

Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.3748/wjg.v21.i28.8711 World J Gastroenterol 2015 July 28; 21(28): 8711-8722 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2015 Baishideng Publishing Group Inc. All rights reserved.

META-ANALYSIS

Interleukin-18 genetic polymorphisms contribute differentially to the susceptibility to Crohn's disease

Su-Jun Gao, Li Zhang, Wei Lu, Lu Wang, Lei Chen, Zhen Zhu, Hai-Hang Zhu

Su-Jun Gao, Li Zhang, Wei Lu, Lu Wang, Lei Chen, Zhen Zhu, Hai-Hang Zhu, Department of Gastroenterology, Subei People's Hospital, Yangzhou 225001, Zhejiang Province, China

Author contributions: Gao SJ, Zhang L and Lu W designed the study, analyzed data and wrote the manuscript as co-first authors; Zhang L contributed to the discussions and wrote the manuscript; Wang L, Chen L and Zhu Z edited the manuscript; Lu W and Zhu HH designed the study, contributed to the discussions and edited the manuscript as a corresponding author; Gao SJ, Zhang L and Lu W contributed equally to this article as first author(s).

Conflict-of-interest statement: The authors have declared that they have no competing interests.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0/

Correspondence to: Dr. Hai-Hang Zhu, Department of Gastroenterology, Subei People's Hospital, No. 98 Nantong Street, Yangzhou 225001, Zhejiang Province, China. doczhuhaihang@163.com Telephone: +86-514-87373385 Fax: +86-514-87373385

Received: August 22, 2014 Peer-review started: August 23, 2014 First decision: October 29, 2014 Revised: December 5, 2014 Accepted: March 12, 2015 Article in press: March 12, 2015 Published online: July 28, 2015

Abstract

AIM: To investigate the correlation between interleukin-18

(*IL-18*) gene polymorphisms and the risk of developing Crohn's disease (CD).

METHODS: The PubMed, CISCOM, CINAHL, Web of Science, EBSCO, Cochrane Library, MEDLINE, EMBASE and CBM databases were searched without any language restrictions using combinations of keywords relating to CD and *IL-18* for relevant articles published before November 1st, 2013. Screening of the published studies retrieved from searches was based on our stringent inclusion and exclusion criteria and resulted in seven eligible studies for meta-analysis. A metaanalysis was conducted using a random-effects model with STATA 12.0 software. Crude odds ratios (ORs) with 95% confidence intervals (95%CI) were calculated.

RESULTS: Seven case-control studies, with a total of 1930 CD cases and 1930 healthy subjects, met our inclusion criteria. The results of our meta-analysis indicated that the IL-18 rs1946518 A>C and rs187238 G>C polymorphisms may correlate with an increased risk of CD under five genetic models (all P < 0.05). Furthermore, we observed positive associations between the IL-18 rs360718 A>C polymorphism and CD risk under three genetic models (C allele vs A allele: OR = 2.03, 95%CI: 1.20-3.43, P = 0.008; CC *vs* AA+AC: OR = 2.39, 95%CI: 1.2-4.43, *P* = 0.006; CC vs AC: OR = 2.31, 95%CI: 1.22-4.38, P = 0.010). However, such associations were not found for the IL-18 rs917997 C>T, codon 35 A>C and rs1946519 G>T polymorphisms (all P > 0.05). A subgroup analysis was conducted to investigate the effect of ethnicity on an individual's susceptibility to CD. Our results revealed positive correlations between IL-18 genetic polymorphisms and an increased risk of CD among Asians and Africans (all P < 0.05), but not among Caucasians (all P > 0.05).

CONCLUSION: This meta-analysis indicated that the *IL-18* rs1946518 A>C, rs187238 G>C and rs360718 A>C polymorphisms may contribute to susceptibility

WJG www.wjgnet.com

to CD, especially among Asians and Africans. These polymorphisms are known to reduce *IL-18* mRNA and protein levels.

Key words: Interleukin-18; Single nucleotide polymorphism; Crohn's disease; Meta-analysis

© **The Author(s) 2015.** Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This meta-analysis was performed to evaluate the relationships between genetic polymorphisms in the Interleukin-18 gene and the risk of developing Crohn's disease.

Gao SJ, Zhang L, Lu W, Wang L, Chen L, Zhu Z, Zhu HH. Interleukin-18 genetic polymorphisms contribute differentially to the susceptibility to Crohn's disease. *World J Gastroenterol* 2015; 21(28): 8711-8722 Available from: URL: http://www. wjgnet.com/1007-9327/full/v21/i28/8711.htm DOI: http://dx.doi. org/10.3748/wjg.v21.i28.8711

INTRODUCTION

Crohn's disease (CD), also known as Crohn syndrome and regional enteritis, is an inflammatory bowel disease that can affect any part of the gastrointestinal tract from the mouth to the anus^[1]. Clinically, the symptoms of CD include abdominal pain, diarrhea, vomiting, and weight loss^[2]. It is estimated that CD affects 400000 to 600000 people, with an incidence of 1/1000 per year in western countries^[3]. CD is largely caused by interactions among environmental, immunological and genetic factors^[4]. Environmental factors, such as age, sex, tobacco smoking and intake of animal protein, may lead to CD^[1,5,6]. Current studies have shown that the development of CD may involve known genetic polymorphisms found in several inflammation-related genes^[7,8].

Interleukin (IL)-18, which belongs to the IL-1 cytokine superfamily, is a pro-inflammatory cytokine with pleiotropic activities extending from Th1/Th2 polarization to activation of innate immunity and inflammatory pathways^[9,10]. IL-18 is mainly produced by macrophages, dendritic cells, keratinocytes, osteoblasts and intestinal epithelial cells^[11]. IL-18 increases interferon (IFN)- γ production by T helper 1 (Th1) cells together with IL-12^[12,13]. In addition, IL-18 stimulates the expression of tumor necrosis factor (TNF)- α and IL-1 β , increases the differentiation of T cells to the proinflammatory Th1 phenotype and impairs the synthesis of the anti-inflammatory cytokine IL-10^[14,15]. Epidemiological studies have demonstrated that IL-18 may interfere with the regulation of the T helper 2 (Th2)-mediated immune response, which is involved in the pathogenesis of Th1 and Th2 chronic inflammatory diseases, including CD^[16,17].

The human IL-18 gene comprises six exons and five introns, and has been mapped to chromosome 11q22.2-q22.3, with an overall length of approximately 19.5 $kb^{[18]}$. Although the specific pathogenesis of CD is still not completely understood, single nucleotide polymorphisms (SNPs) in the IL-18 gene alter IL-18 production and function, leading to an imbalance in the Th1/Th2 cytokine response, thereby affecting an individual's susceptibility to CD^[19,20]. Several studies have shown that common polymorphisms in the IL-18 gene may contribute to the development of CD^[21,22]. However, findings from these studies have been contradictory with respect to individual SNPs^[22]. Consequently, we performed the present meta-analysis of all available data to evaluate the relationships between *IL-18* genetic polymorphisms and CD risk.

MATERIALS AND METHODS

Search strategy

The PubMed, CISCOM, CINAHL, Web of Science, EBSCO, Cochrane Library, and CBM databases were searched without language restrictions for relevant articles published before November 1st, 2013. The following key words and MeSH terms were used: ("SNP" or "mutation" or "genetic polymorphism" or "variation" or "polymorphism" or "single nucleotide polymorphism" or "variant") and ("Crohn's disease" or "CD" or "Crohn syndrome" or "regional enteritis") and ("interleukin-18" or "IL-18" or "interleukin-18 receptors" or "IL-18 receptors"). We also performed a manual search of the reference lists of the relevant articles to find other potential articles.

Selection criteria

The included studies met all four of the following criteria: (1) the study design must be a case-controlled study that focused on the relationships between *IL-18* genetic polymorphisms and the risk of developing CD; (2) all patients diagnosed with CD must be confirmed by endoscopy and histopathological examinations; (3) the genotype frequencies of healthy controls should follow the Hardy-Weinberg equilibrium (HWE); and (4) the study must provide sufficient information about the inclusion criteria, it was excluded. When the authors published several studies using the same subjects, the publication that was the most recent or contained the largest sample was included.

Data extraction

Relevant data were systematically extracted from all included studies by two observers using a standardized form. The researchers collected the following data: publication language, publication year, the first author's surname, geographical location, study design, sample size, the source of the subjects, genotype frequencies, sample source, genotyping method and evidence of the HWE.

Figure 1 Flow chart of the literature search and study selection. Seven case-control studies were included in this meta-analysis.

Quality assessment

Methodological quality was evaluated separately by two observers using the Newcastle-Ottawa Scale (NOS) criteria^[23]. The NOS criteria include three aspects: (1) subject selection: 0-4; (2) comparability of subject: 0-2; and (3) clinical outcome: 0-3. NOS scores ranged from 0 to 9, with a score \geq 7 indicating good quality.

Statistical analysis

STATA version 12.0 (Stata Corp, College Station, TX, United States) software was used for the metaanalysis. We calculated crude odds ratios (ORs) with their 95% confidence intervals (95%CI) to evaluate the relationships with five genetic models. Genotype frequencies of healthy controls were tested for the HWE using the χ^2 test. The statistical significance of pooled ORs was assessed using the Z test. The Cochran's Q-statistic and I^2 test were used to evaluate potential heterogeneity between studies^[24]. If the *Q*-test showed a P < 0.05 or the I^2 test scored > 50%, indicating significant heterogeneity, the random-effects model or the fixed-effects model was used. We also performed subgroup and meta-regression analyses to investigate potential sources of heterogeneity. We conducted a sensitivity analysis to assess the influence of single studies on overall ORs. Funnel plots and the Egger's linear regression test were used to investigate publication bias^[25].

RESULTS

Baseline characteristics of included studies Initially, the keyword searches identified 127 articles. We reviewed the titles and abstracts of all of the articles and excluded 66 articles. Next, the full text and data integrity were reviewed, and 54 additional articles were excluded. Finally, seven case-control studies with a total of 1930 CD cases and 1930 healthy subjects met our inclusion criteria for qualitative data analysis^[21,26-31]. Publication years of the eligible studies ranged from 2005 to 2011. Figure 1 shows the selection process of the eligible articles. Overall, three studies were conducted in Asians, three in Caucasians, and only one in Africans. Six common polymorphisms in the IL-18 gene were assessed: rs1946518 A>C, rs187238 G>C, rs360718 A>C, rs917997 C>T, codon 35 A>C and rs1946519 G>T. Genotyping methods included polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), PCR-sequencespecific primers (PCR-SSP), direct DNA sequencing and TaqMan assay methods. None of the studies deviated from the HWE (all P > 0.05). The NOS scores of all included studies were \geq 5. We summarized the study characteristics and methodological quality in Table 1.

Quantitative data synthesis

The meta-analysis findings of the relationships between *IL-18* genetic polymorphisms and the risk of CD are shown in Table 2. The random effects model was used because of the heterogeneity between studies. Our meta-analysis showed that the *IL-18* rs1946518 A>C and rs187238 G>C polymorphisms were associated with increased risk of CD under five genetic models (all P < 0.05). We also found positive associations between the *IL-18* rs360718 A>C polymorphism and CD risk under three genetic models

Table 1 Main characteristics and methodological quality of all eligible studies of the relationship between interleukin-18 genetic polymorphisms and the risk of developing Crohn's disease

Ref.	Year	Country	Ethnicity	N	umber	Gender	(M/F)	Age (yr)		Genotyping	SNP type	HWE test	NOS
				CD	Control	CD	Control	CD	Control	method		(P value)	score
Ben Aleya <i>et</i> al ^[21]	2011	Tunisia	African	105	100	50/55	52/48	23-60	-	PCR-SSP	rs1946518 A>C rs187238 G>C	0.051 0.284	6
Dema et al ^[27]	2009	Spain	Caucasian	722	794	274/448	-	-	-	TaqMan	rs917997 C>T	0.609	5
Haas et al ^[29]	2005	Germany	Caucasian	470	347	139/331	122/225	-	-	TaqMan	rs187238 G>C	0.637	6
Glas et al ^[28]	2005	Germany	Caucasian	210	265	83/127	141/124	39.1 ± 13.6	43.2 ± 12.5	PCR-RFLP	rs1946518 A>C	0.592	8
											rs187238 G>C	0.123	
											codon 35 A>C	0.774	
Tamura et	2008	Japan	Asian	134	110	102/32	55/55	15-65	15-75	Direct	codon 35 A>C	0.606	8
al ^[31]										sequencing			
Takagawa et	2005	Japan	Asian	210	212	150/60	97/115	32.4 ± 9.8	38.2 ± 13.7	PCR-SSP	rs1946518 A>C	0.298	8
al ^[30]											rs187238 G>C	0.197	
Aizawa et	2005	Japan	Asian	79	102	61/18	50/52	36.8 ± 9.2	37.6 ± 6.9	Direct	rs1946519 G>T	0.947	8
al ^[26]										sequencing			
											rs1946518 A>C	0.840	
											rs187238 G>C	0.586	
											rs360718 A> C	0.327	

M/F: Male/female; CD: Crohn's disease; SNP: Single nucleotide polymorphism; HWE: Hardy-Weinberg Equilibrium; NOS: Newcastle-Ottawa Scale; PCR-SSP: Polymerase chain reaction-sequence-specific primers; RFLP: Restriction fragment length polymorphism.

Table 2 Meta-analysis of subgroups for the relationships between IL-18 genetic polymorphisms and Crohn's disease risk															
	W allele <i>vs</i> M allele (Allele model)			WW + WM <i>vs</i> MM (Dominant model)		WW vs WM + MM (Recessive model)		WW vs MM (Homozygous model)			WW <i>vs</i> WM (Heterozygous model)				
	OR	95%CI	<i>P</i> value	OR	95%CI	<i>P</i> value	OR	95%CI	P value	OR	95%CI	<i>P</i> value	OR	95%CI	P value
SNP type															
rs1946518 A>C	1.45	1.22-1.72	0.000	1.62	1.22-2.14	0.001	1.59	1.26-2.01	0.000	1.98	1.45-2.72	0.000	1.43	1.12-1.84	0.005
rs187238 G>C	1.69	1.39-2.06	0.000	2.04	1.48-2.81	0.000	1.81	1.42-2.31	0.000	2.53	1.82-3.52	0.000	1.66	1.29-2.13	0.000
rs360718 A>C	2.03	1.20-3.43	0.008	2.33	0.46-11.88	0.308	2.39	1.29-4.43	0.006	3.17	0.61-16.40	0.169	2.31	1.22-4.38	0.010
rs917997 C>T	0.91	0.77-1.06	0.229	0.80	0.55-1.18	0.267	0.91	0.74-1.11	0.349	0.78	0.52-1.16	0.220	0.93	0.76-1.15	0.525
codon 35 A>C	1.15	0.91 - 1.45	0.256	1.30	0.75-2.26	0.355	1.15	0.85-1.55	0.360	1.41	0.79-2.52	0.250	1.11	0.81-1.52	0.523
rs1946519 G>T	1.14	0.74-1.77	0.545	1.24	0.51-3.03	0.641	1.17	0.64-2.13	0.604	1.32	0.51-3.43	0.566	1.13	0.60-2.13	0.697
Ethnicity															
Asians	1.54	1.28-1.85	0.000	1.81	1.29-2.53	0.001	1.65	1.28-2.12	0.000	2.25	1.56-3.24	0.000	1.54	1.18-2.00	0.001
Africans	1.99	1.42-2.79	0.000	2.69	1.55-4.67	0.000	2.11	1.38-3.22	0.001	3.55	1.67-7.53	0.001	1.66	1.07-2.59	0.025
Caucasians	1.23	0.97-1.54	0.083	1.27	0.92-1.77	0.148	1.29	0.97-1.73	0.079	1.44	0.94-2.22	0.096	1.25	0.97-1.61	0.086
Genotyping method															
PCR-SSP	1.67	1.35-2.07	0.000	1.91	1.37-2.67	0.000	1.84	1.45-2.34	0.000	2.35	1.55-3.56	0.000	1.67	1.30-2.15	0.000
TaqMan	1.20	0.69-2.10	0.521	1.17	0.55-2.53	0.681	1.29	0.64-2.58	0.479	1.32	0.46-3.80	0.603	1.27	0.68-2.36	0.450
PCR-RFLP	1.25	1.07 - 1.46	0.005	1.36	1.00-1.85	0.053	1.31	1.06-1.63	0.013	1.55	1.11-2.16	0.011	1.25	0.99-1.56	0.059
Direct sequencing	1.56	1.16-2.11	0.003	2.46	1.37-4.43	0.003	1.61	1.08-2.42	0.021	3.21	1.72-5.99	0.000	1.46	0.98-2.18	0.061
Sample size															
Small sample-size ($n \leq 200$)	1.61	1.29-2.01	0.000	2.29	1.60-3.27	0.000	1.66	1.25-2.20	0.001	2.85	1.93-4.20	0.000	1.46	1.12-1.90	0.005
Large sample-size ($n > 200$)	1.33	1.08-1.63	0.007	1.33	1.02-1.74	0.038	1.44	1.11-1.86	0.007	1.54	1.07-2.21	0.019	1.38	1.08-1.76	0.009

W: Wild-type allele; M: Mutant allele; WW: Wild-type homozygote; WM: Heterozygote; MM: Mutant homozygote; OR: Odds ratio; SNP: Single nucleotide polymorphism.

(C allele *vs* A allele: OR = 2.03, 95%CI: 1.20-3.43, *P* = 0.008; CC *vs* AA+AC: OR = 2.39, 95%CI: 1.29-4.43, *P* = 0.006; CC *vs* AC: OR = 2.31, 95%CI: 1.22-4.38, *P* = 0.010). However, the *IL-18* rs917997 C>T, codon 35 A>C and rs1946519 G>T polymorphisms exhibited no associations with the risk of CD (all *P* > 0.05) (Figure 2). A subgroup analysis was performed to investigate the effect of ethnicity on an individual's susceptibility to CD. Our results revealed positive correlations between *IL-18* genetic polymorphisms and an increased risk of CD among Asians and Africans (all *P* < 0.05), but not among Caucasians (all *P* > 0.05) (Figure 3). We also performed a subgroup analysis by genotyping method

and sample size: the results indicated significant associations between *IL-18* genetic polymorphisms and an increased risk of CD in the majority of subgroups (Table 2).

The univariate meta-regression analyses confirmed that SNP type and ethnicity may be the main sources of heterogeneity, while multivariate meta-regression analyses revealed that SNP type and ethnicity were not the sources of heterogeneity (Table 3). The results of the sensitivity analysis indicated that the overall pooled ORs were not affected by a single study (Figure 4). No evidence of asymmetry was observed in the funnel plots (Figure 5). The Egger's

Included studies	Allele model (W allelel vs M allele)	OR (95%CI)	Weight%
rs1946518			
Ben Aleva W-a (2011)		1.69 (1.14, 2.50)	6.37
Glas 1-a (2005)		1 19 (0 92 1 55)	8.08
Takagawa T-a (2005)	-	1.53(1.16, 2.01)	7.86
Aizawa Y-a (2005)		1 72 (1 12 2 63)	5 94
Hotorogonoity toot $(I^2 - 14.3\%, R - 0.321)$		1.72(1.12, 2.03) 1.45(1.22, 1.72)	2.24
Herefogeneity lest $(I = 14.5\%, P = 0.521)$		1.43 (1.22, 1.72)	20.24
2 test (2 = 4.22, P < 0.001)			
rs18/238			6.00
Ben Aleya W-b (2011)		2.39 (1.57, 3.63)	6.02
Haas SL (2005)	- <u>·</u> •	1.61 (1.30, 1.99)	8.66
Glas J-b (2005)		1.42 (1.08, 1.88)	7.81
Takagawa T-b (2005)	•	1.90 (1.29, 2.80)	6.41
Aizawa Y-b (2005)		2.27 (1.35, 3.80)	4.98
Aizawa Y-c (2005)	•	1.04 (0.58, 1.85)	4.43
Heterogeneity test ($I^2 = 41.7\%$, $P = 0.127$)		1.69 (1.39, 2.06)	38.32
Z test (Z = 5.32, P < 0.001)	1		
rs917997			
Dema B (2009)		0.91 (0.77, 1.06)	9.28
Z test ($Z = 1.20, P = 0.229$)		0.91 (0.77, 1.06)	9.28
Codon35			
Glas 1-c (2005)		1 16 (0 88 1 52)	7 89
Tamura $K(2008)$	·	1 11 (0.69, 1.52)	5 51
Hotorogonoity toot $(I^2 = 0.0\% R = 0.860)$		1.11(0.05, 1.70) 1.15(0.01, 1.45)	12 /
Therefore the set $(T = 0.070, F = 0.000)$		1.15 (0.91, 1.45)	13.4
2 (est (2 = 1.14, P = 0.250)			
		1 14 (0 74 1 77)	F 0F
Alzawa Y-0 (2005)		1.14 (0.74, 1.77)	5.85
\angle test (\angle = 0.61, P = 0.545)		1.14 (0./4, 1.//)	5.85
rs360718			
Aizawa Y-e (2005)	•	2.03 (1.20, 3.43)	4.9
Z test (Z = 2.65, P = 0.008)		2.03 (1.20, 3.43)	4.9
Heterogeneity test ($I^2 = 71.9\%$, $P < 0.001$)		1.45 (1.23, 1.70)	100.00
Z test (Z = 4.49, P < 0.001)	i		
Random effects analysis			
0.263	1 3.8		
Included studies	Dominant model (WW + WM vs MM)	OR (95%C/)	Weight%
Included studies	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/)	Weight%
Included studies rs1946518 Ben Aleya W-a (2011)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15)	Weight%
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005)	Dominant model (WW + WM vs MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90)	Weight% 8.28 11.5
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005)	Dominant model (WW + WM vs MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81)	Weight% 8.28 11.5 10.91
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005)	Dominant model (WW + WM vs MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69)	Weight% 8.28 11.5 10.91 6.13
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.403$)	Dominant model (WW + WM vs MM)	OR (95%C2) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14)	Weight% 8.28 11.5 10.91 6.13 36.81
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C2) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14)	Weight% 8.28 11.5 10.91 6.13 36.81
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187738	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14)	Weight% 8.28 11.5 10.91 6.13 36.81
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya Web (2011)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14)	Weight% 8.28 11.5 10.91 6.13 36.81
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haze SL (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.91)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.28
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($Z^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Clas Lb (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.00 (1.04, 2.47)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 2.25
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-a (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.94 (0.23, 4.72)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.72
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.90, 3.161)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($Z^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($Z^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($J^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($J^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37 1.04
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 9.37 1.04 10.41
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 9.37 1.04 10.41
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37 1.04 10.41
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37 1.04 10.41
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37 1.04 10.41 5.28 5.28 5.28
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$) re s300718	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37 1.04 10.41 5.28 5.28
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$) rs360718	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03) 1.24 (0.51, 3.03)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37 1.04 10.41 5.28 5.28 5.28 1.95
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$) rs360718 Aizawa Y-e (2005)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03) 2.33 (0.46, 11.88) 2.32 (0.45, 11.82)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 9.37 1.04 10.41 5.28 5.28 5.28 1.95 1.05
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$) rs360718 Aizawa Y-e (2005) Z test ($Z = 1.02$, $P = 0.308$) Heterogeneity test ($I^2 = 0.70\%$, $P = 0.6260$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 9.37 1.04 10.41 5.28 5.28 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$) rs360718 Aizawa Y-e (2005) Z test ($Z = 1.02$, $P = 0.308$) Heterogeneity test ($I^2 = 3.78\%$, $P = 0.069$) T test ($Z = 0.029$, $P = 0.309$)	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.23 (0.46, 11.88) 2.33 (0.46, 11.88) 1.59 (1.25, 2.02)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 13.29 9.37 1.04 10.41 5.28 5.28 1.95 1.95 1.05
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$) rs360718 Aizawa Y-e (2005) Z test ($Z = 1.02$, $P = 0.308$) Heterogeneity test ($I^2 = 37.8\%$, $P = 0.069$) Z test ($Z = 3.82$, $P < 0.001$) Decoder G for the relation	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 2.33 (0.46, 11.88) 2.33 (0.46, 11.88) 1.59 (1.25, 2.02)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 9.37 1.04 10.41 5.28 5.28 1.95 1.95 1.95 100.00
Included studies rs1946518 Ben Aleya W-a (2011) Glas J-a (2005) Takagawa T-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.403$) Z test ($Z = 3.36$, $P = 0.001$) rs187238 Ben Aleya W-b (2011) Haas SL (2005) Glas J-b (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.530$) Z test ($Z = 4.39$, $P < 0.001$) rs917997 Dema B (2009) Z test ($Z = 1.11$, $P = 0.267$) Codon35 Glas J-c (2005) Tamura K (2008) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.349$) Z test ($Z = 0.92$, $P = 0.355$) rs1946519 Aizawa Y-d (2005) Z test ($Z = 0.47$, $P = 0.641$) rs360718 Aizawa Y-e (2005) Z test ($Z = 1.02$, $P = 0.308$) Heterogeneity test ($I^2 = 37.8\%$, $P = 0.069$) Z test ($Z = 3.82$, $P < 0.001$) Random effects analysis	Dominant model (WW + WM <i>vs</i> MM)	OR (95%C/) 2.19 (1.16, 4.15) 1.20 (0.75, 1.90) 1.72 (1.05, 2.81) 2.09 (0.93, 4.69) 1.62 (1.22, 2.14) 3.95 (1.60, 9.72) 1.76 (1.10, 2.81) 1.90 (1.04, 3.47) 1.24 (0.33, 4.70) 4.64 (1.00, 21.61) 1.98 (0.37, 10.51) 2.04 (1.48, 2.81) 0.80 (0.55, 1.18) 0.80 (0.55, 1.18) 1.22 (0.69, 2.16) 3.73 (0.38, 36.36) 1.30 (0.75, 2.26) 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.24 (0.51, 3.03 1.25 (1.25, 2.02)	Weight% 8.28 11.5 10.91 6.13 36.81 5.22 11.38 8.85 2.79 2.16 1.87 32.26 13.29 9.37 1.04 10.41 5.28 5.28 1.95 1.95 1.00.00

Figure 2 Forest plots of the relationships between interleukin-18 genetic polymorphisms and the risk of developing Crohn's disease, using the allele and dominant models.

Included studies	Ethnicity (W allelel <i>vs</i> M allele)	OR (95%CI)	Weight%
African			
Ben Aleya W-a (2011)	· · · ·	1.69 (1.14, 2.50)	6.37
Ben Aleya W-b (2011)		2.39 (1.57, 3.63)	6.02
Heterogeneity test ($I^2 = 27.6\%$, $P = 0.240$)		1.99 (1.42, 2.79)	12.39
Z test ($Z = 4.01, P < 0.001$)			
Caucasian			
Dema B (2009)		0.91 (0.77, 1.06)	9.28
Haas SI (2005)		1.61 (1.30, 1.99)	8.66
Glas 1-a (2005)		1.19 (0.92, 1.55)	8.08
Glas 1-b (2005)		1.42 (1.08, 1.88)	7.81
Glas 1-c (2005)		1 16 (0 88 1 52)	7.89
Heterogeneity test $(I^2 = 80.2\% P < 0.001)$		1 23 (0 97 1 54)	41 73
Z test (Z = 1.73, P = 0.083)		1125 (01577 1151)	110,5
Asian			
	-	1 11 (0 60 1 76)	5 51
Takagawa Takaga Takagawa Takaga		1.11(0.09, 1.70) 1.53(1.16, 2.01)	7.86
Takagawa T-a (2005) Takagawa T b (2005)		1.00 (1.10, 2.01)	6.41
		1.90 (1.29, 2.00)	0.41 E 9E
Alzawa 1-a (2005)		1.14 (0.74, 1.77)	5.65
Alzawa Y-D (2005)		1.72 (1.12, 2.03)	5.94
Alzawa Y-C (2005)	•	2.27 (1.35, 3.80)	4.98
Alzawa Y-d (2005)		2.03 (1.20, 3.43)	4.90
Alzawa Y-e (2005)		1.04 (0.58, 1.85)	4.43
Heterogeneity test ($I^{z} = 31.2\%$, $P = 0.179$)		1.54 (1.28, 1.85)	45.88
Z test (Z = 4.59, P < 0.001)			
Heterogeneity test ($I^2 = 71.9\%, P < 0.001$)		1.45 (1.23, 1.70)	100.00
Z test (Z = 4.49, P < 0.001)			
Random effects analysis			
0.263	1 3.8		
Included studies	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI)	Weight%
Included studies	Ethnicity (WW + WM vs MM)	OR (95%CI)	Weight%
Included studies African Ben Aleva W-a (2011)	Ethnicity (WW + WM ν_S MM)	OR (95%CI)	Weight%
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011)	Ethnicity (WW + WM νs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72)	Weight% 8.28 5.22
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$)	Ethnicity (WW + WM ks MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67)	Weight% 8.28 5.22 13.50
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$)	Ethnicity (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67)	Weight% 8.28 5.22 13.50
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian	Ethnicity (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67)	Weight% 8.28 5.22 13.50
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009)	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18)	Weight% 8.28 5.22 13.50
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005)	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1 10, 2.81)	Weight% 8.28 5.22 13.50 13.29 11.38
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Clas La (2005)	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Clas L b (2005)	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.00 (1.04, 2.47)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.95
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005)	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.93 (1.04, 3.47)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 0.27
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Hoterogeneity test ($I^2 = 5E \pm 1\%$, $B = 0.062$)	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.02, 1.77)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Zhete ($Z = 4.45$, $P = 0.014$)	Ethnicity (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$)	Ethnicity (WW + WM \vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test (Z = 3.52, P < 0.001) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test (Z = 1.45, P = 0.148) Asian Tamura K (2008) Takagawa T-a (2005)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 1.04
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Heterogeneity test ($I^2 = 55.1\%$, $I^2 = 55.1\%$) Heterogeneity test ($I^2 = 55.1\%$, $I^2 = 55.1\%$) Heterogeneity test ($I^2 = 55.1\%$,	Ethnicity (WW + WM \vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Aizawa Y-a (2005)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-d (2005) Aizawa Y-d (2005)	Ethnicity (WW + WM \vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16 1.95
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005)	Ethnicity (WW + WM \vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16 1.95 1.87
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.875$)	Ethnicity (WW + WM \vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 1.81 (1.29, 2.53)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16 1.95 1.87 32.12
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-d (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.875$) Z test ($Z = 3.45$, $P = 0.001$)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 1.81 (1.29, 2.53)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16 1.95 1.87 32.12
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-d (2005) Aizawa Y-d (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.875$) Z test ($Z = 3.45$, $P = 0.001$) Heterogeneity test ($I^2 = 37.8\%$, $P = 0.069$)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 1.81 (1.29, 2.53) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16 1.95 1.87 32.12 100.00
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.875$) Z test ($Z = 3.45$, $P = 0.001$) Heterogeneity test ($I^2 = 37.8\%$, $P = 0.069$) Z test ($Z = 3.82$, $P < 0.001$)	Ethnicity (WW + WM \v\$ MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 1.81 (1.29, 2.53) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16 1.95 1.87 32.12 100.00
Included studies African Ben Aleya W-a (2011) Ben Aleya W-b (2011) Heterogeneity test ($I^2 = 8.7\%$, $P = 0.295$) Z test ($Z = 3.52$, $P < 0.001$) Caucasian Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-a (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 55.1\%$, $P = 0.063$) Z test ($Z = 1.45$, $P = 0.148$) Asian Tamura K (2008) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.875$) Z test ($Z = 3.45$, $P = 0.001$) Heterogeneity test ($I^2 = 37.8\%$, $P = 0.069$) Z test ($Z = 3.82$, $P < 0.001$) Random effects analysis	Ethnicity (WW + WM \vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 2.69 (1.55, 4.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.27 (0.92, 1.77) 3.73 (0.38, 36.36) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 1.81 (1.29, 2.53) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 13.50 13.29 11.38 11.50 8.85 9.37 54.38 1.04 10.91 2.79 5.28 6.13 2.16 1.95 1.87 32.12 100.00

Boishideng® WJG | www.wjgnet.com

July 28, 2015 | Volume 21 | Issue 28 |

Included studies	Genotyping method (W allelel vs M allele)	OR (95%CI)	Weight%
PCR-SSP			
Ben Aleya W-a (2011)	· · · · · · · · · · · · · · · · · · ·	1.69 (1.14, 2.50)	6.37
Ben Aleya W-b (2011)		2.39 (1.57, 3.63)	6.02
Takagawa T-a (2005)	·	1.53 (1.16, 2.01)	7.86
Takagawa T-b (2005)		1.90 (1.29, 2.80)	6.41
Aizawa Y-a (2005)		1.14 (0.74, 1.77)	5.85
Heterogeneity test $(I^2 = 38.8\% P = 0.162)$		1.67 (1.35, 2.07)	32 51
Z = 50.076, 7 = 0.102		1.07 (1.55, 2.07)	52.51
$T_{2} = 4.72, 7 \le 0.001$			
		0.01 (0.77, 1.06)	0.29
		0.91 (0.77, 1.00)	9.26
Hads SL (2005)		1.61 (1.30, 1.99)	8.00
Heterogeneity test ($I^2 = 94.4\%$, $P < 0.001$)		1.20 (0.69, 2.10)	17.94
Z test ($Z = 0.64, P = 0.521$)			
PCR-RFLP			
Glas J-a (2005)		1.19 (0.92, 1.55)	8.08
Glas J-b (2005)		1.42 (1.08, 1.88)	7.81
Glas J-c (2005)		1.16 (0.88, 1.52)	7.89
Heterogeneity test ($I^2 = 0.00\%$, $P = 0.542$)		1.25 (1.07, 1.46)	23.79
Z test (Z = 2.80, P = 0.005)			
Direct sequencing			
Tamura K (2008)		1.11 (0.69, 1.76)	5.51
Aizawa Y-b (2005)		1.72 (1.12, 2.63)	5.94
Aizawa Y-c (2005)		2.27 (1.35, 3.80)	4.98
Aizawa Y-d (2005)		2.03 (1.20, 3.43)	4 90
Aizawa Y-e (2005)		1 04 (0 58 1 85)	4 43
Heterogeneity test $(I^2 - 44.5\% R - 0.125)$		1.07 (0.30, 1.03)	25 76
$\frac{1}{2} = \frac{1}{2} = \frac{1}$		1.50 (1.10, 2.11)	25.70
2 test (2 = 2.95, P = 0.005)			100.00
Heterogeneity test ($T = 71.9\%, P < 0.001$)		1.45 (1.23, 1.70)	100.00
2 test (2 = 4.49, P < 0.001)	I		
0.263	1 3.8		
Included studies	Genotyping method (WW + WM vs MM)	OR (95%CI)	Weight%
Included studies PCR-SSP	Genotyping method (WW + WM vs MM)	OR (95%CI)	Weight%
Included studies PCR-SSP Ben Aleya W-a (2011)	Genotyping method (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15)	Weight% 8.28
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011)	Genotyping method (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72)	Weight% 8.28 5.22
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005)	Genotyping method (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81)	Weight% 8.28 5.22 10.91
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005)	Genotyping method (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70)	Weight% 8.28 5.22 10.91 2.79
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Airawa X-a (2005)	Genotyping method (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03)	Weight% 8.28 5.22 10.91 2.79 5.28
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Hoterseneith: text ($I^2 = 2.80$ (, $Q = 0.285$)	Genotyping method (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.01 (1.27, 2.67)	Weight% 8.28 5.22 10.91 2.79 5.28
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Zhate ($I_2 = 2.92, 0.4, 0.001$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-c (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.77 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36, 36)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.92, 4.60)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.12
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2005) Aizawa Y-b (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.76 (1.10, 2.81) 1.77 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008) Aizawa Y-b (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.20 (0.75, 1.90)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16 1.05
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008) Aizawa Y-b (2005) Aizawa Y-d (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16 1.95
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16 1.95 1.87
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.909$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.46 (1.37, 4.43)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16 1.95 1.87 13.14
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.909$) Z test ($Z = 3.00$, $P = 0.003$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.46 (1.37, 4.43)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16 1.95 1.87 13.14
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test ($I^2 = 3.8\%$, $P = 0.385$) Z test ($Z = 3.83$, $P < 0.001$) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test ($I^2 = 84.3\%$, $P = 0.012$) Z test ($Z = 0.41$, $P = 0.681$) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.444$) Z test ($Z = 1.94$, $P = 0.053$) Direct sequencing Tamura K (2008) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.0\%$, $P = 0.909$) Z test ($Z = 3.00$, $P = 0.003$) Heterogeneity test ($I^2 = 37.8\%$, $P = 0.069$)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.77 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.46 (1.37, 4.43) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16 1.95 1.87 13.14 100.00
Included studies PCR-SSP Ben Aleya W-a (2011) Ben Aleya W-b (2011) Takagawa T-a (2005) Takagawa T-b (2005) Aizawa Y-a (2005) Heterogeneity test (I^2 = 3.8%, P = 0.385) Z test (Z = 3.83, P < 0.001) TaqMan Dema B (2009) Haas SL (2005) Heterogeneity test (I^2 = 84.3%, P = 0.012) Z test (Z = 0.41, P = 0.681) PCR-RFLP Glas J-a (2005) Glas J-b (2005) Glas J-b (2005) Heterogeneity test (I^2 = 0.0%, P = 0.444) Z test (Z = 1.94, P = 0.053) Direct sequencing Tamura K (2008) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test (I^2 = 0.0%, P = 0.909) Z test (Z = 3.00, P = 0.003) Heterogeneity test (I^2 = 37.8%, P = 0.069) Z test (Z = 3.82, P < 0.001)	Genotyping method (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.24 (0.51, 3.03) 1.91 (1.37, 2.67) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.17 (0.55, 2.53) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.36 (1.00, 1.85) 3.73 (0.38, 36.36) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.46 (1.37, 4.43) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 10.91 2.79 5.28 32.48 13.29 11.38 24.66 11.50 8.85 9.37 29.72 1.04 6.13 2.16 1.95 1.87 13.14 100.00

WJG | www.wjgnet.com

Included studies	Sample size (W allelel vs M allele)	OR (95%CI)	Weight%
Small			
Ben Aleya W-a (2011)		1.69 (1.14, 2.50)	6.37
Ben Aleya W-b (2011)		2.39 (1.57, 3.63)	6.02
Tamura K (2008)		1.11 (0.69, 1.76)	5.51
Aizawa Y-a (2005)		1.14 (0.74, 1.77)	5.85
Aizawa Y-b (2005)		1.72 (1.12, 2.63)	5.94
Aizawa Y-c (2005)		2.27 (1.35, 3.80)	4.98
Aizawa Y-d (2005)	· · · · · · · · · · · · · · · · · · ·	2.03 (1.20, 3.43)	4.90
Aizawa Y-e (2005)		1.04 (0.58, 1.85)	4.43
Heterogeneity test ($I^2 = 46.6\%$, $P = 0.070$)		1.61 (1.29, 2.01)	44.00
Z test (Z = 4.16, P < 0.001)			
Large			
Dema B (2009)		0.91 (0.77, 1.06)	9.28
Haas SL (2005)		1.61 (1.30, 1.99)	8.66
Glas J-a (2005)		1.19 (0.92, 1.55)	8.08
Glas J-b (2005)		1.42 (1.08, 1.88)	7.81
Glas J-c (2005)		1.16 (0.88, 1.52)	7.89
Takagawa T-a (2005)		1.53 (1.16, 2.01)	7.86
Takagawa T-b (2005)		1.90 (1.29, 2.80)	6.41
Heterogeneity test ($I^2 = 79.0\%, P < 0.001$)		1.33 (1.08, 1.63)	56.00
Z test ($Z = 2.71, P = 0.007$)			
Heterogeneity test ($I^2 = 71.9\%$, $P < 0.001$)		1.45 (1.23, 1.70)	100.00
<i>Z</i> test (<i>Z</i> = 4.49, <i>P</i> < 0.001)			
1			
0.263	1 3.8		
Included studies	Sample size (WW + WM vs MM)	OR (95%CI)	Weight%
Included studies Small	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI)	Weight%
Included studies Small Ben Aleya W-a (2011)	Sample size (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15)	Weight% 8.28
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011)	Sample size (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72)	Weight% 8.28 5.22
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008)	Sample size (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36)	Weight% 8.28 5.22 1.04
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03)	Weight% 8.28 5.22 1.04 5.28
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005)	Sample size (WW + WM vs MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69)	Weight% 8.28 5.22 1.04 5.28 6.13
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-d (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Aizawa Y-e (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-d (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$) Z test ($Z = 4.54$, $P < 0.001$)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-d (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$) Z test ($Z = 4.54$, $P < 0.001$) Large	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$) Z test ($Z = 4.54$, $P < 0.001$) Large Dema B (2009)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-d (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$) Z test ($Z = 4.54$, $P < 0.001$) Large Dema B (2009) Haas SL (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.744$) Z test ($Z = 4.54, P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-d (2005) Aizawa Y-d (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$) Z test ($Z = 4.54$, $P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.744$) Z test ($Z = 4.54, P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37
Included studies Small Ben Aleya W-a (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-d (2005) Aizawa Y-e (2005) Aizawa Y-e (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$) Z test ($Z = 4.54$, $P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Takagawa T-a (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.72 (1.05, 2.81)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37 10.91
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.744$) Z test ($Z = 4.54, P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Takagawa T-a (2005) Takagawa T-b (2005)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37 10.91 2.79
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.744$) Z test ($Z = 4.54, P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Takagawa T-a (2005) Takagawa T-b (2005) Heterogeneity test ($I^2 = 42.8\%, P = 0.106$)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.33 (1.02, 1.74)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37 10.91 2.79 68.08
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.744$) Z test ($Z = 4.54, P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Takagawa T-a (2005) Takagawa T-b (2005) Heterogeneity test ($I^2 = 42.8\%, P = 0.106$) Z test ($Z = 2.07, P = 0.038$)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.33 (1.02, 1.74)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37 10.91 2.79 68.08
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%$, $P = 0.744$) Z test ($Z = 4.54$, $P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Takagawa T-a (2005) Takagawa T-b (2005) Heterogeneity test ($I^2 = 42.8\%$, $P = 0.106$) Z test ($Z = 2.07$, $P = 0.038$) Heterogeneity test ($I^2 = 37.8\%$, $P = 0.069$)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.33 (1.02, 1.74) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37 10.91 2.79 68.08 100.00
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.744$) Z test ($Z = 4.54, P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-a (2005) Glas J-c (2005) Takagawa T-a (2005) Takagawa T-b (2005) Heterogeneity test ($I^2 = 42.8\%, P = 0.106$) Z test ($Z = 2.07, P = 0.038$) Heterogeneity test ($I^2 = 37.8\%, P = 0.069$) Z test ($Z = 3.82, P < 0.001$)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.33 (1.02, 1.74) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37 10.91 2.79 68.08 100.00
Included studies Small Ben Aleya W-a (2011) Ben Aleya W-b (2011) Tamura K (2008) Aizawa Y-a (2005) Aizawa Y-b (2005) Aizawa Y-c (2005) Aizawa Y-c (2005) Aizawa Y-e (2005) Heterogeneity test ($I^2 = 0.00\%, P = 0.744$) Z test ($Z = 4.54, P < 0.001$) Large Dema B (2009) Haas SL (2005) Glas J-a (2005) Glas J-b (2005) Glas J-c (2005) Takagawa T-b (2005) Heterogeneity test ($I^2 = 42.8\%, P = 0.106$) Z test ($Z = 2.07, P = 0.038$) Heterogeneity test ($I^2 = 37.8\%, P = 0.069$) Z test ($Z = 3.82, P < 0.001$)	Sample size (WW + WM <i>vs</i> MM)	OR (95%CI) 2.19 (1.16, 4.15) 3.95 (1.60, 9.72) 3.73 (0.38, 36.36) 1.24 (0.51, 3.03) 2.09 (0.93, 4.69) 4.64 (1.00, 21.61) 2.33 (0.46, 11.88) 1.98 (0.37, 10.51) 2.29 (1.60, 3.27) 0.80 (0.55, 1.18) 1.76 (1.10, 2.81) 1.20 (0.75, 1.90) 1.90 (1.04, 3.47) 1.22 (0.69, 2.16) 1.72 (1.05, 2.81) 1.24 (0.33, 4.70) 1.33 (1.02, 1.74) 1.59 (1.25, 2.02)	Weight% 8.28 5.22 1.04 5.28 6.13 2.16 1.95 1.87 31.92 13.29 11.38 11.50 8.85 9.37 10.91 2.79 68.08 100.00

Figure 3 Subgroup analyses of the relationships between interleukin-18 genetic polymorphisms and the risk of developing Crohn's disease, using the allele and dominant models.

test also failed to reveal any evidence of publication bias (all P > 0.05). Univariate analysis demonstrated that SNPs and ethnicity may be the main sources of heterogeneity (SNP: P = 0.025; Ethnicity: P = 0.011),

while multivariate regression analysis showed that publication year, SNPs, ethnicity, genotyping method and sample size were not the key factors for overall effect size (all P > 0.05).

15

Table 3 Univariate and multivariate meta-regression analyses of potential sources of heterogeneity									
Heterogeneity factors	Coefficient	SE	Ζ	P value	959	%CI			
					LL	UL			
Publication year									
Univariate	0.004	0.036	0.12	0.908	-0.066	0.075			
Multivariate	-0.052	0.038	-1.39	0.166	-0.126	0.022			
SNP type									
Univariate	-0.188	0.084	-2.25	0.025	-0.353	-0.024			
Multivariate	-0.077	0.091	-0.84	0.398	-0.256	0.102			
Ethnicity									
Univariate	0.241	0.095	2.55	0.011	0.056	0.427			
Multivariate	0.476	0.250	1.90	0.057	-0.014	0.967			
Genotyping method									
Univariate	-0.082	0.066	-1.25	0.211	-0.211	0.047			
Multivariate	0.075	0.082	0.92	0.360	-0.085	0.235			
Sample size									
Univariate	0.194	0.148	1.31	0.190	-0.096	0.485			
Multivariate	-0.216	0.244	-0.89	0.376	-0.696	0.263			

SE: Standard error; SNP: Single nucleotide polymorphism; UL: Upper limit; LL: Lower limit.

WJG | www.wjgnet.com

Figure 5 Funnel plot of publication biases of the relationships between interleukin-18 genetic polymorphisms and the risk of Crohn's disease under the allele and dominant models. W: Wild-type allele; M: Mutant allele; WW: Wild-type homozygote; WM: Heterozygote; MM: Mutant homozygote; OR: Odds ratio.

DISCUSSION

The results of the present meta-analysis demonstrated a significant association between three IL-18 genetic polymorphisms and a high risk of CD, specifically for the rs1946518 A>C, rs187238 G>C and rs360718 A>C polymorphisms, implying that these polymorphisms have causative roles in the development and progression of CD. IL-18, together with IL-1 β , contributes to the host defense against infections by augmenting antimicrobial properties of phagocytes and initiating Th1 and Th17 adaptive immune responses^[32]. Several epidemiological studies have reported previously that IL-18 is involved in the regulation of both innate and acquired immune responses, and may be involved in the pathogenesis of autoimmune and inflammatory diseases^[33-35]. It should be noted that IL-18 is capable of stimulating the expression of TNF- α and IL-1 β , enhancing the differentiation of T cells to the proinflammatory Th phenotype^[36]. CD is considered a Th1-cytokine (IL-12, IFN- γ , and TNF- α) or Th2-induced inflammatory disease^[19,37]. Although the precise function of IL-18 in the development of CD is not completely understood, it is reasonable to speculate that IL-18 genetic polymorphisms alter IL-18 expression levels, which may play a pivotal role in the disease process^[13]. Specifically, genetic variants in IL-18 that lead to reduced expression of IL-18, such as the IL-18 rs1946518 A>C, rs187238 G>C and rs360718 A>C polymorphisms, exhibit loss of transcription factor binding because the polymorphisms alter the binding sites. The resulting low IL-18 production also causes major disruptions in the immune pathways responsible for mediating T-cell regulation, thereby contributing to the pathogenesis of CD^[22].

To address the possibility of heterogeneity in our data, which may have a negative influence on the results of relevant studies, we carefully performed stratified analyses based on ethnicity, genotyping method and sample size. The results of the subgroup analysis by ethnicity suggested that *IL-18* genetic polymorphisms were closely linked to an increased risk of CD among Asians and Africans, but not among Caucasians. These results revealed that ethnic differences may cause heterogeneity between studies of *IL-18* genetic polymorphisms and their role in the pathogenesis of CD. Nevertheless, we failed to find evidence of any associations between the *IL-18* rs917997 C>T, codon 35 A>C and rs1946519 G>T polymorphisms and the risk of CD, revealing that these polymorphisms might not be important determinants for the pathogenesis of CD.

The current meta-analysis also had limitations that should be acknowledged. First, our results lacked sufficient statistical power to assess the correlations between IL-18 genetic polymorphisms and CD risk. Second, a meta-analysis is a retrospective study that may be susceptible to selection bias and thereby influence the reliability of our results. Third, our metaanalysis failed to obtain original data from the included studies, which may limit further evaluation of the potential role of IL-18 genetic polymorphisms in the pathogenesis of CD. Although our study has several limitations, this is the first meta-analysis focusing on the relationship between IL-18 genetic polymorphisms and the risk of CD. Furthermore, we performed a highly sensitive strategic literature search of electronic databases. A manual search of the reference lists from the relevant articles was also conducted to find other potential articles. The selection process for eligible articles was based on strict inclusion and exclusion criteria. Importantly, rigorous statistical analysis of SNP data provided a basis for pooling information from individual studies.

In conclusion, the current meta-analysis indicates that the *IL-18* rs1946518 A>C, rs187238 G>C and rs360718 A>C polymorphisms contribute to susceptibility to CD, especially among Asians and Africans. However, the *IL-18* rs917997 C>T, codon

35 A>C and rs1946519 G>T polymorphisms may not be important determinants of the pathogenesis of CD, and their effects on IL-18 mRNA and protein levels need to be investigated further. In this context, because of the limitations acknowledged above, more studies with larger sample sizes are needed to provide a more representative statistical analysis and combine the analysis with experimental evidence describing the polymorphisms.

COMMENTS

Background

Single nucleotide polymorphism (SNPs) in several inflammation-related genes, including interleukin-18 (IL-18), may be implicated in the development of Crohn's disease (CD).

Research frontiers

Approximately half of the overall risk is related to genetics, and more than thirty genes have been associated with CD.

Innovations and breakthroughs

This article comprehensively assessed the correlation between six common polymorphisms in the IL-18 gene and CD.

Applications

SNPs in the *IL-18* gene have the potential to act as biomarkers for the screening, diagnosis and treatment of CD.

Peer-review

This is a good research study with practical results suggesting that SNPs in IL-18 may be regarded as a potential index for CD diagnosis and treatment.

REFERENCES

- Baumgart DC, Sandborn WJ. Crohn's disease. Lancet 2012; 380: 1590-1605 [PMID: 22914295 DOI: 10.1016/ S0140-6736(12)60026-9]
- 2 Guloksuz S, Wichers M, Kenis G, Russel MG, Wauters A, Verkerk R, Arts B, van Os J. Depressive symptoms in Crohn's disease: relationship with immune activation and tryptophan availability. *PLoS One* 2013; 8: e60435 [PMID: 23544139 DOI: 10.1371/ journal.pone.0060435]
- 3 Roberts CL, Rushworth SL, Richman E, Rhodes JM. Hypothesis: Increased consumption of emulsifiers as an explanation for the rising incidence of Crohn's disease. *J Crohns Colitis* 2013; 7: 338-341 [PMID: 23360575 DOI: 10.1016/j.crohns.2013.01.004]
- 4 **Cho JH**, Brant SR. Recent insights into the genetics of inflammatory bowel disease. *Gastroenterology* 2011; **140**: 1704-1712 [PMID: 21530736 DOI: 10.1053/j.gastro.2011.02.046]
- 5 Cosnes J. Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. *Best Pract Res Clin Gastroenterol* 2004; 18: 481-496 [PMID: 15157822 DOI: 10.1016/ j.bpg.2003.12.003]
- 6 Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. *Am J Clin Nutr* 1996; 63: 741-745 [PMID: 8615358]
- 7 Loza MJ, McCall CE, Li L, Isaacs WB, Xu J, Chang BL. Assembly of inflammation-related genes for pathway-focused genetic analysis. *PLoS One* 2007; 2: e1035 [PMID: 17940599 DOI: 10.1371/journal.pone.0001035]
- 8 Marks DJ, Harbord MW, MacAllister R, Rahman FZ, Young J, Al-Lazikani B, Lees W, Novelli M, Bloom S, Segal AW. Defective acute inflammation in Crohn's disease: a clinical investigation.

Lancet 2006; **367**: 668-678 [PMID: 16503465 DOI: 10.1016/ S0140-6736(06)68265-2]

- 9 Ahmad R, Al-Mass A, Al-Ghawas D, Shareif N, Zghoul N, Melhem M, Hasan A, Al-Ghimlas F, Dermime S, Behbehani K. Interaction of osteopontin with IL-18 in obese individuals: implications for insulin resistance. *PLoS One* 2013; 8: e63944 [PMID: 23675517 DOI: 10.1371/journal.pone.0063944]
- 10 Shaheen IA, Botros SK, Morgan DS. Detection of expression of IL-18 and its binding protein in Egyptian pediatric immune thrombocytopenic purpura. *Platelets* 2014; 25: 193-196 [PMID: 23556537 DOI: 10.3109/09537104.2013.784734]
- 11 Naik SR, Wala SM. Inflammation, allergy and asthma, complex immune origin diseases: mechanisms and therapeutic agents. *Recent Pat Inflamm Allergy Drug Discov* 2013; 7: 62-95 [PMID: 23140569]
- 12 Enoksson SL, Grasset EK, Hägglöf T, Mattsson N, Kaiser Y, Gabrielsson S, McGaha TL, Scheynius A, Karlsson MC. The inflammatory cytokine IL-18 induces self-reactive innate antibody responses regulated by natural killer T cells. *Proc Natl Acad Sci* USA 2011; 108: E1399-E1407 [PMID: 22135456 DOI: 10.1073/ pnas.1107830108]
- 13 Smith DE. The biological paths of IL-1 family members IL-18 and IL-33. *J Leukoc Biol* 2011; 89: 383-392 [PMID: 20952658 DOI: 10.1189/jlb.0810470]
- 14 Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 2010; 63: 601-610 [PMID: 20455873 DOI: 10.1111/ j.1600-0897.2010.00852.x]
- 15 Veenbergen S, Smeets RL, Bennink MB, Arntz OJ, Joosten LA, van den Berg WB, van de Loo FA. The natural soluble form of IL-18 receptor beta exacerbates collagen-induced arthritis via modulation of T-cell immune responses. *Ann Rheum Dis* 2010; 69: 276-283 [PMID: 19188194 DOI: 10.1136/ard.2008.100867]
- 16 Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. *Respir Res* 2011; 12: 114 [PMID: 21867534 DOI: 10.1186/1465-9 921-12-114]
- 17 Graham DB, Xavier RJ. From genetics of inflammatory bowel disease towards mechanistic insights. *Trends Immunol* 2013; 34: 371-378 [PMID: 23639549 DOI: 10.1016/j.it.2013.04.001]
- 18 Lebel-Binay S, Berger A, Zinzindohoué F, Cugnenc P, Thiounn N, Fridman WH, Pagès F. Interleukin-18: biological properties and clinical implications. *Eur Cytokine Netw* 2000; 11: 15-26 [PMID: 10705295]
- 19 Pastorelli L, Garg RR, Hoang SB, Spina L, Mattioli B, Scarpa M, Fiocchi C, Vecchi M, Pizarro TT. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. *Proc Natl Acad Sci USA* 2010; 107: 8017-8022 [PMID: 20385815 DOI: 10.1073/pnas.0912678107]
- 20 Bai A, Lu N, Zeng H, Li Z, Zhou X, Chen J, Liu P, Peng Z, Guo Y. All-trans retinoic acid ameliorates trinitrobenzene sulfonic acid-induced colitis by shifting Th1 to Th2 profile. *J Interferon Cytokine Res* 2010; 30: 399-406 [PMID: 20187766 DOI: 10.1089/jir.2009.0028]
- 21 Ben Aleya W, Sfar I, Habibi I, Mouelhi L, Aouadi H, Makhlouf M, Ayed-Jendoubi S, Najjar T, Ben Abdallah T, Ayed K, Gorgi Y. Interleukin-18 gene polymorphisms in tunisian patients with inflammatory bowel disease. *Digestion* 2011; 83: 269-274 [PMID: 21273776 DOI: 10.1159/000319755]
- 22 **Pan HF**, Leng RX, Ye DQ. Lack of association of interleukin-18 gene promoter -607 A/C polymorphism with susceptibility to autoimmune diseases: a meta-analysis. *Lupus* 2011; **20**: 945-951 [PMID: 21636628 DOI: 10.1177/0961203311400114]
- 23 Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in metaanalyses. *Eur J Epidemiol* 2010; 25: 603-605 [PMID: 20652370 DOI: 10.1007/s10654-010-9491-z]
- 24 **Zintzaras E**, Ioannidis JP. HEGESMA: genome search metaanalysis and heterogeneity testing. *Bioinformatics* 2005; **21**:

3672-3673 [PMID: 15955784 DOI: 10.1093/bioinformatics/bti536]

- 25 Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in metaanalysis. *JAMA* 2006; 295: 676-680 [PMID: 16467236 DOI: 10.1001/jama.295.6.676]
- 26 Aizawa Y, Sutoh S, Matsuoka M, Negishi M, Torii A, Miyakawa Y, Sugisaka H, Nakamura M, Toda G. Association of interleukin-18 gene single-nucleotide polymorphisms with susceptibility to inflammatory bowel disease. *Tissue Antigens* 2005; 65: 88-92 [PMID: 15663745 DOI: 10.1111/j.1399-0039.2005.00336.x]
- 27 Dema B, Martínez A, Fernández-Arquero M, Maluenda C, Polanco I, de la Concha EG, Urcelay E, Núñez C. Association of IL18RAP and CCR3 with coeliac disease in the Spanish population. J Med Genet 2009; 46: 617-619 [PMID: 19542083 DOI: 10.1136/ jmg.2009.067041]
- 28 Glas J, Török HP, Tonenchi L, Kapser J, Schiemann U, Müller-Myhsok B, Folwaczny M, Folwaczny C. Association of polymorphisms in the interleukin-18 gene in patients with Crohn' s disease depending on the CARD15/NOD2 genotype. *Inflamm Bowel Dis* 2005; 11: 1031-1037 [PMID: 16306764]
- 29 Haas SL, Andreas Koch W, Schreiber S, Reinhard I, Koyama N, Singer MV, Böcker U. -137 (G/C) IL-18 promoter polymorphism in patients with inflammatory bowel disease. *Scand J Gastroenterol* 2005; 40: 1438-1443 [PMID: 16316892 DOI: 10.1080/003655205 10023738]
- 30 Takagawa T, Tamura K, Takeda N, Tomita T, Ohda Y, Fukunaga K, Hida N, Ohnishi K, Hori K, Kosaka T, Fukuda Y, Ikeuchi H, Yamamura T, Miwa H, Matsumoto T. Association between IL-18 gene promoter polymorphisms and inflammatory bowel disease in a Japanese population. *Inflamm Bowel Dis* 2005; 11: 1038-1043 [PMID: 16306765]
- 31 Tamura K, Fukuda Y, Sashio H, Takeda N, Bamba H, Kosaka T,

Fukui S, Sawada K, Tamura K, Satomi M, Yamada T, Yamamura T, Yamamoto Y, Furuyama J, Okamura H, Shimoyama T. IL18 polymorphism is associated with an increased risk of Crohn' s disease. *J Gastroenterol* 2002; **37** Suppl 14: 111-116 [PMID: 12572878]

- 32 van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. Inflammasome activation and IL-1β and IL-18 processing during infection. *Trends Immunol* 2011; 32: 110-116 [PMID: 21333600 DOI: 10.1016/j.it.2011.01.003]
- Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. *Nat Immunol* 2010; 11: 373-384 [PMID: 20404851 DOI: 10.1038/ni.1863]
- 34 Akira S. Innate immunity and adjuvants. *Philos Trans R Soc Lond B Biol Sci* 2011; 366: 2748-2755 [PMID: 21893536 DOI: 10.1098/ rstb.2011.0106]
- 35 Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedeker EC, Harpaz N, Pace NR, Li E. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. *Inflamm Bowel Dis* 2011; **17**: 179-184 [PMID: 20839241 DOI: 10.1002/ibd.21339]
- 36 Caras I, Tucureanu C, Lerescu L, Pitica R, Melinceanu L, Neagu S, Salageanu A. Influence of tumor cell culture supernatants on macrophage functional polarization: in vitro models of macrophage-tumor environment interaction. *Tumori* 2011; 97: 647-654 [PMID: 22158498 DOI: 10.1700/989.10726]
- 37 Kamada N, Hisamatsu T, Honda H, Kobayashi T, Chinen H, Takayama T, Kitazume MT, Okamoto S, Koganei K, Sugita A, Kanai T, Hibi T. TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn's disease. *Inflamm Bowel Dis* 2010; 16: 568-575 [PMID: 19834969 DOI: 10.1002/ibd.21124]

P- Reviewer: Day AS S- Editor: Yu J L- Editor: Stewart G E- Editor: Zhang DN

Published by Baishideng Publishing Group Inc

8226 Regency Drive, Pleasanton, CA 94588, USA Telephone: +1-925-223-8242 Fax: +1-925-223-8243 E-mail: bpgoffice@wjgnet.com Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx http://www.wjgnet.com

