may 

affect behavior, i.e., the neural basis for inducing plasticity by means of BCI technology. 

This certainly constitutes a complex process, and may vary substantially across patient 

groups and experimental paradigms. One common concept crucial for the induction of 

neural plasticity may be that of Hebbian plasticity: coincident activation of pre-synaptic and 

post-synaptic neurons reinforces synaptic strength, resulting in increased and more reliable 

communication between the activated neurons. The potential relevance of this concept for 

changes in behavior can be illustrated particularly well in the context of stroke rehabilitation 

[10]: assuming that the connection between peripheral muscles and the sensorimotor cortex 

has been disrupted due to a sub-cortical stroke, a coincident activation of sensory feedback 

loops and primary motor cortex may reinforce previously dormant cortical connections by 

Hebbian plasticity and thus support functional recovery. Here, BCI technology may be used 

to detect primary motor cortex activation, i.e. movement intent, and provide matching 

sensory stimulation according to some haptic feedback procedures.

Unfortunately, it is currently unclear which properties of a BCI system are relevant for 

inducing neural plasticity. This is of particular relevance because, to date, optimization of 

BCI technology primarily focuses on speeding up its performance for communication 

purposes. While certain characteristics of BCIs relevant for communication can also be 

expected to be of importance for therapeutic purposes, there may be challenges in BCI 

design unique to the problem of inducing neural plasticity. In the following, we discuss 

several characteristics of BCI systems that the workshop participants considered likely to 

affect the extent of induced plasticity.

• Choice of neural states for feedback. There was a consensus among the workshop 

participants that the choice of neural states employed for feedback will have a large 

impact on experimental outcomes. In most patient groups, however, it is at present 

unclear which neural states may be optimal for inducing beneficial long-term 

changes in behavior. In particular, this concerns the choice of the signal modality 

(e.g., single-cell recordings, fMRI, EEG, ECoG, or MEG), the brain areas from 

which signals are recorded, and the signal characteristics (e.g., spike rate, 

bandpower and coherence) that are utilized for providing feedback. In general, the 

choice of the neural states used for feedback may be driven by prior knowledge of 

desirable brain states, or it may be outcome driven. In the former case, certain 

target areas and signal characteristics may be identified in advance, and BCI 

technology may be designed to utilize these features only. The drawback of this 

approach would be that the chosen brain areas and signal characteristics may not be 

optimal for providing accurate feedback. The outcome-driven determination of 

neural states, on the other hand, would aim to identify those brain states that are 

optimal for providing accurate feedback, at the probable expense of employing 

neural signals unsuitable for inducing beneficial changes in behavior. For example, 
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hemiparetic stroke patients who are being trained with a BCI based on motor 

imagery may learn to control the BCI by motor imagery involving ipsilesional 

cortical areas. While this could result in good BCI performance, it may not induce 

the desired behavioral changes. Ultimately, a methodology would be desirable that 

learns which neural states to use for optimal feedback accuracy, while allowing the 

exclusion of certain (anatomically or functionally) pre-defined brain areas or signal 

characteristics.

• Feedback accuracy. It appears to be generally acknowledged that task learning 

requires accurate feedback. This also holds in the domain of BCIs, with recent 

evidence suggesting that subjects perform worse if they receive inaccurate 

feedback on their neural states [11]. While the relation of feedback accuracy and 

the induction of neural plasticity remains unexplored, it appears sensible to assume 

that a high degree of feedback accuracy, i.e. a low classification error, is crucial for 

inducing neural plasticity by means of BCI technology. Accordingly, a BCI for 

communication as well as a BCI for rehabilitation aims for high classification 

accuracies. There is one potentially crucial difference, though, in which the latter 

may differ from the former. While only the objective classification accuracy is 

relevant for communication purposes, in a rehabilitation setting the subjectively 

perceived classification accuracy may have an impact on the induction of neural 

plasticity and thus on subsequent behavioral changes. While the objective and 

subjective feedback accuracy can be expected to be highly correlated, careful 

design of feedback procedures may have a beneficial impact on the perceived 

feedback accuracy for identical classification errors. Unfortunately, an 

investigation of the impact of the perceived feedback accuracy on the extent of 

behavioral changes in neuro-feedback paradigms remains outstanding.

• Feedback delay. If neural plasticity relies on Hebbian-type learning rules, then the 

delay between the measurement of a neural state and the subsequent feedback of 

this state to the subject is of crucial importance. Any feedback that does not fulfill 

the requirement of coincident activation of the targeted brain regions is unlikely to 

result in long-term behavioral changes. This issue may be one cause of the so far 

only moderate success of utilizing BCI technology for stroke rehabilitation [5, 7], 

as in these studies haptic feedback was not synchronized with movement intent. 

The maximum feedback delay that still induces coincident activation in the sense of 

Hebbian learning, however, remains unknown. The workshop participants expected 

this upper limit to be of the order of 200–300 ms, but agreed that this is one of the 

open questions that needs to be addressed by the community. There may also exist 

patient groups, however, in which a short feedback delay is not crucial for inducing 

behavioral changes. It remains to be clarified which applications pose which 

requirements on feedback delays.

• Feedback modality. Typically, BCI systems designed for communication provide 

visual feedback, as this is usually simple to interpret by the user and easy to realize 

for the scientist. It should be noted, however, that visual feedback may not be 

optimal when BCI systems are utilized for therapeutic purposes. First, due to the 

complexity of the human visual system, processing of visual stimuli is rather slow. 
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As such, different feedback modalities, e.g., haptic feedback, may result in smaller 

effective feedback delays, and hence be more suited to inducing neural plasticity. 

Experience with non-visual feedback, on the other hand, is limited in the BCI 

community. For example, providing haptic feedback in motor-imagery-based 

paradigms is likely to have an effect on sensorimotor areas that are used for 

intention inference, which may result in reduced performance. However, if the 

introduction of such feedback loops is properly addressed in the design of the BCI 

system, this may even have a beneficial impact on BCI performance, as indicated 

by a recent study on haptic feedback in arm movement imagery [12]. Furthermore, 

it should be noted that feedback does not necessarily have to be provided through 

the peripheral nervous system. Recurrent BCIs, which are being pioneered by Fetz 

and collaborators [13], record neural signals invasively from one cortical site, and 

feedback (a derivative) of these signals into other cortical target areas. Such direct 

feedback may provide greater control over alterations in neural processes in 

comparison to feedback delivered through sensory channels.

Unfortunately, the properties of BCI systems that are potentially relevant for inducing neural 

plasticity can often not be optimized independently. For example, the occasionally low 

signal-to-noise ratio (SNR) of neural recordings results in feedback accuracy that typically 

depends on the length of the recording window used to infer a particular neural state, with 

longer time windows often resulting in increased accuracy [14]. Extending the length of the 

recording window, on the other hand, necessarily results in an increase in feedback delay. It 

is an open question which trade-off between good feedback accuracy and small feedback 

delay is optimal for inducing neural plasticity. Furthermore, the type of feedback modality is 

likely to affect the perceived level of control over the BCI system as well as the feedback 

delay, both of which may influence the induction of neural plasticity. It is at present unclear 

whether such factors can be optimized congruently. In general, the optimal design of BCI 

systems for inducing neural plasticity and restoring function is in its infancy, and many open 

questions remain to be answered by the BCI community.

4. Study design

The use of BCI technology for therapeutic purposes poses challenges in study design and 

outcome evaluation that do not arise in the context of communication. Here, we give a brief 

overview of these challenges as discussed at the workshop, and formulate recommendations 

for how to address these challenges.

While classification errors and various measures of the information transfer rate have been 

widely accepted as metrics for evaluating experimental outcomes when BCIs are used for 

communication [15], to date no such consensus exists in the field of BCIs for inducing 

neural plasticity. Ultimately, the long-term impact of BCI technology on a patient's quality-

of-life should be the relevant measure, e.g., the Fugl-Meyer score in hemiplegic patients 

[16]. However, aiming to directly optimize behavioral measures may be overly optimistic. 

Instead, neuro-physiological markers of neural plasticity may be investigated. These should 

correlate with a beneficial impact on functional recovery, and ideally provide insights into 

the neural mechanisms of cortical reorganization. One such potential marker would be the 
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topography of brain areas deemed relevant for a certain feedback paradigm, and the changes 

in this topography over the course of experimental sessions.

As the goal of future studies should be the demonstration of a long-term beneficial impact of 

BCI technology on functional recovery relative to traditional therapies, randomized 

controlled trials are required. This poses substantial difficulties in study design, as 

withholding established treatments from patients is considered unethical. Several potential 

solutions to this problem exist. First, therapies based on BCI technology may be offered 

only to patients for whom traditional therapies have been exhausted. While this probably 

constitutes the least precarious procedure from an ethical point of view, it is probably also 

accompanied by the least probability of success. Empirical evidence suggests that there is a 

‘window-of-opportunity’, in which stroke patients are most susceptible to treatments [8]. 

BCI-based therapies offered outside of this time frame may have little impact on 

rehabilitation. Second, block-randomized trials may be employed. In these trials, patients are 

divided into two groups, each of which receives traditional as well as BCI-based therapy in a 

reversed chronological order. It should be noted, however, that this procedure is also 

constrained by the potential window-of-opportunity. Third, one may aim to develop BCI 

technology that does not replace but complement existing therapies, such that in a worst-

case scenario a patient would only receive the benefit of a classical therapy. While this may 

be the most difficult scenario to realize, it does not raise any ethical concerns in general, and 

may be feasible in the form of a randomized controlled trial.

5. Conclusions

We conclude this paper with a brief list of recommendations and open problems, derived 

from the above discussions, that the workshop participants considered crucial for making the 

use of BCI systems for therapeutic purposes a clinical reality.

First of all, the workshop participants agreed that clinicians should be involved at an early 

stage of research, and that experimental work should focus on actual patients rather than on 

healthy subjects. Today, most studies in the field of a BCI are carried out with healthy 

subjects, even though insights gained from healthy populations may not generalize to 

patients actually in need of a BCI. Second, it appears crucial to investigate which neuro-

physiological changes correlate with functional recovery. Only if such processes are better 

understood can BCI systems be optimized to provide feedback on those neural states that are 

optimal for inducing neural plasticity. In the meantime, it is furthermore of importance to 

elucidate the effect of feedback accuracy as well as feedback delay on the induction of 

neural plasticity. It may be expected that the perceived level of control of a subject over a 

BCI system correlates with the extent of induced plasticity. As such, an optimal trade-off 

between feedback delay and accuracy may be investigated by questioning subjects about 

their perceived level of control. Fourth, the impact of different feedback modalities on BCI 

performance, and potential approaches to harness the resulting effects, should be further 

explored. Finally, all of these intermediate goals should serve the final purpose of 

demonstrating a beneficial long-term impact of BCI technology on the quality-of-life of 

diverse patient groups in large-scale randomized controlled trials.
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