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Genome-wide mutational spectra 
analysis reveals significant cancer-
specific heterogeneity
Hua Tan1,3, Jiguang Bao2 & Xiaobo Zhou1

Cancer is widely recognized as a genetic disease in which somatic mutations are sequentially 
accumulated to drive tumor progression. Although genomic landscape studies are informative 
for individual cancer types, a comprehensive comparative study of tumorigenic mutations across 
cancer types based on integrative data sources is still a pressing need. We systematically analyzed 
~106 non-synonymous mutations extracted from COSMIC, involving ~8000 genome-wide screened 
samples across 23 major human cancers at both the amino acid and gene levels. Our analysis 
identified cancer-specific heterogeneity that traditional nucleotide variation analysis alone usually 
overlooked. Particularly, the amino acid arginine (R) turns out to be the most favorable target of 
amino acid alteration in most cancer types studied (P < 10−9, binomial test), reflecting its important 
role in cellular physiology. The tumor suppressor gene TP53 is mutated exclusively with the HYDIN, 
KRAS, and PTEN genes in large intestine, lung, and endometrial cancers respectively, indicating 
that TP53 takes part in different signaling pathways in different cancers. While some of our analyses 
corroborated previous observations, others indicated relevant candidates with high priority for 
further experimental validation. Our findings have many ramifications in understanding the etiology 
of cancer and the underlying molecular mechanisms in particular cancers.

Cancer is recognized as a disease resulting from the gradual accumulation of somatic mutations in the 
genome1–4. The mutations sequentially endow the selected clones with advantageous self-sufficiency in 
growth signals, capability of evading apoptosis and metastasizing to remote sites5,6. Continuing efforts 
of comprehensive sequencing over the past decade, especially genome-wide screening, have detailed the 
genomic landscape of cancers such as brain7, pancreatic8, breast and colorectal9, and bladder10; pediatric 
cancer11; and rare types such as gingival buccal oral carcinoma12. These efforts have focused on specific 
cancer types and identified up to hundreds of somatic mutations in a given tumor. Some genes are 
altered in many cancer types, while others exemplify strong cancer specificity. Despite much work, the 
underlying mutational spectra of a particular cancer, as well as its difference from other cancers, remains 
to be clarified.

A comprehensive investigation of genetic mutations of various cancers based on integrative data 
sources would help to identify mutational spectra in a cancer-specific manner. Some previous studies 
did address patterns of somatic mutations in human cancer genomes13,14. These researches focused on 
patterns of DNA base pair changes and were restricted to very few cancer types (e.g., lung, breast and 
colorectal). Other work emphasized a general census of human cancer genes and potentially related sign-
aling pathways, but did not provide detailed mutational profiles of these cancer genes15,16, or their cancer 
specificity. Very recently, integrative analyses have identified recurrent genetic aberrations of particular 
cancers, such as glioblastoma17 and oral squamous cell carcinoma18. These studies represented a valuable 
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attempt towards integrating existing resources for new discoveries of mutational spectra, but were not 
comprehensive comparative studies across cancer types.

The most integrative analyses on mutational heterogeneity so far were done by Lawrence and col-
leagues19, and Alexandrov and colleagues20,21. These important studies explored the heterogeneous 
mutational signatures in the cancer genome across different cancer types, which is significant for under-
standing the correlation between genomic evolution and environmental exposures for different cancers. 
But these efforts were limited to nucleotide base pair changes, without further investigating the asso-
ciated amino acid substitutions and the genes carrying those somatic mutations. This issue is essential 
since an amino acid is encoded by a nucleotide triplet, and hence one base pair change may lead to 
several possible amino acid substitutions, which eventually results in distinct biochemical/biophysical 
properties of related proteins22 that vary with cancer types. On the other hand, the 12 base pair changes 
(A, T, G and C may change to any of the remaining three nucleotides) generally maintain distinct profiles 
in different cancer genes. Therefore, counting the total numbers of each base pair change in a tumor 
sample is uninformative for inferring the significant cancer genes. Further analyzing amino acid residue 
substitutions and mutation frequency of related cancer genes would provide additional insights into the 
heterogeneity of mutational spectra.

In the present study, we extracted and systematically analyzed more than one million non-synonymous 
mutations from the latest Catalogue of Somatic Mutations in Cancer23 (COSMIC v68). Our investigation 
involved ~8,000 genome-wide screened samples across 23 major human cancers and about 20,000 genes. 
We conducted analyses using the genome-wide association study (GWAS) approach, a powerful tool to 
study associations between molecular traits and particular phenotypes24–27. Specifically, we explored the 
general mutational signatures of various cancer types, compared the most frequently mutated genes in 
different cancers, and investigated the mutational landscape at the amino acid level. Since the current 
COSMIC database has now incorporated information of patient age, we analyzed potential correlations 
between mutation occurrences and patient age at diagnosis.

We also tested the hypothesis about combinatorial mutational patterns of gene pairs, one mutu-
ally exclusive and one co-mutational28. These two patterns indicate whether (exclusive pattern) or not 
(co-mutational pattern) the associated genes are likely to function in the same signaling pathway1,29,30. 
Therefore, identifying gene pairs of particular combinatorial mutational patterns with high statistical sig-
nificance has considerable biological meaning, particularly for inferring oncogenic network modules for 
a specific cancer30. The current COSMIC database contains a number of mutations from genome-wide 
screened clinical samples, which provides a unique opportunity to systematically test the combinatorial 
pattern hypothesis with an enhanced statistical approach. Our results recapitulated many previous obser-
vations and also detected novel candidates of gene pairs with high statistical significance.

Results
General mutational landscape of various cancer types.  In the current COSMIC database, the 
average number of missense mutations and mutated genes per tumor sample varied dramatically with 
cancer tissues (Fig. 1). Lung, urinary tract, and large intestine cancers displayed more than 150 missense 
mutations involving up to 100 protein-coding genes per tumor sample. Other types, such as central 
nervous system and meningeal cancers, typically contained fewer than ten somatic mutations. Sample 
variations within a particular cancer type also existed (deviation bars in Fig. 1, upper panel). In general, 
tissues that divide rapidly and self-renew frequently, such as endometrium, ovary, and liver, tended to 
bear more somatic mutations than those that do not. In addition, tissues frequently exposed to external 
carcinogens from food, air, or ultraviolet light (e.g. esophagus, lung, and skin cancers), possessed signif-
icantly more mutations than others, consistent well with the previous molecular epidemiology studies of 
human cancers31 and genome-wide statistical analysis studies15,19.

We are interested in whether these mutations occurred preferentially in particular chromosomes of 
the whole genome. Thus, we explored distributions of somatic mutations across the 23 chromosomes for 
each cancer type. Distribution of mutations across chromosomes for 23 human major cancers are illus-
trated by ‘rainfall’ plots (supplementary Figures S1-S23). In general, the longer the chromosome, the more 
mutations could be detected. To test this correlation quantitatively, we applied the Kolmogorov-Smirnov 
test to determine differences between mutation distribution and chromosomal length (Methods). All 
cancers except adrenal gland and small intestine showed no clear chromosomal preference for the muta-
tions (Fig.  2). For example, for lung cancer, there were more mutations than expected at q1-q3 and 
q19-q22, and fewer at q9-q10 and q13-q18; but overall, the difference was not statistically significant (the 
K-S statistic D <  0.05), implying negligible chromosomal preference for lung cancer mutations based on 
the data in the current COSMIC.

Top frequently mutated genes in a cancer-specific sense.  We then sorted mutated genes accord-
ing to their total missense-mutation occurrences and statistical significance in human cancers (Table S2). 
Figure 3 shows the mutational landscape of the top 50 frequently reported genes in general 23 cancers. 
A list of the top 1000 genes is given in Table S2A. Most of the top-ranked genes are well-known tumor 
suppressor genes (TSG) or oncogenes, such as TP53, phosphoinositide 3-kinase (PIK3CA), adenomatous 
polyposis coli (APC), and GTPase KRas (KRAS) genes. The titin (TTN) gene was rarely recognized as 
a tumor-associated gene in the existing literature, but it ranked in the top 2 in the list. TTN encodes a 
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giant protein (> 30000 amino acids), which poses a high risk of residue alterations because of random 
DNA repair error. Another giant protein is the membrane-associated mucin (MUC16), which contains 
~22000 amino acids, also ranked high in our list. From a perspective of functional classification, most 
missense mutations on these proteins are likely to be ‘passenger’ mutations, which would not directly 
confer a selective growth advantage14. To differentiate passengers from driver mutations is another 
essential task in molecular cancer research, as we have previously addressed22. Recently, researchers 
provided an insightful explanation about the frequent (but probably just passenger) mutation of these 
two genes19. Our current analysis also identified interesting patterns different from those of recognized 
cancer-associated genes (described below).

Mutation frequencies of some genes varied extensively between cancer types. For example, mutations 
in the top-ranked gene, TP53, were not reported in thyroid, soft-tissue, cervix, or parathyroid tumors 
in the current COSMIC database. By contrast, a relatively less frequently mutated gene, BRAF (46th in 
the list, Table S2A), was altered in about half of skin cancers (sample coverage 43.1%), corroborating the 
initial screening conducted a decade ago32. These tumors may progress through very different mecha-
nisms, or be activated by particular exogenous mutagens. Indeed, previous work has identified several 
mutagens for different cancers, e.g., sunlight-associated skin cancer, tobacco-associated lung cancer, and 
dietary-associated colon cancer13.

The top 10 frequently mutated genes and their mutation frequency for individual cancer types are 
listed in supplementary Table S2B. Some genes do not appear in the top 50 mutated genes for general 
cancers as shown in Fig. 3, since they tend to mutate predominantly in particular cancer types. Besides 
the most important gatekeeper gene (TP53), from the current COSMIC we detected cancer-specific 

Figure 1.  Number of non-synonymous somatic mutations and mutated genes per tumor in major 
human cancers. Mutations were detected by genome-wide sequencing studies curated from the COSMIC 
database (v68). Squares and triangles indicate median of the number of mutations and mutated genes, 
respectively; horizontal bars stand for the 25 and 75% quartiles. The positive integer above each bar 
represents number of genome-wide screened samples of that cancer. The lower panel subgraphs illustrate 
distribution of mutations along the chromosomes for individual cancer types, with the order identical to 
the x-labels of the upper panel, including 22 autosomes and two sex chromosomes denoted as X and Y. 
Undentifiable chromosomes are denoted as other. The number of missense mutations for each cancer is 
presented above each subgraph.
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Figure 2.  Kolmogorov-Smirnov test results for distribution of mutations across chromosomes for 
23 major human cancers. Somatic mutations of all cancers have a similar frequency of distribution to 
chromosome lengths (D <  0.05), except for adrenal gland and small intestine cancers.

Figure 3.  Most frequently mutated genes in general cancers. Shown are top 50 mutated genes for all 
cancer types detected in COSMIC v68. Cancers with at least one gene that muated in no less than 50% 
of the screened samples were termed ‘dominancy’ (right part); cancers with no gene mutating in more 
than 10% of the screened samples were termed as ‘non-dominancy’ (left part); the remainder were termed 
‘average’ (middle part).
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frequently mutated genes that have been widely known to play critical role in tumor progression, e.g., the 
APC and PI3KCA genes in large intestine cancer33, the BRAF gene in skin cancer32, the KRAS gene in 
pancreatic cancer34, the VHL and PBRM1 genes in kidney cancer, and the CTNNB1 and KDM5A genes 
in liver cancer35,36. Interestingly, the PBRM1 and BAP1 genes were recently reported as novel targets for 
renal cell carcinoma37. Mutations in the BAP1 gene occurred in 34 out of 475 kidney samples (Table 
S2A), placing that gene among the top eight in the list. These studies partially verified the reliability of 
our comprehensive analyses.

We calculated the statistical significance of each gene based on its sample coverage and protein 
sequence length by binomial test (supplemental materials and Table S2C), and sorted the genes for each 
cancer by the p-values. Genes with equal p-values are secondarily sorted according to their mutation 
frequency as shown in Table S2A. The top 10 genes with smallest p-values are listed in Table S2D. Some 
cancers (6 out of 23) had a large overlap (9–10 genes overlap) with the original list determined by sample 
coverage alone, while others differed from the original to various extents (2–8 genes overlap). Briefly, 
after correcting for sequence length, the TTN and MUC16 genes did not rank the top 10 for some 
cancers (e.g., breast, liver, kidney, etc.) any more, implying that their high mutation frequency in these 
cancers was largely due to their long sequence without a statistical significance. On the other hand, TTN 
and/or MUC16 were still retained in the top 10 for some cancers such as large intestine and lung cancers, 
suggesting their tumorigenic relevance to these cancers.

Based on the mutation frequency of each mutated gene detected in the current COSMIC, mutational 
patterns can be roughly categorized into three types, which we termed as dominancy, non-dominancy, 
and the average status of the two (Fig.  3). The first class (‘dominancy’) has one or a few ‘fingerprint’ 
mutant genes, which mutate in over 50% of tested samples (here the percentage thresholds are not 
essential and the categorical terms are loose, the main purpose of this classification is to demonstrate 
differences in gene mutational pattern between cancer types). Representative cancers of this class include 
large intestine, lung, endometrium, esophagus, ovary, and stomach. The fingerprint genes generally dif-
fer between cancer types. On the other hand, most non-solid tumors, such as hematopoietic-lymphoid 
and autonomic ganglia cancers, have mutant genes with maximum sample coverage lower than 10% 
(‘non-dominancy’). For example, the most frequently mutated gene of autonomic ganglia cancer, ALK, 
was found to mutate in only 30 out of 327 autonomic ganglia tumor samples (sample coverage 9.2%). The 
remaining cancers (‘average’) locate between these two extremes, with mutant genes of maximum sample 
coverage ranging from 14.3% (TP53 in prostate cancers) to 47.6% (TTN in urinary tract cancers). For 
those with fingerprint mutants, targeting the involved genes and the point mutations might be the next 
step; for others, it would be more promising to consider different mechanisms such as oncogenic gene 
fusion38, copy number variation25 or epigenetic changes39.

Mutational landscape at the amino acid resolution.  We analyzed amino acid substitutions from 
genome-wide screened samples for each cancer type and analyzed the frequency of mutations among 
the 380 possible amino acid changes (Methods). Some substitutions never occurred in any one cancer 
type, e.g., A >  Q, Y >  W. Others occurred in less than 1% of the mutation records of all cancer types in 
total, e.g., A >  H, Y >  V (Figure S25). Excluding these rare substitutions, we obtained 149 significantly 
occurring amino acid alterations. Figure 4 illustrates the distribution of mutation frequency of the 149 
substitutions for 23 human cancers. The frequency distribution formed a unique mutational spectrum 
at the amino acid level for each cancer. We then clustered the cancers according to their spectrum 
(Methods). Several groups with a high degree of similarity in frequency distribution were clearly dis-
cerned (Fig.  4, dendrogram on the left upper panel). Most notably, the breast and upper aerodigestive 
tract cancers had nearly identical amino acid substitution spectra, dominated by the E >  K mutation. This 
point mutation resulted from the G >  A base pair change at the DNA level. Likewise, shared significantly 
analogous mutational patterns were found among lung and automatic ganglia cancers; ovary, kidney, and 
liver cancers; and endometrial and large intestine cancers.

The average frequency of mutations across all cancer types for each amino acid substitution is also 
illustrated in Fig. 4 (lower panel). A higher resolution of the 149 amino acid changes and the clustering 
dendrogram is included in Figure S26. Considering the 23 cancers simultaneously, the top 10 dominant 
amino acid substitutions were the E >  K, R >  H, R >  Q, R >  C, A >  V, A >  T, D >  N, P >  L, R >  W, and 
G >  R substitutions. Remarkably, all 10 amino acid substitutions can invariably be attributed to the G >  A 
or C >  T nucleotide alterations from the DNA codon table, indicating that our results are consistent with 
previous nucleotide variation studies13,19,21.

We examined the top 3 prevalent amino acid substitutions and their associated nucleotide changes 
for each cancer type. The most prevalent substitutions varied widely with cancer types, but most of them 
consisted of the aforementioned 10 dominant ones, implying that an overwhelming part of these prev-
alent amino acid substitutions are determined by the G >  A and its dual nucleotide change C >  T (i.e. 
on the other strand) (Table 1). This observation was further confirmed by our direct nucleotide change 
analysis (Figure S27), and the nucleotide mutational signature study by Alexandrov et al.21 (Table  1). 
Note that in Alexandrov et al., the dual nucleotide changes were calculated only once, e.g., for G >  A 
and C >  T mutations, only C >  T was considered. In the present study, the COSMIC database does not 
discriminate between DNA strands; hence, what we obtained was from both strands. We found discerna-
ble differences in dominant amino acid substitutions between cancer types, although they may exemplify 
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identical patterns of nucleotide base pair changes. These different amino acid alterations may lead to dis-
tinct biophysical/biochemical properties in terms of hydrophobicity, polarity, charge and acidity22, which 
could be overlooked by analyzing nucleotide base pair changes alone. Most strikingly, arginine (R) turned 
out to be the most favorable target of amino acid alteration – 17 out of the 23 major cancers carries at 
least one arginine substitution in their top 3 amino acid substitutions (Table 1, P <  10−9, binomial test, 
see supplementary materials). A previous study revealed that arginine plays a pivotal role in cellular 
physiology, and is intimately involved with cell signaling related to tissue repair processes40. Our finding 
implies that the role of arginine in carcinogenesis also deserves investigation.

To explore mutational heterogeneity along the protein sequence, we analyzed mutation site distri-
bution across a given protein for top-ranked genes. For TP53 (Fig. 5), many positions across the whole 
sequence could serve as the target of residue substitution with high probability. The mutation rate var-
ied between positions, but demonstrated some clustering properties. For instance, the region between 
residues 200 and 300 is the most highly mutated in various cancer types. Other highly mutated genes 
manifested distinct patterns. For example, in most cancer types, up to 97% of the KRAS point muta-
tions occurred at amino acid 12 or 13, while a few mutations occurred at amino acid 61 in some can-
cers (Figure S28), which has been confirmed in pancreatic carcinomas34. The PIK3CA was frequently 
mutated at residue 542/545 and 1047, whereas mutations of PTEN and APC were distributed evenly 
at multiple sites (Figure S29-S31 respectively). Although TTN and MUC16 carried a large number of 
missense mutations in general, they exemplified little, if any, preference for any region of the sequences. 
Surprisingly, for most cancers bearing multiple TTN/MUC16 mutations (e.g., large intestine, lung, and 
endometrial cancers), mutation rates at all sites were invariably low (bounded by 1%; Figure S32 for 
TTN, Figure S33 for MUC16), very different from the well-known cancer genes discussed above.

Correlations between occurrence of mutations and patient age.  Recent versions of COSMIC 
(e.g. v68) have collected patient age information for some samples, facilitating analysis of potential corre-
lations between patient age at diagnosis and total missense mutations. We calculated the Spearman rank 
correlation coefficients between number of mutations and patient age, and derived the related 95% boot-
strap confidence intervals (with 1000 bootstrap data samples). The correlation with P <  0.05 was consid-
ered significant. As shown in Fig. 6, six cancers including oesophagus, prostate, central-nervous-system, 

Figure 4.  Distribution of mutation frequency along 149 significant amino acid substitutions. Each 
row of the upper panel corresponds to one cancer as denoted on the left, and each bar stands for the 
occurrence frequency of a residue substitution as represented in the bottom subfigure. All 149 frequencies 
of each cancer constitute its substitution spectrum; then cancers are clustered according to their similarity 
in substitution spectra, as shown by the left dendrogram. The lower panel shows the average substitution 
spectrum for all the cancers with standard deviations denoted. A higher resolution of the average 
substitution spectrum and the clustering dendrogram is included in supplementary Figure S26.
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stomach, meninges and salivary-gland, displayed strong mutation-age correlation – they maintain stably 
increasing mutations with increasing patient age. Among these six cancers, oesophagus and stomach 
are typical self-renewing tissues and are susceptible to environmental mutagens before tumor initiation 
and during tumor progression, which results in continuing accumulation of somatic mutations in the 
genome41; while the prostate, central-nervous-system, meninges and salivary-gland cancers generally 
bear fewer mutations than the mutagen-exposed ones. A few cancers, such as skin, liver, kidney, ovary, 
bone and small-intestine, showed positive correlation between mutations and age, but not statistically 
significant. Most of the remained cancers demonstrated little correlation, with either small absolute cor-
relation coefficients or too large p-values to be claimed as significant. Interestingly, the large-intestine 
cancer showed negative correlation (marginally significant, P =  0.094) between mutations and age, which 
seems counterintuitive; but patients older than 50 presented non-decreasing mutations with increasing 
age.

Combinatorial mutational patterns.  Two genes may tend to mutate simultaneously or in a mutu-
ally exclusive manner in a tumor sample. These combinatorial patterns have potential implications for 
understanding the coordinated roles of multiple genes on cell signaling pathways42. A number of gene 
pairs with particular combinatorial mutational patterns have been identified by statistical analysis28, but 
this work was based on cell line data with very few samples. The current COSMIC database includes 

Top 3 amino acid substitutions (associated 
nucleotide variations)

Cancer tissue 1st 2nd 3rd

Prevalent nucleotide 
variations by Alexandrov 

et al.

lung GV(GT) EK(GA) RL(GT) C >  T, C >  A

urinary_tract EK(GA) EQ(GC) DN(GA) C >  T, C >  G in bladder 
cancer

large_intestine RH(GA) RQ(GA) RC(CT) C >  T in colorectum

esophagus RH(GA) RC(CT) RQ(GA) C >  T, C >  G

endometrium RQ(GA) RH(GA) RC(CT) C >  T, C >  G in cervix and 
uterus

liver IV(AG) AT(GA) YC(AG) C >  T, C >  A,T >  C

stomach RH(GA) RQ(GA) RC(CT) C >  T, C >  G,T >  C

kidney AV(CT) AT(GA) RH(GA) C >  T, C >  G

ovary RH(GA) AT(GA) AV(CT) C >  T

breast EK(GA) EQ(GC) RH(GA) C >  T, C >  G

prostate RH(GA) RC(CT) AT(GA) C >  T, C >  A

upper_aerodigestive_
tract EK(GA) DN(GA) EQ(GC) N/A

pancreas RH(GA) RC(CT) AV(CT) C >  T, C >  G,C >  A

bone RC(CT) RH(GA) VI(GA) C >  T, C >  G in myeloma

eye QL(AT) AT(GA) RC(CT) C >  T, C >  A in head and 
neck

autonomic_ganglia AS(GT) QK(CA) AT(GA) N/A

salivary_gland RH(GA) RC(CT) AT(GA) C >  T, C >  A in head and 
neck

hematopoietic_and_
lymphoid_tissue RH(GA) RC(CT) AV(CT)

C >  T, C >  G,T >  G in 
AML,ALL,CLL and 

lymphoma B cell

skin EK(GA) PS(CT) SF(CT) C >  T in melanoma

central_nervous_
system RH(GA) RQ(GA) RC(CT) C >  T, C >  A

meninges KQ(AC) RH(GA) TI(CT) N/A

adrenal_gland GR(GA,GC) LR(TG) LV(CG,TG) N/A

small_intestine AV(CT) RH(GA) RQ(GA) N/A

Table 1.   Top frequently occurring amino acid substitutions detected in COSMIC in comparison 
with prevalent nucleotide variations detected in TCGA. GV: amino acid residue G is mutated to 
V. Corresponding nucleotide changes inferred from the DNA codon table are given in parentheses. 
N/A =  cancer type not covered by previous literature.
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Figure 5.  Mutational spectrum of the TP53 gene at the amino acid residue resolution. Horizontal 
axis represents the amino acid position along the protein sequence; vertical axis indicates the proportion 
of mutations in that position among all TP53 gene mutations (top left m’s) dected in each cancer. The 
mutational spectra for other top-ranked genes (KRAS, PIK3CA, PTEN, APC, TTN, and MUC16) are 
provided in supplementary Figures S28-S33, respectively.

Figure 6.  Spearman rank correlation between mutations per tumor sample and patient age at diagnosis 
for individual cancer types. Stars and bars stand for median and quartiles, respectively. Cancers with 
positive correlation coefficients are illustrated by solid fitting line, and cancers with P <  0.05 are encoded by 
dark background. n =  number of samples; R =  correlation coefficient; CI =  95% confidence interval; P =  p-
value.
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many clinical/genome-wide screened tumor samples for each cancer type, facilitating a more complete 
investigation of combinatorial mutational patterns. By calculating the likelihood ratio and statistical sig-
nificance of gene pairs as co-mutational or mutually exclusive patterns, we tested a list of gene pairs 
with mutation frequency above certain threshold for each cancer type (Methods). Figure 7 illustrates the 
significant gene pairs with mutually exclusive patterns for large intestine, lung, and endometrial cancers. 
Figure S34 shows the other 9 cancers for which the statistical analysis identified at least two exclusive 
gene pairs. Gene pairs were saved in a text file, with each row corresponding to an exclusive gene pair, 
and input to Cytoscape43 (v3.0.2) to plot the final network (Fig. 7); colors and shapes were manipulated 
for better visualization. A complete list of significant gene pairs of co-mutational patterns for each can-
cer type is given in Table S3. Our study achieved a much greater coverage of relevant gene pairs across 
most cancer types compared to earlier work. Furthermore, our results are expected to be more reliable 
since 1) the mutation data employed were from clinical samples instead of cell lines data, and 2) our 
significance control for the co-occurrence pattern is more reasonable and more rigorous than previously 
used (Methods).

The gene pairs with significant exclusive patterns further verified the previous assumption that genes 
functioning in the same pathway are likely to mutate in an exclusive manner. For example, KRAS and 
BRAF gene mutations exclusively exist in colorectal cancers44, whereas EGFR mutations rarely co-occurred 
with KRAS in any cancer type45. Such functionally linked gene pairs were largely identified as exclusive 
patterns in our screening (Fig.  7). Remarkably, the APC and CTNNB1 (NH2-terminal domain) gene 
mutations were previously reported as mutually exclusive in colorectal cancers46, assuming both genes 
function in the APC/β -catenin/Tcf pathway. However, we found that these two genes cannot be cate-
gorized into any combinatorial pattern in large intestine cancers. Actually, among 599 genome-wide 
screened large intestine cancer samples, CTNNB1 (encoding β -catenin protein) was mutated in 99 sam-
ples, APC was mutated in 427 samples, and both genes were mutated in 78 samples. The likelihood ratio 
LR =  1.1052 is significantly smaller than the lower bound of the thresholds (Table S3), which means it 
should be an exclusive pattern (Methods). However, our calculation showed it was not statistically signifi-
cant (P  >   0.5). The mutation rate of APC in large intestine cancers is much higher than that of CTNNB1, 
and the samples harboring APC mutations contained most of those harboring CTNNB1 mutations (78 
of 99). Hence, this pattern is very different from the exclusive one and cannot be categorized into a 
mutually exclusive pattern. In fact, some researchers have referred to this type of pattern as a subsumed 
relation28. Here, the subsumed relation refers to the conjecture that the APC mutations probably precede 
the CTNNB1 mutations during carcinogenesis in the large intestine. The issue of temporal order (timing) 
of mutational events is discussed later.

The present study also demonstrated heterogeneity in combinatorial mutational patterns between can-
cer types. For instance, the KRAS gene mutated exclusively with the PTEN, VHL, RB1, and EGFR genes 
in large intestine cancers with high statistical significance. However, in lung cancers, KRAS mutated most 
frequently exclusive with the TP53, PKHD1, and SYNE1 genes. The KRAS gene also mutated exclusively 
with EGFR in lung cancers (Fig. 7 and Table S3). The gatekeeper gene TP53 was exclusive with different 
genes in almost all cancer types, albeit it generally maintains high mutation rate in those cancers (Fig. 3, 
Figure S34, and Table S3). This implies that the same gene may take part in various signaling pathways 
in different cancers, as revealed by the previous studies1.

The biological significance of co-mutational patterns, especially those that tend to simultaneously 
appear in different cancer types, deserves further experimental evaluation. We identified a batch of 

Figure 7.  Representative gene pairs with significant exclusive pattern for three typical cancers. (a) large 
intestine cancer; (b) lung cancer; (c) endometrial cancer. Each gene pair with exclusive pattern implies 
that related genes tend to participate in the same cell signaling pathway (see text). The statistical analysis 
recapitulated the well-known gene network modules, such as the KRAS/BRAF in colon cancer, EGFR/KRAS/
TP53 in lung cancer, and TP53/PTEN in endometrium. Refer to supplementary Figure S34 for the exclusive 
gene pairs detected in other cancers.
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co-mutational gene pairs for various cancer tissues with high statistical significance (Table S3). These gene 
pairs were distinct across cancer types in general, but some simultaneously occurred in different cancers, 
e.g., NFATC4/FAT1 appeared in both endometrial and lung cancers and PEG3/ZIM2 appeared in skin 
and esophageal cancers. Since co-mutational genes are likely to function in distinct signaling pathways 
and exert joint effects on tumor progression, multiple oncogenic pathways driving tumor progression 
could be revealed by analyzing these co-mutational patterns. These considerations could be taken into 
account when designing drug combinations to target multiple signaling pathways simultaneously.

Discussion
A comprehensive study of human cancer-specific mutational spectra is an important initial step towards 
distinguishing mutational patterns between cancers, identifying the most relevant cancer genes driving the 
tumorigenesis of particular cancer types, and elucidating etiological connections between specific muta-
gens and tumor evolution. The increasingly integrative COSMIC database, which incorporates consider-
able mutation records of clinical samples in the protein-coding genes, provides a unique opportunity for 
such comprehensive analysis. By analyzing more than one million missense mutations (involving ~8000 
genome-wide screened samples across 23 major human cancers), we detected significant cancer-specific 
heterogeneity in several aspects, including the prevalence of point mutations, frequently mutated genes 
and mutational landscapes at the amino acid level, and combinatorial mutational patterns of related gene 
pairs. Compared to previous studies considering only nucleotide changes, our comprehensive investiga-
tion of amino acid substitutions and associated cancer genes revealed more significant cancer-specific 
heterogeneity, and hence allowed many novel insights into molecular mechanisms of tumor progression 
of particular cancer types.

Our mutation prevalence analysis revealed that solid tumors (especially self-renewing tissues such 
as colon and lung cancers) typically possess more mutations and more mutated genes than non-solid 
tumors (e.g., haematopoietic and lymphoid tissue cancers). For instance, an average colon tumor has 
150 missense (a type of non-synonymous) mutations in protein-coding genes, while a hematopoietic or 
soft tissue cancer typically contains less than ten. One possible explanation is that liquid tumors do not 
need the extra mutations which enable them to metastasize, a key characteristic of malignant tumors1. 
However, skin cancers bear a median of only six missense mutations detected in the current COSMIC, 
much less than other typical solid tumors (Fig. 1). A quarter of the skin cancer samples maintain more 
than 125 mutations; yet over 25% of samples have only one or two mutations. The reason for this marked 
difference is unknown. Mutational frequency may vary widely between different subtypes of skin can-
cer, which needs further investigation. Another concern is the small sample size for some cancer types 
(e.g. adrenal gland, eye, and small intestine cancers), for which there are only 20 ~ 40 genome-wide 
screened samples in the current COSMIC database. A more integrative database containing sufficient 
cancer-specific mutations is essential for an unbiased analysis.

Cancer is widely considered as an age-associated disease - it needs time to accumulate the necessary 
somatic mutations that progressively change a selected clone from benign to malignant tumor6. This trend 
may also be detected through mutation occurrences across diagnosis age. Some cancers displayed strong 
correlation between patient age at diagnosis and mutation occurrences, e.g., esophageal, prostate, and 
stomach cancers. Older patients with these cancers tend to accumulate more somatic mutations. Other 
cancers exemplified no obvious age-mutation association, due to many possible reasons. In the current 
COSMIC release, there were no mutation records of patients aged 25 years or younger for self-renewing 
cancers such as colon and lung cancers; whereas, considerable numbers of patients under 25 years old 
were included in samples of other particular cancers, such as hematopoietic-lymphoid tissue and central 
nervous system tumors. However, this trend may not hold with more data coming into the database. In 
addition, since only a small fraction of samples has age information in the current COSMIC database, 
the correlation identified by the present study should be interpreted with caution due to its potential bias.

Since mutation information in COSMIC is manually curated from the scientific literature with precise 
definitions of disease types and patient details47, all mutation records contained in COSMIC are presum-
ably associated with oncogenic progression to some extent. However, mutations on the highly mutated 
TTN and MUC16 genes were suspected of being neutral (passenger) mutations according to recent 
research14, and the potential biological mechanisms have been elucidated19. The evidence suggested that 
the high mutation frequency of olfactory receptor genes and some large genes (e.g. TTN and MUC16) 
could be attributed to their low expression level and late replication timing during the cell cycle. Our 
spectra analysis at the amino acid level identified distinct mutational spectra compared to other recog-
nized cancer genes, suggesting their functional neutrality. However, considering their persistent presence 
in different cancer types (Fig. 3 and Table S2), and significant combinatorial mutational patterns (TTN 
tended to mutate exclusively with other genes, while MUC16 was likely to be co-mutational with others) 
(Fig.  7 and Table S3), we suggest that their role in cancer progression still remains to be evaluated. It 
would be interesting to distinguish cancer-associated genes from neutral ones based on our mutational 
spectra study at the amino acid level, but that question is not the focus of the current work.

The combinatorial mutational patterns of gene pairs (co-mutational versus exclusive patterns) have 
many ramifications in inferring signaling network modules for specific cancer types. Our investiga-
tion has identified considerable numbers of candidate gene pairs with significant biological relevance. 
Some results recapitulated previous observations, while others deserved further experimental validation. 
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Besides the combinatorial mutational patterns, these cross-sectional data may also contain informa-
tion related to the temporal order of two mutational events28,48, such as the aforementioned APC and 
CTNNB1 mutations. The temporal order of mutations is associated with stages of cancer progression49. 
Future studies will examine possible associations between the mutation frequency/sample coverage and 
the temporal order of gene mutations based on the integrative database.

Methods
Datasets and quality control.  The current Catalog of Somatic Mutations in Cancer (COSMIC v68) 
contains 27 keywords to describe mutation and sample information, including the gene name and its 
alias ID in different data sources, the sample name/ID and source, the mutation detail in gene and its 
associated protein sequence, and whether it was genome-wide screened, etc. This version also contains 
patient age information for some samples.

The COSMIC v68 contains a total of 1,627,583 mutation records involving 235,589 samples. By 
extracting the column of keyword ‘Primary site’, we obtained 42 major human cancer types (differing 
in tissue types) plus some mutations of non-specific tissue origin (denoted ‘NS’), which can be further 
categorized into 190 subtypes according to ‘Site subtype’. These mutations involved ~20,000 human genes 
in total with heterogeneous coverage over different cancer types (supplementary Table S1).

In the present study, we only considered the genome-wide screened samples and excluded synonymous 
mutations denoted as ‘coding silent’. The first criterion (genome-wide screening) filtered out about 16% of 
the original records, and the second principle (non-synonymous) further excluded 21% of the remaining 
ones. Some cancers (e.g. pleura, pituitary, and testis) did not meet both criteria and were excluded from 
later analysis. We obtained 28 cancer types through this initial screening (excluding ‘NS’). The sample 
size for some cancer types are below 20, which is too small for statistical analysis. These cancer types were 
also removed, including thyroid, soft tissue, cervix, biliary tract, and parathyroid cancers. Hence, our 
analysis included the remaining 23 cancers (supplementary Table S1). Here the threshold of 20 samples 
was chosen to satisfy two primary goals: first, each cancer type under investigation has a reasonably large 
sample size, to minimize statistical bias; second, our investigation could support a meaningful compara-
tive study across various cancer types. Mutation records were first extracted separately based on different 
tissue types. After that, for each cancer type, mutations together with other information were grouped 
sample by sample, and mutated genes of each sample were collected for further analysis.

Mutational analysis at the amino acid level.  The amino acid substitutions were extracted from the 
mutation records under the key ‘Mutation AA’ and denoted as a 2-gram code for the amino acid mutation 
and a positive integer number for the mutation position. For example, the mutation record ‘p.A593E’ con-
tains the 2-gram code ‘AE’ and the position 593. For the 20 amino acids {‘ACDEFGHIKLMNPQRSTVWY’}, 
there are 380 combinations of any two distinct characters, corresponding to 380 different amino acid 
substitutions. For each cancer type, we first generated all the 2-gram codes for the amino acid mutations, 
and then calculated the frequency of mutations along the 380 residue alterations. After that, alterations 
that were extremely rare across cancer types were removed since these substitutions contribute little to 
discriminating between molecular subtypes. In our practice, if sum of the frequency of occurrence across 
all cancers was lower than 1% for an amino acid substitution, it was excluded. This procedure yielded 149 
significant amino acid substitutions. Based on their frequency distribution along these 149 amino acid 
substitutions, cancers were clustered (average-linkage, Euclid distance) into several groups.

K-S test for mutational preference across chromosomes.  We employed the Kolmogorov-Smirnov 
test (K-S test) to determine whether somatic mutations for a cancer type occur preferentially in particular 
chromosomes. The K-S test statistic quantifies a distance between the empirical distribution functions of 
the test sample and that of the reference sample to determine whether the test sample is drawn from the 
reference distribution. In the present study, we took chromosome lengths as the reference sample. Our 
purpose was to see whether there are significantly more somatic mutations on the longer chromosomes 
for each cancer. To achieve this, we first calculated the cumulative length proportion of each chromo-
some among the whole genome. Then we determined the number of mutations in each chromosome and 
determined their cumulative probability of occurring in each chromosome. We denote the cumulative 
distribution function of the reference and test sample as Fr(x) and Ft(x), and then the K-S statistic can 
be represented as equation (1).

= ( ) − ( )
( )

D sup F x F x
1x

r t

This statistic reflects the difference between the reference and test distribution. In our study, distribu-
tions with D >  0.05 were considered as significantly different (mutations of that cancer exhibit certain 
chromosome preference).
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Likelihood ratios of combinatorial mutational patterns and statistical significance.  Previous 
experimental and statistical studies have consistently identified two combinatorial mutational pat-
terns for gene pairs in a tumor sample, termed co-mutational and mutually exclusive patterns1,15. The 
co-mutational pattern occurs when two genes tend to mutate simultaneously in a single tumor, while the 
mutually exclusive pattern occurs when one and only one of a pair of genes mutates in any single tumor. 
Mutually exclusive genes may tend to function in the same signaling pathway, while co-mutational genes 
may be likely to take effect in different pathways30. Hence, identifying gene pairs with obvious combina-
torial mutational patterns has significant biological meaning.

To determine combinatorial mutational patterns, we first determined the candidate gene pairs both 
mutated in at least 10%, 5% and 2% of the dominancy, average, and non-dominancy cancer samples, 
respectively (Fig. 3). Then we calculated a likelihood ratio (LRcomb) between the empirical co-occurrence 
frequency and the expected co-occurrence frequency according to the simplest model28. The ratio can 
be mathematically expressed as equation (2).

=
( = , = )

( = ) ( = ) ( )
LR

P

P P

g 1 g 1

g 1 g 1 2
comb

1 2

1 2

Where P(gi =  1) and P(g1 =  1, g2 =  1) stand for the probability that a single or both genes are mutated 
across samples, respectively. Note that for the exclusive pattern, the smaller the likelihood ratio, the 
more likely the related genes are mutated exclusively; while for the co-mutational pattern, the trend 
is opposite. To obtain cutoff value(s) distinguishing between co-mutational and exclusive patterns, we 
applied the mixture Gaussian distribution fitting model using Expectation-Maximization algorithm50. 
Suppose m1, m2 are the means of the low and high components, and δ1, δ2 their standard deviations. 
Then the thresholds for the co-mutational pattern (lower bound) and exclusive pattern (upper bound) 
are calculated as θ 1 =  m2−δ 2/2 and θ 2 =  m1+ δ 1/2, respectively. In our study, this cutoff varied between 
cancer types (Table S3).

We measured the significance of the combinatorial mutational patterns of gene pairs by calculating 
the p-value of a hyper-geometric test. Suppose in a population of n samples, n1 carry a gene 1 muta-
tion, n2 carry a gene 2 mutation, and n12 carry both mutations. The p-value for mutual exclusion and 
co-occurrence can be calculated by equations (3) and (4), respectively.
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The difference lies in what events are considered as extreme cases in testing a statistical hypothesis. 
For exclusive patterns, we counted the number of times we observed at most n12 double mutations; for 
co-mutational patterns, we counted the times of observing at least n12 (up to n2) double mutations. We 
employed a different p-value formula for co-occurrence than previously shown in the literature28, since 
the previously used probability space does not sum to unity and consequently tends to produce smaller 
p-values than normal.
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