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Abstract

Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular 

signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, 

proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid 

metabolism has been also implicated in many human cancers. Macroautophagy (referred to here as 

autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane 

structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central 

molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, 

including the induction of lethal mitophagy, a selective autophagy process to target and eliminate 

damaged mitochondria. In this review, we focused on recent studies with regard to the regulation 

of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion 

points for various context-dependent roles and mechanisms of action of ceramide in controlling 

mitophagy.
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1. Introduction

Sphingolipids are membrane lipids with important functions in regulating membrane fluidity 

and subdomain structures. Advances in sphingolipid research suggest that sphingolipids are 

highly bioactive molecules and have a great impact on cellular signaling and disease 

pathogenesis [1]. Ceramide is one of the central molecules of sphingolipid metabolism and 

plays a key role in the regulation of various cellular functions, including cell proliferation, 

death, migration, and senescence [2]. Ceramide is intimately involved in cancer 

pathogenesis; alterations in its metabolism are involved in controlling cancer initiation, 
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progression, and/or response of cancer cells to chemotherapeutic agents and radiation. 

Endogenous levels of ceramide, especially C18-ceramide, are suppressed in many types of 

tumor tissues compared to non-cancerous counterparts. Additionally, ceramide levels 

increase upon exposure of cancer cells to stress-causing agents, such as cytokines, 

anticancer drugs, and radiation, leading to cancer cell death and tumor suppression [2, 3]. 

Ceramide-mediated tumor suppression is regulated by various mechanisms such as 

apoptosis, necroptosis, lethal autophagy, and mitophagy [4-8].

Mitophagy is a form of autophagy that results in selective degradation of mitochondria 

through the autophagic machinery [9]. Ceramide plays a key role in the regulation of general 

autophagy at many levels from initiation to formation of autophagosomes [10]. Recently, we 

have begun to better understand ceramide’s role in inducing selective lethal mitophagy. 

Several recent studies showed the ability of endogenous or exogenous ceramides to cause 

cell death after accumulating in the mitochondria [11-13]. Our recent study showed that 

mitochondrial ceramide acts as a receptor for LC3-II [14]. Ceramide binding directly to 

LC3-II protein leads to the recruitment of autophagosomes to damaged mitochondria, 

resulting in lethal mitophagy [14]. This review will focus on the roles and mechanism of 

action of ceramide in the regulation of mitophagy and tumor suppression.

2. Metabolism and biological roles of ceramide

a. Structure and metabolism of ceramide

Ceramide is a bioactive sphingolipid with a peculiar structure. It is composed of a 

sphingosine backbone that is esterified to a fatty acyl chain via an amide linkage at carbon 3 

[1, 2]. The variety in the length of the fatty acyl chain generates many different ceramides, 

such as C14-to C26-ceramides. A trans-double bond between carbons 4 and 5 in the 

sphingosine backbone is required for its biological activity, as the loss of the double bond 

generates dihydro-ceramide [1].

Ceramide lies at the center of sphingolipid metabolism: acting as a substrate for the 

generation of more complex sphingolipids, or as a product of the breakdown of complex 

sphingolipid molecules (Figure 1). As a substrate, ceramide is converted to sphingomyelin, 

ceramide-1-phosphate, hexosylceramides, and other complex glycosphingolipids and 

gangliosides [1]. As a product, ceramide can be generated by the breakdown of these more 

complex sphingolipids by specialized enzymes such as sphingomyelinases (SMAse), which 

hydrolyze sphingomyelin (SM), and cerebrosidases which hydrolyze hexosylceramides [15].

De novo generation of ceramide begins with the condensation of serine and palmitoylCoA to 

form 3-ketosphinganine, and then dihydrosphingosine (sphinganine) [16], involving 

multiple metabolic enzymes. This is followed by the action of ceramide synthases 1-6 

(CerS1-6) (also known as dihydro-ceramide synthases) that esterify the dihydrosphingosine 

to generate dihydroceramide [17]. Ceramide is then generated by the action of 

(dihydroceramide)-desaturase that irreversibly inserts a double bond between carbons 4 and 

5 [18].
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Ceramide catabolism is regulated mainly by ceramidases, which cleave ceramide to generate 

sphingosine. Sphingosine then gets phosphorylated by sphingosine kinases 1 or 2 (SphK1 or 

SphK2) to produce sphingosine 1-phosphate (S1P). S1P can be lysed to hexadecanal and 

ethanolaminephosphate by S1P lyase or dephosphorylated by S1P phosphatases[19]. Hence, 

endogenous levels of ceramide increase through de novo synthesis, activation of 

sphingomyelinases, or decreased clearance through the inhibition of glucosylceramide 

synthase (GCS), sphingomyelin synthase (SMS), or ceramidase (CDase) [20].

Sphingolipid metabolism is highly compartmentalized in cells, as the subcellular localization 

of different sphingolipid molecules and the metabolic enzymes play key roles in this process 

[1]. For example, CerS1-6 enzymes are localized in the endoplasmic reticulum (ER) where 

de novo synthesis of ceramide occurs. For the synthesis of SM, ceramide is transported from 

the ER to the Golgi apparatus by ceramide transporter protein (CERT) in a non-vesicular 

fashion [21, 22]. Similarly, for the synthesis of glucosylceramide (GlcCer), ceramide is 

transported to the Golgi by Fabb2 transporter [22]. Recently, a role for a lipid transporter 

protein GLTPD1 for ceramide 1-phosphate, referred to as CPTP, has been discovered, which 

plays a critical role in the regulation of inflammation [23]. Ceramide is also found in the 

mitochondria where it can be generated by neutral sphingomyelinase (N-SMase) in response 

to increased reactive oxygen species (ROS) production [1]. Ceramide accumulation in the 

mitochondria can lead to ceramide stress-induced mitochondrial fragmentation, and decrease 

in ATP production [14]. In lysosomes, ceramide is mainly produced by acid 

sphingomyelinase (A-SMase), and in the plasma membrane, ceramide is localized within 

lipid rafts, which are specialized membrane microdomains that regulate various signaling 

pathways [24].

b. Biological functions of Ceramide Synthases 1-6

Ceramide Synthases 1-6 (CerS1-6) were first identified in yeast as longevity assurance gene 

1 (LAG1). LAG1 regulates longevity in yeast in a way that its deletion prolongs the 

replicative lifespan [17]. The mouse homologue of LAG1 is LASS1, also known as the 

upstream of growth and differentiation factor 1 (UOG1), which was discovered to 

specifically regulate the synthesis of C18-ceramide [25, 26]. There are at least six 

mammalian LASS proteins that are currently known as CerS1-6 [17]. All of the CerS 

enzymes share a domain required for their enzymatic activity to generate ceramide called 

TLC domain (TRAM, LAG1, and CLN8 homology), which is made up of five predicted 

transmembrane helices [27, 28]. CerS2-6 also contain a HOX domain which CerS1 lacks 

[29, 30].

CerS1-6 exhibit some specificity for the generation of endogenous ceramides with different 

fatty acid chain lengths [31, 32]. For example, CerS1 mainly generates ceramide with an 18-

carbon containing fatty acid chain (C18-ceramide), CerS4 generates both C18-ceramide and 

C20-ceramide, and CerS5 and CerS6 generate mainly C16-ceramide, and to a lesser extent, 

C12- and C14-ceramides. CerS2 and CerS3 are known to generate very long chain C22-24- 

and C26-ceramides, respectively [1-3, 7, 15, 33].

Different species of ceramide with distinct fatty acyl chain lengths have diverse biological 

functions (Table 1). For example, CerS1 and CerS6, generating C18-ceramide and C16-
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ceramide respectively, have opposing roles in cell death and proliferation in head and neck 

cancer cells and tumors. CerS1/C18-ceramide axis leads to cancer cell death and decreases 

head and neck tumor growth [34-36]. Increased levels of serum C18-ceramide act as a 

potential biomarker to monitor patients’ response to chemotherapy [37]. On the other hand, 

C16-ceramide promotes head and neck cancer cell proliferation and its increased serum 

levels associate with a positive lymph node status in breast cancer patients [38, 39]. On the 

other hand, there are studies showing that C16-ceramide is pro-apoptotic, whereas C24-

ceramide protects from cell death [40, 41]. Thus, overall, distinct roles of ceramides appear 

to be context dependent, especially that knockout mice for multiple CerS enzymes exhibit 

different phenotypes: mice that express a mutant CerS1 (toppler mice) exhibit neurological 

disorders associated mainly with alterations in Purkinjee cells; mice with genetic loss of 

CerS2 results in liver damage; mice with CerS6 knockout exhibit neurological/behavioral 

alterations; and CerS4 knockout mice exhibit severe alopecia with alterations in sebaceous 

glands and sebum contents [42-43,204]. The demonstration of the distinct roles of CerS-

generated ceramides in the regulation of cell death is also consistent with studies performed 

in Drosophila and C. elegans that showed the distinct roles of CerS-generated ceramides in 

these organisms [45-47]. Moreover, recent evidence suggests that changes in the carbon 

length of the sphingoid base of ceramides with 18 versus 16 carbons play roles in inducing 

survival autophagy versus cell death in cardiomyocytes [48].

c. Cancer suppressing role of ceramide

Ceramide induces a variety of anti-proliferative responses such as programmed cell death, 

cell cycle arrest, senescence, and differentiation. Indeed, studies show that ceramide is 

involved in apoptosis, necroptosis, lethal autophagy, and mitophagy, all of which decrease 

cancer cell viability [14, 49-51]. Exogenously supplied ceramides (C2-C18-ceramides), also 

have anti-proliferative activities when added to cells in culture [11, 12, 52]. Thus, ceramide 

metabolism has a significant role in suppressing cancer progression, and ceramide is 

emerging as a tumor suppressor lipid.

Ceramide is generated during stress conditions such as hypoxia, growth factor withdrawal, 

hyperthermia, and DNA damage which then mediates cell death [53]. In addition, there is an 

increase in ceramide levels during the activation of extrinsic apoptosis via FAS/FAS ligand 

pathway or tumor necrosis factor (TNF)-alpha pathway [54]. Ionizing radiation causes 

ceramide formation by activating A-SMase while androgen ablation in prostate cancer cells 

induces de novo generation of ceramide, leading to cell death [55-57].

One mechanism by which ceramide leads to cell death is by activating protein phosphatases 

PP1 and PP2A [58]. PP2A is a tumor suppressor protein that acts as a phosphatase to 

regulate signaling of many targets including Akt, c-Myc, and Bcr-Abl [59, 60]. Ceramide 

binds to the biological inhibitor of PP2A, I2PP2A or SET oncoprotein, leading to PP2A 

reactivation. PP2A can then dephosphorylate and inactivate several anti-apoptotic proteins 

such as Bcl-2 and AKT, or c-Myc. [50, 61]. Interestingly, SET/I2PP2A oncoprotein 

preferentially associates with endogenous C18-ceramide compared with other ceramide 

species [62]. This specificity for binding to a specific species of ceramide is also evident in 

CERT binding preferentially to C16- and C18-ceramides but not very long chain ceramides 
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[63]. Ceramide interacts with another phosphatase, PP1, which inactivates the pro-apoptotic 

protein Bid [54]. Moreover, ceramide-PP1 is involved in the regulation of retinoblastoma 

protein (RB), a tumor suppressor protein that plays an important role in cell cycle regulation. 

Ceramide treatment can dephosphorylate and activate RB leading to cell cycle arrest in 

cancer cells [64]. In addition, ceramide generated in lysosomes by A-SMase activates 

cathepsin D by inducing autocatalytic proteolysis, resulting in Bid cleavage and caspase 

activation [65, 66].

Another mechanism that associates with the tumor suppressor roles of ceramide is its 

regulation of telomere length by acting as an upstream regulator of telomerase. Studies 

showed that ceramide accumulation in lung cancer cells inhibits telomerase expression by 

inactivating c-Myc transcription factor, which is an activator of the human telomerase 

reverse transcriptase (hTERT) promoter, via increased ubiquitination and proteasome 

mediated degradation. The inactivation of telomerase prevents the cancer cell from 

elongating the telomeric ends of the chromosomes after each replication cycle, leading 

eventually to cell death [67, 68].

Ceramide is also involved in pathways that lead to quiescence and senescence in cancer 

cells. For example, ceramide inactivates cyclin dependent kinase 2 (CDK2), and upregulates 

the expression of CDK inhibitors p21 and p27 in Wi-38 fibroblasts and nasopharyngeal 

carcinoma cells, respectively [69-71]. In addition, exogenous supply of ceramide to 

fibroblasts cultured at low passage induces the biochemical and morphological features of 

senescence [1, 72]. By inducing senescence, ceramide helps in the suppression of key 

mitogenic pathways, leading to tumor suppression [73].

Because of these pro-death characteristics, ceramide analogues or mimetics have the 

potential to act as anti-cancer agents. Endogenous accumulation of ceramide might also be 

beneficial to suppress tumor growth. One example is the group of ceramide analogues, 

Ceramidoids or pyridinium ceramides, which preferentially accumulate in the mitochondria/

nuclei, and suppress the tumor growth of lung, breast, and head and neck squamous cell 

carcinomas [52, 74]. The mitochondrial accumulation of pyridinium ceramides results in 

mitochondrial permeability transition and either caspase-dependent apoptosis or mitophagy 

[14, 74]. Another example is the group of glucosylceramide synthase inhibitors (PPMP and 

PPPP) that lead to the accumulation of ceramide, which decrease glucosylceramide 

generation, and suppress solid tumor growth [75, 76]. Ceramide can also be delivered 

exogenously in PEGylated nanoliposomes. Studies using these liposomes show that this 

delivery method of ceramide decreases phosphorylation of AKT, stimulates the activity of 

caspase 3/7, and prevents the growth of breast cancer cells in vitro and in vivo [77, 78].

3. General autophagy and its regulation by ceramide

a. Progression of autophagy

Autophagy, or self-eating in Greek, describes the mechanism utilized by the cell to self-

digest internal organelles and misfolded proteins using lysosomal hydrolytic enzymes [79]. 

Autophagy starts with the formation of cup shaped structures called phagophores, also 

known as isolation membranes, which will elongate to engulf organelles and other 
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cytoplasmic components. The maturation of the phagophores leads to the formation of an 

autophagosome that fuses with lysosomes for the formation of autophagolysosomes [80]. It 

is at this stage that lysosomal enzymes start the digestion process and the rate of breakdown 

of the cellular components is referred to as lysosomal flux. Autophagy plays a critical role in 

physiology and cellular homeostasis, allowing the cells to recycle nutrients from digested 

organelles at times of starvation and remove aberrantly folded proteins [81-84]. 

Dysregulation in autophagy has been implicated in various human diseases such as 

neurodegenerative disorders, cardiovascular diseases, and cancer [84-89].

The discovery of autophagy genes (Atg) in yeast had a great impact on our understanding of 

the mechanisms of autophagy process. Most of the Atg genes are conserved in humans and 

play various roles including autophagy initiation, autophagosome formation and maturation 

[90-92]. During initiation, Atg1 forms a complex with ULK (Unc-51 like kinase) that 

integrates inputs from mTOR signaling [87, 93-95]. During autophagosome formation, Atg9 

allows for membrane addition and retrieval to and from sites of autophagosome biogenesis 

[83, 96], while Atg6 (or Beclin 1 in mammals) forms a multimeric complex with Atg14, 

Vps34/PI3kinase, and Vps15 [94, 96]. In addition, during autophagosome formation, Atg12 

is activated by the enzyme Atg7 (E1-like ubiquitin ligase) and then transferred to Atg10 

(E2-like ubiquitin ligase) to be conjugated to Atg5 (E3-like ubiquitin ligase), forming an 

autophagosomal precursor. Finally, Atg8 is required during the maturation phase [93, 95, 97, 

100, 101].

LC3, mammalian homologue of Atg8, which plays important roles for the maturation of 

autophagosomes, has three isoforms: LC3A, LC3B and LC3C. GABARAP and GATE16 

are also mammalian homologues of Atg8 [102]. LC3 is synthesized in the cell in its 

cytosolic form, LC3-I, with a carboxy terminal glycine (Gly120) [102]. During autophagy, 

LC3 is cleaved by Atg4 protease and then activated by Atg7 to be transferred to Atg3 (E2-

like ubiquitin ligase) [80, 103]. This allows the Gly120 residue on the carboxyl terminal to 

be conjugated to phosphatidylethanolamine (PE) to form LC3-II. This allows its docking to 

the membranes, leading to membrane closure and formation of a mature autophagosome 

[104]. This sets LC3-II as a well-established marker of autophagosomes.

b. Autophagy paradox: cell survival or death regulation

Autophagy was initially discovered as a mechanism occurring at a low rate to remove 

protein aggregates and damaged organelles that are otherwise toxic for the cell [81]. In 

addition, autophagy is considered as a vital process during metabolic stress or nutrient 

deprivation, in which the degradation of organelles provides macromolecules and nutrients 

that maintain energy production and the basic cellular functions [79, 82, 99]. 

Mechanistically, several reports show that upon cell starvation, LC3-I is modified to LC3-II 

to promote autophagy [80]. In vivo, GFP-LC3 localizes in punctate structures in heart and 

skeletal muscle tissues in transgenic mice when the animals were under fasting conditions 

[102, 105]. These functions of autophagy provide pro-survival and cyto-protective 

mechanisms.

Recently, autophagy was found to be a pro-death mechanism especially if it occurs for a 

sustained period of time with a high intensity. Cells with sustained upregulation of 
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autophagic activity became atrophic with loss of vital organelles and cellular functions 

[106]. This suggests that over-activated autophagy can lead to cell death when associated 

with major elimination of essential organelles. Moreover, studies indicate that autophagy 

can lead to cell death via its ability to degrade cyto-protective proteins such as catalase, an 

anti-oxidant enzyme [107]. Autophagy can also result in cell death by upregulating 

apoptosis or necroptosis [108-110]. One particular example is the case of Atg5, which 

during autophagy can translocate to the mitochondria to induce mitochondrial membrane 

depolarization and caspase dependent cell death [111]. However, autophagic cell death, also 

known as lethal autophagy, or autosis, can be achieved independent of apoptosis or 

necroptosis. This type of cell death is rescued by suppression of autophagy by 

pharmacological or genetic approaches, and involves the action of autophagy genes and 

lysosomal flux during the death process [106, 108, 112-114].

c. Autophagy in cancer

There are several lines of evidence supporting that autophagy is a tumor-suppressor 

mechanism: Cancer cells have increased oxidative and metabolic stress that cause 

chromosomal abnormalities, DNA strand breaks, and gene mutations. Autophagy helps in 

scavenging reactive oxygen species by removing the damaged organelles, thus preventing 

the genetic abnormalities that might otherwise lead to oncogene activation or tumor 

suppressor gene inactivation [115-118]. Some cancer cells suppress autophagy as a 

mechanism to avoid the quality control during oxidative stress, DNA damage, and genetic 

instability [119]. One example to illustrate this is the role of autophagy in the turnover of 

p62 protein. When autophagy is suppressed, p62 protein clearance is prevented, leading to 

its accumulation, which in turn activates NRF2 (nuclear factor erythroid 2 related factor 2). 

NRF2 can then translocate to the nucleus, where it activates an anti-oxidant and pro-survival 

response [117, 120-122].

Some of the Atg proteins act as tumor suppressor genes. Beclin 1 (Atg6) expression is 

suppressed in malignant breast epithelial cells, and it is monoallelically deleted in 40-70% of 

prostate, ovarian, and breast cancers. Overexpression of Beclin 1 in breast cancer cells 

promoted autophagy and inhibited the malignant phenotype [123-125]. In vivo, targeted 

deletion of Beclin 1 in mice led to early embryonic death. Heterozygous disruption of Beclin 

1 resulted in an increased risk of spontaneous tumor development, even though the other 

allele is intact. This suggests that the pro-autophagic Beclin 1 is a haplo-insufficient tumor 

suppressor protein [126]. Further studies then highlighted that other pro-autophagic proteins 

also act as tumor suppressors, such as Atg5 and Bif1 [83, 84, 112]. Autophagy can also be 

suppressed due to its regulation by signaling pathways that are up- or down-regulated in the 

cancer cells [112]. For instance, cancer cells with upregulation of PI3K-AKT-mTOR 

signaling cascade, or downregulation of PTEN activity, will have suppressed autophagy, 

promoting tumor growth/proliferaiton [83, 127, 128].

As cancer progresses to late stages, autophagy can act as a mechanism to help the cancer 

cells meet metabolic demands and repair intracellular damages inflicted by the aggressive 

tumor environment [84, 112, 119]. Pancreatic cancer cell lines demonstrate a high basal rate 

of autophagy, and upon pharmacological inhibition of autophagy by chloroquine, pancreatic 
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cancer cell growth was diminished mainly due to increased DNA damage and oxidative 

stress [117, 129]. Additionally, cancer cells expressing the Ras oncogene have a higher basal 

rate of autophagy, such that Ras expressing Atg5−/− and Atg7−/− cells, have suppressed 

autophagy levels and showed reduced tumor growth in vivo [130].

The implication of autophagy in cancer pathogenesis gives insight into new pharmacological 

therapies for cancer. If autophagy is required for the survival of cancer cells in the late 

stages, then pharmacological inhibition of autophagy can enhance the anti-cancerous effect 

of chemotherapeutic drugs [84, 112, 112, 117, 120]. For instance, combining vinblastine 

with C6-ceramide attenuated autophagy and inhibited cancer cell growth in a synergistic 

fashion [131]. In contrast, if autophagy induction leads to cancer cell death via lethal 

autophagy, then drugs that induce autophagy will lead to tumor suppression. For example, 

pyridinium ceramide treatment leads to cancer cell death via in part activating autophagy 

[11].

d. Role of ceramide in mediating general autophagy

Ceramide is known to induce both survival and lethal autophagy via several mechanisms 

that are outlined in Figure 2 [4, 132, 133]. One mechanism by which ceramide can induce 

survival autophagy is by regulating cellular nutrient transporters [134-136]. Transporter 

proteins are required by cells to move nutrients across the plasma membrane. Since these 

transporters control the cellular fuel supply, alterations of the expression of the nutrient 

transporters is one way to affect survival and cell growth. Ceramide was shown to down-

regulate the expression of amino acid and nutrient transporters leading to starvation, a state 

that induces survival autophagy by reducing mTOR signaling or activating AMPK [135, 

137]. Survival autophagy was also induced in the context of CerS2 downregulation that 

dysregulated the normal trafficking of ceramide in the ER, leading to long chain ceramide 

accumulation, and activation of pro-survival IRE-1 (inositol requiring element 1) to prevent 

induction of cell death [133].

Moreover, ceramide is shown to induce lethal autophagy by affecting the expression of pro-

autophagic protein Beclin 1 whereby exogenous treatment of cells with C2-ceramide 

increased Beclin 1 expression and induced lethal autophagy [138]. This is due to the 

conversion of C2-ceramide to long chain ceramide as the effect was inhibited when de novo 

ceramide synthesis was blocked using myriocin, the pharmacological inhibitor of SPT [138]. 

Further evidence indicated that ceramide increases Beclin 1 expression by activating JNK 

kinase, which in turn activates c-Jun, a known transcription factor for Beclin 1 expression 

[139]. In addition, JNK activation by ceramide leads to Bcl2 phosphorylation allowing it to 

dissociate from Beclin 1 [140].. In addition, chemotherapeutic drugs and arsenic trioxide 

lead to ceramide production that increase Beclin1 expression and promote lethal autophagy 

[141]. Other drugs such as cannabinoids also lead to ceramide accumulation to induce ER 

stress, mTOR inhibition via TRB3 (tribbles homolog 3), and lethal autophagy [142].

Ceramide can be hydrolyzed for the generation of S1P, which plays important roles in the 

regulation of autophagy [19, 143]. When cells were subjected to starvation, the activity of 

sphingosine kinase 1 (SphK1) increased, leading to increased accumulation of S1P [144]. 

SphK1 overexpression was able to induce autophagy by inhibiting the mTOR pathway, but 
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unlike the case of ceramide, this mechanism was independent of AKT dephosphorylation 

[143-145]. In addition, SphK1 downregulation enhanced ER stress and induced autophagy 

in an mTOR independent fashion [146].

4. Ceramide-mediated mitophagy

a. Mitophagy: selective autophagy of the mitochondria

Autophagy was considered to be a general process whereby the autophagosomes engulf 

many cytoplasmic elements, including mitochondria, endoplasmic reticulum, and 

peroxisomes [147]. However, recent findings suggest that autophagy can be selective to a 

specific organelle. The findings are based on the discovery of specific proteins of the 

organelles that are required to instigate the autophagy process. These include peroxin 14 of 

peroxisomes in yeast for pexophagy, the autophagic degradation of peroxisomes; and Uth1p, 

an outer mitochondrial membrane protein required for selective mitochondrial autophagy, 

also known as mitophagy [148-150].

Aged and dysfunctional mitochondria are removed from cells to prevent the harm of 

unhealthy mitochondria, which generate reactive oxygen species, and release pro-apoptotic 

proteins [151]. This turnover process involves the action of autophagosomes and lysosomal 

hydrolytic enzymes. The term mitophagy has been suggested to refer to such process that 

selectively removes the mitochondria by autophagy [151-153].

It has been shown that mitochondria in hepatocytes that had undergone a mitochondrial 

permeability transition or a depolarization of the mitochondrial membrane potential are 

selectively removed by autophagosomes [153]. These studies showed that upon loss of 

mitochondrial membrane potential or during mitochondrial permeability transition, 

mitochondria are engulfed by GFP-LC3 positive autophagosomes [9, 154]. Photo-damaged 

mitochondria also recruited GFP-LC3 positive structures to the damaged areas [155]. It is 

suggested that reactive oxygen species (ROS) act as a signal in damaged mitochondria to 

recruit the LC3 positive autophagosomes. ROS can activate Atg4B, the protease that is 

required for LC3-I to be converted to LC3-II [156, 157].

b. Types of mitophagy

It is proposed that there are at least three types of mitophagy depending on the cellular 

mechanism of sequestration of mitochondria into autophagosomes [152].

Type 1 mitophagy refers to the mitophagy process that occurs during nutrient deprivation. 

The process occurs in coordination with mitochondrial fission, which starts with the 

formation of phagophores that enlarge to surround mitochondria to form structures called 

mitophagosomes. Mitophagosomes are then acidified to activate the hydrolytic enzymes of 

lysosomes [152, 155, 158].

Type 2 mitophagy refers to the degradation of mitochondria during photo damage. In this 

case, depolarized mitochondria recruit LC3 positive structures to aggregate onto their 

surface. These structures then fuse together to sequester the mitochondria into a 

mitophagosome [159-161]. This type of mitophagy is not coordinated with mitochondrial 
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fission, unlike Type 1. Another difference is that Beclin-1 protein is required for Type 1 

mitophagy but not for Type 2. This came from studies showing that Type 1 mitophagy can 

be prevented by pharmacological inhibition of PI3K using 3-methyladenine or wortmannin. 

On the other hand, Type 2 mitophagy was shown to be independent of Beclin-1 and PI3K 

[152].

Type 3 mitophagy, also known as micromitophagy, involves the formation of mitochondria-

derived vesicles, which translocate to the lysosomes [152, 162, 163]. The release of 

mitochondrial derived vesicles depends on oxidative stress in the mitochondria and involves 

pink 1 and parkin proteins. Micromitophagy does not involve LC3 or Atg5, and it is 

independent of mitochondrial depolarization or mitochondrial fission [164]. This process 

allows the cell to selectively remove damaged or oxidized components of the mitochondria 

without total degradation.

c. Progression of mitophagy and the involvement of mitochondrial fission/fusion

The signaling pathways involved in the progression of mitophagy share many similarities 

with general autophagy. At baseline, LC3 is dispersed throughout the cytosol, and some 

LC3 is found in pre-autophagic structures close to the mitochondrial membrane [80]. During 

mitophagy, LC3 is conjugated to phosphatidylethanolamine (PE), forming LC3-II. During 

type 1 mitophagy, already existing preautophagic structures enlarge in size to envelope and 

sequester the mitochondria. This event forms the mitophagosome, which then fuses with a 

lysosome or a late endosome to form a mitophagolysosome that digests the mitochondrial 

content [152, 155].

The molecular events contributing to mitophagy initiation were first identified in yeast. 

Studies showed that there are three yeast proteins participating in mitophagy initiation: outer 

mitochondrial protein Uth1, intermembrane space protein phosphatase Aup1, and inner 

membrane protein required for K+/H+ exchange Mdm38p [9]. Atg32 was identified as the 

main signal to direct autophagosomes to mitochondria after interacting with Atg8 and Atg11 

[165, 166, 202]. There are no mammalian homologues for Atg32; however, studies showed 

that there are some receptors on the mitochondrial outer membrane that signal for the 

mitophagy process. For instance, optineurin acts as an autophagy receptor in parkin-

mediated mitophagy, and FUNDC1 mediates hypoxia induced mitophagy [196,197]. 

Autophagy receptors can also be lipids in the mitochondrial membrane such as cardiolipin 

and ceramide [14,198,199].

Moreover, proteins involved in mitochondria fission/fusion are key regulators for the 

selective elimination of mitochondria in mammalian cells [167]. Mitochondria are dynamic 

mobile organelles continuously dividing or fusing [147]. The processes of fusion and fission 

are intrinsic for mitochondrial viability, and they are important in the regulation of calcium 

homeostasis and the generation of ATP and ROS [168, 169]. In addition, fission and fusion 

of the mitochondria are important during mitophagy [9]. Fission, or mitochondrial division, 

involves the translocation of DRP-1 (dynamin related protein 1) to the mitochondria, where 

it oligomerizes to bind to Fission 1 (Fis1) in the outer mitochondrial membrane [170]. 

Fusion, a process that fuses two mitochondria together, involves mitofusin 1 and mitofusin 

2, located in the outer mitochondrial membrane, and OPA1 (optic atrophy protein 1) located 
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in the inner mitochondrial membrane [171]. OPA1 is processed by mitochondrial peptidase 

OMA1 and i-AAA protease YME1L and is regulated by mitofusin 1 during inner 

mitochondrial membrane fusion [200,201].

The role of fission and fusion during the mitophagy process is illustrated in several studies. 

Cells with a knockdown of DRP-1 had suppressed rates of mitophagy, whereas cells with 

overexpression of DRP-1 had excessive mitochondrial disappearance [172-174]. In addition, 

mitochondria going through a round of fusion followed by fission generate two populations 

of mitochondria: those that re-fuse and are healthy, and those that never re-fuse, have a 

depolarized membrane potential, and get degraded by mitophagy [173, 175]. The loss of the 

pro-fusion OPA-1 is a key process for mitophagy, such that OPA-1 overexpression was able 

to decrease mitophagy [173, 175].

The pro-fission function of DRP-1 makes it an important player during mitophagy. DRP-1 is 

a cytosolic GTPase with three domains: GTP binding domain, bundle signaling element 

(BSE), and a stalk that allows for stable dimerization and oligomerization [176]. Upon its 

activation, DRP-1 translocates to the mitochondria to form dimers and oligomers that are 

necessary for fission. It is believed that DRP-1 translocation requires adapter proteins, such 

as mitochondrial fission factor (MFF), mitochondrial elongation factor 1/mitochondrial 

dynamics proteins of 49 and 51 kDa (MIEF1/MiD49/MiD51), and mitochondrial fission 

protein Fis1 [177-181]. DRP-1 is regulated by several post-transcriptional modifications 

such as phosphorylation. There are two sites of phosphorylation for DRP-1: Ser637 and 

Ser616. DRP-1 is activated when it is phosphorylated by cyclin B1-CDK1 at Ser616 and 

dephosphorylated by calcineurin at Ser637 [170, 182]. DRP-1 is inactivated when it is 

phosphorylated by protein kinase A at Ser637 [170, 182]. Another form of regulation of 

DRP-1 is nitrosylation by nitric oxide in the mitochondria, and deSUMOylation by SENP5 

protease, both of which promote DRP-1 activation and dimer formation [182].

Two other proteins, which are associated with Parkinson’s disease, are involved in DRP-1 

mediated mitophagy: pink1 and parkin. Pink1 is a serine/threonine protein kinase located 

inside the mitochondria, while parkin is an E3 ubiquitin protein ligase located mainly in the 

cytosol [183-186]. It is believed that Parkin and Pink1 promote mitochondrial fission such 

that silencing their expression leads to mitochondrial defects due to lack of fission [184, 

187]. Pink 1 and Parkin also regulate other mitochondrial functions, including mitochondrial 

biogenesis, mitochondrial transport, and calcium homeostasis [188-192]. In healthy 

mitochondria, Pink1 is cleaved and exported to the cytosol where it is rapidly degraded by 

proteasomes [200]. Upon uncoupling or depolarization of the mitochondria, Pink1 is 

stabilized, and Parkin is translocated from the cytosol to the mitochondria in a Pink 1-

dependent fashion. This leads to ubiquitin mediated proteasomal degradation of outer 

mitochondrial proteins such as mitofusin 1 and mitofusin 2, leading to mitochondrial 

fragmentation and initiation of mitophagy [177, 184, 193]. DRP-1 is recruited to 

mitochondrial sites in close proximity of Pink1 and Parkin highlighting their importance in 

DRP-1-dependent mitophagy. In addition, Parkin can induce mitochondrial fission 

independent of Pink1 by affecting DRP-1 phosphorylation [184].
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Moreover, ROS serve as candidates to initiate mitophagy. Cells supplied exogenously with 

hydrogen peroxide or superoxide showed evidence of autophagosomal structure formation 

[166]. It has been shown that upon ROS generation in the mitochondria, the mitochondrial 

membrane was depolarized, leading to Parkin translocation and initiation of mitophagy 

[195]. Interestingly, overexpression of the anti-oxidant enzyme superoxide dismutase 2 or 

pre-treatment with antioxidants prevented ROS-induced mitophagy [194, 195]. This 

suggests that oxidative stress may be an important signal to initiate mitophagy.

d. Ceramide mediated mitophagy as a tumor suppressor mechanism

There is evidence to support a role for mitophagy in cell survival or death, which appears to 

be context dependent. Mitophagy promotes cell survival under circumstances where it 

degrades the mitochondria that are about to activate caspase dependent apoptosis. In this 

case, disrupting the autophagic and lysosomal processes will prevent survival and lead to 

apoptosis [152, 153]. On the other hand, when mitophagy occurs excessively or for a 

sustained period of time, enzymes from the lysosomal flux such as cathepsins can leak to the 

cytosol where they initiate caspase dependent cell death [79, 83, 152]. Therefore, the 

functional outcome of mitophagy inducing cell death or survival depends on the intensity 

and duration of the stress as well as cellular contact [152].

Moreover, mitophagy can serve as a programmed cell death mechanism independent of 

apoptosis. This mechanism of cell death depends on ceramide synthase 1 (CerS1) and its 

metabolic product C18-ceramide. Sentelle et al. showed that CerS1 and C18-ceramide 

selectively induce non-apoptotic lethal mitophagy independent of Bax, Bak, or caspase 

activity, in head and neck squamous cell carcinoma cells and tumors. Ectopic expression of 

CerS1 or treatment with C18-pyridinium-ceramide resulted in LC3-II formation, and 

promoted its direct binding to ceramide on the mitochondrial membranes. This lipid-protein 

binding then allowed the mitochondria to be targeted by the LC3-II containing 

autophagosomes. This report was the first to describe the role of ceramide signaling in 

mediating lethal mitophagy through ceramide-LC3-II binding (Figure 3). Interestingly, 

endogenous C16-ceramide generated by CerS6 did not show any mitophagy promoting 

function in these cells. However, treatment with C16-pyridinium ceramide, which 

accumulates in the mitochondria, induced mitophagy. This suggested that the subcellular 

localization of endogenous ceramides, and not their fatty acid chain length per se, is of great 

importance to determine their distinct biological actions during mitophagy [14].

The binding of ceramide to LC3-II indicates that ceramide acts as a tumor suppressor lipid 

that can directly bind proteins. Ceramide is shown to have a higher affinity to the PE-

conjugated LC3-II than LC3-I. This interaction was proposed to involve the central 

hydrophobic domain of LC3 that has structural similarities to the domain of CERT 

(ceramide transporter protein) that binds C16- and C18-ceramides. Within this hydrophobic 

domain, the Ile35 and Phe52 residues of LC3-II were required for ceramide binding. 

Computational docking simulations and molecular modeling suggested that conjugation of 

LC3-I to phosphatidylethanolamine hides a low-affinity ceramide-binding sites allowing 

ceramide to bind selectively to the opposite end of the protein [14, 49]. More importantly, 

although point mutations at the Ile35 and/or Phe52 for conversion to Ala did not prevent 
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ceramide-mediated LC3 lipidation, and inhibition of ceramide binding modulated mitophagy 

and resulted in resistance to ceramide-mediated tumor suppression. Thus, these data support 

that ceramide plays a novel receptor role at the mitochondrial membranes to recruit LC3-II-

containing autophagosomes to the mitochondria, which have been subjected to DRP-1-

mediated fission. These data also suggest that targeting LC3 containing autophagosomes to 

mitochondria by ceramide at the mitochondrial membranes results in cancer cell death and 

tumor suppression, which seems to be regulated downstream of DRP1-mediated 

mitochondrial fission. Interestingly, in the absence of CerS1 overexpression, tumor cells 

with knockdown of LC3 had a reduced growth in vivo suggesting that at baseline, LC3 

mediated autophagy is required for tumor growth in head and neck squamous cell carcinoma 

tumors [14, 49].

5. Conclusions and future perspectives

Ceramide, as a bioactive sphingolipid, plays key roles in the regulation of general and 

selective autophagy and/or mitophagy. This role of ceramide is of great importance in tumor 

biology as in most cases ceramide mediated autophagy leads to cell death and is thus called 

lethal autophagy or autosis [108, 114]. One example by which ceramide regulates lethal 

autophagic signaling pathways is its activation of c-Jun through JNK signaling, causing 

upregulated Beclin 1 expression and autophagic cell death [138]. Exogenous supply of C18-

pyridinium ceramide or overexpression of CerS1 resulted in caspase independent mitophagy 

where ceramide acts as a mitochondrial receptor for LC3-II-containing autophagosomes by 

interacting directly with LC3-II, recruiting autophagolysosomes to damaged mitochondria 

[14]. Exogenous ceramide mediated autophagic cell death is believed to involve BNIP3 

activation after a reduction in mitochondrial membrane potential [140]. Chemotherapeutic 

drugs and arsenic trioxide lead to ceramide production that increase Beclin1 expression and 

promote lethal autophagy [141]. Other drugs such as cannabinoids also lead to ceramide 

accumulation to induce ER stress, mTOR inhibition via TRB3 (tribbles homolog 3), and 

lethal autophagy [142]. Amino acid deprivation is known to induce lethal autophagy in a 

ceramide dependent manner by activating CAPPs (ceramide activated protein phosphatases), 

which inhibits Akt/mTOR pathway [8]. The knowledge of the role of ceramide in 

autophagy/mitophagy sets an example to the importance of sphingolipid metabolism and 

signaling in these cellular mechanisms. Thus, more studies should be invested in this area of 

research to define the roles and mechanisms of how ceramide and.or other bioactive 

sphingolipid molecules mediate mitophagy and their relation to mitochondrial dynamics. 

Ceramide’s role in recruiting autophagosomes specifically to mitochondria gave support to 

the findings that removal of mitochondria by autophagy can be selective rather than 

inadvertent. Ceramide acts as a receptor in the mitochondria binding the LC3-II in the 

autophagosomes to direct them specifically to mitochondria. However, the relationship 

between ceramide and the fission/fusion machinery is still not clear. DRP-1 is required for 

ceramide-mediated mitophagy, however the mechanism underlying DRP-1 activation 

remains unknown. Other studies looking at the interplay of ceramide and Pink1 or Parkin are 

also important for the field. Importantly, studies should consider the compartmentalized 

roles of ceramides with different fatty acyl chain lengths, involved in the regulation of the 

mitophagy process. We expect that there will be key discoveries to dissect the mechanisms 
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of how ceramide regulates lethal mitophagy and tumor suppression during the next few 

years, as analytical, molecular, pharmacologic and/or genetic tools are now available to 

define these roles of ceramides/sphingoilipids in various disease models.
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Highlights

• This review focuses on the roles and mechanisms of ceramide-induced 

mitophagy.

• Ceramide is a key bioactive sphingolipid molecule, which is involved in the 

regulation of mitophagy.

• Ceramide-mediated mitophagy involves ceramide-LC3B-II binding and Drp1-

mediated mitochondrial fission.

• Ceramide-induced mitophagy results in cell death and tumor suppression.
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Fig. 1. 
Ceramide metabolic pathways. Ceramide lies at the center of sphingolipid metabolism. 

Ceramide de novo generation starts with a condensation reaction involving Serine and 

Palmitoyl CoA by the enzyme Serine Palmitoyl CoA Transferase (SPT), to generate 3-

ketosphinganine, which is then converted to sphinganine or dihydrosphingosine. Then, 

Ceramide Synthases (CerS1-6) transfer a fatty acyl CoA to the amino group yielding 

dihydroceramide which gets desaturated to ceramide by Dihydro-ceramide Desaturase 

enzyme (DES). Ceramide can be generated back from Sphingosine-1-phosphate with the 

help of S1P phosphatase (S1PP) and ceramide synthase (salvage pathway) or from 

Sphingomyelin by Sphingomyelinase (SMase), from Glycosphingolipids, or from 

Ceramide-1-phosphate by Ceramide kinase (Cer-Kinase). As a metabolic outlet for 

ceramide, it is converted to sphingosine by the action of ceramidase. Sphingosine kinases 1 

and 2 (SK1/2) phosphorylate sphingosine to sphingosine-1-phosphate that can be further 

degraded by S1P lyase to hexadecanal and ethanolamine phosphate.
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Fig. 2. 
Ceramide’s role in survival and lethal autophagy. Ceramide regulates several signaling 

pathways in autophagy, some of which lead to cytoprotective autophagy and survival while 

some lead to cell death through lethal autophagy. In the context of survival autophagy, 

ceramide can induce ER stress that activates the pro-survival IRE1 (inositol-requiring 

element 1), downregulate nutrient transporters and improves catabolic metabolism, and can 

result in activation of Atg5 via CD95 and PERK. In the context of lethal autophagy, 

ceramide can induce ER stress that inhibits mTOR through TRB3, activate Ceramide 

associated phosphatases (CAPPs) that also inhibit mTOR by inactivating Akt, increase the 

expression of Beclin-1 by activating JNK-c-Jun axis or by inactivating Bax, leading to loss 

of mitochondrial membrane potential and activation of BNIP3, and bind to LC3-II to recruit 

autophagosomes to engulf mitochondria.
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Fig. 3. 
Regulation of mitophagy by ceramide. Endogenous generation of C18-ceramide via CerS1 or 

exogenous treatment by C18-pyridinium-ceramide is followed by two processes: A. 

conjugation of LC3-I to phosphatidylethanolamine on the carboxy terminal to form LC3-II 

and B. accumulation of ceramide in the mitochondrial outer membrane. Ceramide in the 

mitochondrial membrane acts as a receptor to LC3-II by binding to its amino terminal, 

opposite to where PE is conjugated. This results in C. recruiting the autophagosome to 

engulf the mitochondria. Lysosomes then fuse with the autophagosomes (D) for hydrolytic 

degradation of the contents.
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Table 1

Diverse biological roles of Ceramide Synthases 1-6.

Ceramide Synthase
isoform Ceramide product Biological Role

Ceramide Synthase 1 C18-ceramide

• Induces cancer cell death [34]

• Decreases tumor growth [35]

• CerS1 mutant mice have neurological disorders [42]

Ceramide Synthase 2 C22-24- ceramide
• C24-ceramide can protect from cell death [40,41]

• CerS2 knockout mice exhibit liver damage [44]

Ceramide Synthase 3
Ultra long chain
ceramides >C26

• CerS3 knockout leads to trans-epidermal water loss leading to death after 
birth [203]

Ceramide Synthase 4 C18- and C20-ceramide
• CerS4 knockout mice exhibit severe alopecia with alterations in sebaceous 

glands and sebum contents [43]

Ceramide Synthase 5 C12-, C14., and C16-ceramide
• Implicated in induction of autophagy mediated hypertrophy of cardiac 

myocytes [204]

Ceramide Synthase 6
C12-, C14-, and C16-

ceramide

• Increases cancer cell proliferation [38]

• Increased expression associates with positive lymph node status [39]

• Induces chemotherapy mediated apoptosis [41]

• CerS6 knockout mice exhibit neurological/behavioral alterations [205]
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