
Surface-Constrained Volumetric Brain Registration Using 
Harmonic Mappings

Anand A. Joshi, David W. Shattuck, Paul M. Thompson, and Richard M. Leahy

Abstract

In order to compare anatomical and functional brain imaging data across subjects, the images must 

first be registered to a common coordinate system in which anatomical features are aligned. 

Intensity-based volume registration methods can align subcortical structures well, but the 

variability in sulcal folding patterns typically results in misalignment of the cortical surface. 

Conversely, surface-based registration using sulcal features can produce excellent cortical 

alignment but the mapping between brains is restricted to the cortical surface. Here we describe a 

method for volumetric registration that also produces an accurate one-to-one point correspondence 

between cortical surfaces. This is achieved by first parameterizing and aligning the cortical 

surfaces using sulcal landmarks. We then use a constrained harmonic mapping to extend this 

surface correspondence to the entire cortical volume. Finally, this mapping is refined using an 

intensity-based warp. We demonstrate the utility of the method by applying it to T1-weighted 

magnetic resonance images (MRI). We evaluate the performance of our proposed method relative 

to existing methods that use only intensity information; for this comparison we compute the inter-

subject alignment of expert-labeled sub-cortical structures after registration.

Index Terms

Image Registration; deformable registration; brain mapping; harmonic mapping

I. Introduction

Morphometric studies of anatomical changes over time or of differences between 

populations require that the data first be transformed to a common coordinate system in 

which anatomical structures are aligned. Similarly, inter-subject longitudinal studies or 

group analyses of functional data also require that the images first be anatomically aligned. 

Alignment is commonly performed either with respect to the entire volumetric space [1] or 

is restricted to the cortical surface [2]. Here we describe an approach to brain image 

registration based on harmonic maps that combines these two approaches producing a 

volumetric alignment in which there is also a one-to-one correspondence between points on 

the two cortical surfaces.

Talairach normalization based on a piecewise affine transformation [3] was the first 

commonly used volumetric alignment technique. Because it uses a restricted set of 

anatomical landmarks and is piecewise affine, it results in relatively poor alignment and has 

been largely replaced by automated intensity-based alignment methods that also allow non-

rigid deformations [4], [5]. There are a vast array of such methods, differing in how they 
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measure the fit between the two images (e.g., squared error, correlation, mutual 

information), the parameterization of the transformation (e.g., polynomial, splines, discrete 

cosine transform or other eigenfunction bases), and the procedure used to regularize the 

transformation (e.g., elastic, biharmonic, or viscous fluid models) [6]. Polynomial warps and 

linear elastic deformations implicitly assume that deformations are small and do not 

guarantee preservation of topology for larger deformations [7]. The viscous fluid approach 

[8] and more recent approaches using large-deformation diffeomorphic metric mapping [9], 

[10] were developed to address the problem of ensuring diffeomorphic maps and are better 

able to register objects whose alignment requires large deformations while conserving their 

topology.

Since these intensity-based methods do not explicitly model the cortical surface, alignment 

can be rather poor. An illustration of this is shown in Fig. 1, where we have used the 

Automated Image Registration (AIR) software [5], [11] to align two brain volumes using a 

5th order polynomial (168 parameters). While the regions of cortical grey matter exhibit 

reasonably good correspondence between the two images, the cortical surfaces themselves 

do not align well. Since cytoarchitectural and functional parcellation of the cortex is 

intimately related to the folding of the cortex, it is important when comparing cortical 

anatomy and function in two or more subjects that the surfaces are aligned. For this reason, 

there has been an increasing interest in analyzing the cerebral cortex based on alignment of 

surfaces rather than volumes.

Various surface-based techniques have been developed for inter-subject registration of two 

cortical models. One class of techniques involves flattening the two cortical surfaces to a 

plane [12] or to a sphere [13] using mechanical models or variational methods and then 

analyzing the data in the common flattened space [14]. Other surface based techniques work 

in the surface geometry itself rather than a plane or a sphere and choose to account for the 

surface metric in the inter-subject registration [15], [16]. The advantage of such techniques 

is that they produce registration results that are independent of the intermediate flat space 

(or, equivalently, the specific parameterization of the cortex) resulting in a more consistently 

accurate registration throughout the cortex. These approaches involve manually delineated 

sulcal landmark matching [16] in the intrinsic surface geometry. While some progress has 

been made recently towards automating the matching process using mutual information [17] 

or optical flows of mean-curvature images in the surface parameter space [18], [19], fully 

automatic alignment of high resolution cortical surfaces remains a challenging problem.

While the volume registration methods described above do not provide suitable cortical 

alignment, the cortical registration methods do not define any volumetric correspondence. 

One approach to this problem is to combine landmark points, curves and surfaces as 

additional constraints in an intensity-based warping method [20], [2], [21], [22], [23], [24], 

[25]. For example, landmarks, curves [25] and image matching [24] can be applied in a 

hierarchical manner in a large deformations framework ensuring generation of 

diffeomorphisms [26], [27]. Registration methods such as the Hierarchical Attribute 

Matching Mechanism for Image Registration (HAMMER) algorithm [28] incorporate 

surface as well as volume information for the alignment using geometric attributes of the 

images. Alignment of brain images often involves relatively large displacements which need 
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to be obtained incrementally using large deformation or fluid models [29], [30] and hence 

are computationally expensive. Accurate alignment of the cortical surface as part of a 

volumetric registration procedure remains a challenging task mainly due to the complex 

folding pattern variability of the cortex.

In this paper, we (i) propose a novel landmark based surface matching technique based on 

elastic energy minimization in the intrinsic geometry of the cortex, (ii) propose a new 

method based on harmonic mappings for extending the surface matching to the entire 

cortical volume, and (iii) present a modified intensity alignment based on [31] to compute 

the final map. The resulting method, comprising the three steps outlined above, gives an 

inverse consistent map which is capable of aligning both subcortical and sulcal features.

II. Problem Statement and Formulation

Here we address the following problem: produce a one-to-one mapping between two brain 

volumes such that subcortical structures and sulcal landmarks are aligned and that there is 

also a one-to-one correspondence between the cortical surfaces of the two volumes. 

Equivalently, given 3D manifolds M and N representing the two brain volumes, with 

boundaries ∂M and ∂N representing their respective cortical surfaces, we want to find a map 

from M to N such that ∂M, the surface of M, maps to ∂N, the surface of N, and the intensities 

of the images in the interior of M and N are matched. In addition the map must satisfy a 

sulcal matching constraint so that labelled sulci on the surface ∂M map onto homologous 

sulci on ∂N. The boundaries, ∂M and ∂N, are assumed to have a spherical topology.

We solve the mapping problem in three steps:

1. Surface matching, which computes a map between ∂M and ∂N, the cortical surfaces 

of the two brains. The mapping is based on minimization of an elastic strain energy 

subject to the constraint that a set of interactively labelled sulci are aligned, as 

described in Section III.

2. Extrapolation of the surface map to the entire cortical volume such that the cortical 

surfaces remain aligned. This is done by computing a harmonic map between M 

and N subject to a surface matching constraint. As we describe in Section IV, an 

intermediate spherical representation is used to facilitate enforcement of this 

constraint. We note also that while the sulci are constrained to remain in 

correspondence, the cortical surfaces can flow with respect to each other when 

computing the volume harmonic map provided we retain the one-to-one mapping 

between ∂M and ∂N.

3. Refinement of the harmonic map on the interiors of M and N to improve intensity 

alignment of subcortical structures. For this step we use an inverse consistent linear 

elastic registration method as described in Section V.

The mapping in Step 2 requires large scale deformation to ensure that ∂M and ∂N are 

aligned. Linear elastic or thin-plate spline registration based on landmarks cannot be used 

for this purpose [32]. Harmonic maps on the other hand are suitable since they are bijective 

provided that the boundary (the cortical surface in this case) is mapped bijectively. 

Joshi et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conversely, the final step requires a more local refinement of the mapping to align 

subcortical structures so that use of linear elastic methods is appropriate.

III. Surface Registration

We describe a method that sets up one-to-one correspondence between the surface ∂M of 

brain M and the surface ∂N of the brain N, using labeled sulcal curves as constraints. Our 

earlier methods for surface registration were computed in two stages: (i) for each subject, 

parameterize the surface of each cortical hemisphere to either a unit square or disk, and (ii) 

find a vector field with respect to this parameterization that aligns sulcal landmarks between 

subjects. Registration can use linear elastic [33] or thin-plate bending energy [16] for 

regularizing the displacement field and covariant derivatives to make the alignment 

independent of parameterization. However, in order to solve the resulting variational 

minimization problem, numerical derivatives must be computed by resampling the brain on 

a uniform grid with respect to the parameterization. In addition to the computational cost of 

resampling and interpolation, this step results in a loss of resolution since the regular or 

semi-regular grid in flat space is not necessarily optimal for representing the brain in 3D 

space. In our new surface registration approach, we incorporate sulcal landmark alignment 

directly in our parameterization method and thus avoid the resampling and 

reparameterization step completely. This approach also has the advantage that the 

computation cost is relatively small and that the resulting alignment is inverse consistent 

[30] as will become clear from the symmetry of the cost function defined below.

In order to generate such a parameterization with prealigned landmarks, we model the 

cortical surface as an elastic sheet and solve the associated linear elastic equilibrium 

equation using the Finite Element Method (FEM). We choose the more general elastic 

model over a surface based harmonic mapping method [34], [35], [36] because we found 

that the surface based harmonic mappings do not remain bijective when multiple sulcal 

landmark constraints are imposed on the interior of the flat parameter space. However, for 

the elastic model, we have found improved bijective behavior with appropriate choices of 

model parameters λ and μ. The reason for this situation, intuitively, is that relative to the 

power of the Laplacian alone, the Cauchy-Navier elasticity operator provides additional 

control over the gradient of the divergence of the surface vector field, and this indirectly 

controls the Jacobian of the mapping, constraining it from taking on extreme values and 

thereby violating the smoothness assumption. If the smoothness were a problem, the flow 

could be discretized in time and integrated to prevent singularities, as described by 

Christensen et al. [8].

A. Mathematical Formulation

We map the surfaces of each cortical hemisphere of a pair of brains M and N to the unit 

square such that in the flat map the manually delineated sulcal landmarks align in the square 

parameter space. The resulting parameterization then defines a correspondence between the 

two cortices. We describe the process for identifying the surfaces and delineating the sulci in 

Section IIIC. For now it is sufficient to assume two surfaces with spherical topology on 

which are traced two homologous sets of continuous, non-intersecting sulcal curves. The 

corpus callosum maps to the boundary of the square with the boundary condition assuring 
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continuity between the two hemispheres of each brain when subsequently mapping these flat 

maps to the surface of a sphere.

Let ϕ = [ϕ1, ϕ2]T be the two coordinates assigned to every point on a given cortical surface 

such that the coordinates ϕ satisfy the linear elastic equilibrium equation with Dirichlet 

boundary conditions on the boundary of each cortical hemisphere, represented by the corpus 

callosum. We constrain the corpus callosum to lie on the boundary of the unit square 

mapped as a uniform speed curve.

We solve the linear elastic equilibrium equation in the geometry of the cortical surface using 

the form:

(1)

where μ and λ are Lamé's constants which model the elastic material response to linear 

strain and shear respectively [37]. The operators Δ and ∇ represent the Laplace-Beltrami 

and covariant gradient operators, respectively, with respect to the surface geometry. The 

solution of this equation can be obtained variationally by minimizing the integral on the 

cortical surface [38]:

(2)

where Dϕ is the covariant derivative of the coordinate vector field ϕ. The integral E(ϕ) is the 

total strain energy. Though the elastic equilibrium equation models only small deformations, 

we have found that in routine practice, our method is able to produce a flat map of the cortex 

by using the parameters μ = 100 and λ = 1. Intuitively, they control the ‘stretching’ and 

‘bending’ properties of the desired map.

Let ϕM and ϕN denote the 2D coordinates to be assigned to corresponding hemispheres of M 

and N respectively. Then we define the cost function C(ϕM, ϕN) as

(3)

where ϕM(xk) and ϕN(yk) denote the coordinates assigned to the set of K sulcal landmarks xk 

∈ M, yk ∈ N and ρ is a penalty parameter. Here sulcal matching is represented by a set of 

point constraints obtained by sampling each curve at a fixed number of points taken along its 

length. Note that we do not constrain the locations of the sulci in the flat map but simply 

constrain homologous landmarks in the two maps to lie at the same coordinates. The method 

is easily modified for subject to template matching by fixing the parameters of the sulcal 

constraints in the template.
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B. Finite Element Formulation

To minimize (3) on a tessellated surface we use an FEM to discretize the strain energy E(ϕ). 

Since the strain energy at a point is independent of coordinate system, it is justifiable to 

compute it locally at each vertex point by assigning a local coordinate system (x, y) to its 

neighborhood.

For each triangle the covariant derivative Dϕ in the local coordinates x, y becomes the 

Jacobian matrix:

(4)

We compute the strain energy Ei(ϕ) for the ith triangle Δi using (2) as:

(5)

We now describe the FEM discretization of the partial derivatives with respect to the local 

coordinates. Let α be any piecewise linear real-valued scalar function defined over the 

surface, and let x, y denote local coordinates for triangle i. Also denote the local coordinates 

of the three vertices as (x1, y1), (x2, y2) and (x3, y3) respectively. Since α is linear on the ith 

triangle, we can write,

(6)

Writing this expression at three vertices of the triangle i in matrix form,

(7)

The coefficients ,  and  can be obtained by inverting the matrix Ei. From (6) and by 

inverting the matrix in (7), we obtain

(8)

(9)
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Denote the discretization of  and  at triangle i by  and  respectively. Also note 

that |Ei| = 2Ai where Ai is area of the ith triangle. Then we have:

(10)

(11)

Substituting these in (5) and (3), we have

(12)

(13)

where M is given by

(14)

This method is used to discretize both E(ϕM) and E(ϕN). The resulting cost function (3) is 

then minimized using a conjugate gradient method as described in the next section. We note 

from (13) and (3) that the cost function is quadratic. We minimize (3) with respect to both 

ϕM and ϕN, with the corpus callosum fixed at the boundary of the unit square, to compute 

the sulcally coregistered flat maps for both brains simultaneously.

C. Implementation

We assume as input two T1-weighted MR volumes Cortical surfaces were extracted from 

volume images using the BrainSuite software [39]. BrainSuite includes a six stage cortical 

modeling sequence First the brain is extracted from the surrounding skull and scalp tissues 

using a combination of edge detection and mathematical morphology Next the intensities of 

the MRI are corrected for shading artifacts Each voxel in the corrected image is labeled 

according to tissue type using a statistical classifier A standard atlas with associated 

structure labels is aligned to the subject volume, providing a label for cerebellum cerebrum 

brainstem and subcortical regions These labels are combined with the tissue classification to 

automatically identify the cerebral white matter to fill the ventricular spaces and to remove 

the brainstem and cerebellum This produces a volume whose boundary surface represents 

the outer white-matter surface of the cerebral cortex It is likely that the tessellation of this 
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volume will produce surfaces with topological handles Prior to tessellation these handles are 

identified and removed from the binary volume automatically using a graph based approach 

[40]. A tessellated isosurface of the resulting mask is then extracted to produce a genus zero 

surface based on the registered atlas labels that is subsequently split into two cortical 

hemispheres.

We then use BrainSuite to interactively label 23 major sulci on each cortical hemisphere 

according to a sulcal labeling protocol with established intra- and inter-rater reliability [41]. 

This protocol specifies that sulci do not intersect and that individual sulci are continuous 

curves that are not interrupted If interruptions are present the human raters specify the path 

across any interrupting gyri In cases where a full set of sulci cannot be defined a subset can 

be used without requiring any changes in the algorithm described here.

We note that the procedure implemented in BrainSuite to find the cortical surface uses the 

inner grey/white boundary of cortex as the surface Consequently the images shown here do 

not include cortical grey matter but are restricted to white matter ventricles and subcortical 

grey matter However, the method can be used with any of the approaches for cortical 

segmentation that produce a genus-zero representation of the cortical surface, e.g, [42], [13]. 

Automated extraction of a topologically spherical surface from MRI using BrainSuite takes 

4-5 min. and interactive sulcal labeling takes approximately 1-2 hours per brain.

As described above, E(ϕM) and E(ϕN) are discretized using (14) and (13). The resulting 

quadratic cost function (3) is minimized using a preconditioned conjugate gradient method 

with Jacobi preconditioner. In practice the minimization algorithm converges in 

approximately 500 iterations, requiring 2-3 mins on a desktop computer for tessellations 

with on the order of 105 vertices.

We show an example of this flattening and alignment procedure in Fig. 2. Shown in (a) and 

(b) are the sulci traced on the white matter surface for two brains. In (c) and (d) we show the 

flat maps of one hemisphere in each brain computed with the penalty parameter ρ = 0 in (3), 

which corresponds to the case where the two hemispheres are flattened independently. 

Similarly, (e) and (f) show the flat maps for the case ρ = 3, which forces approximate 

alignment of the sulci in the flat maps. Note that we only enforce the matching 

approximately via the penalty term in (3). Maps with and without sulcal alignment appear 

quite similar, so we show in (g) the two sets of curves in the flat space when they are not 

constrained to align (ρ = 0), and in (h) when they are constrained (ρ = 3). These figures 

illustrate the procedure and demonstrate alignment of the curves in the flat space. In Fig. 3 

we show the results of applying the mapping procedure separately from five subjects to a 

single template brain. Each pair of flattenings produces a different parameterization of each 

subject and of the template. In each case, there is a one-to-one map between the surfaces so 

that the sulcal curves of each subject can be mapped back onto the template surface. Shown 

in the figure are the set of sulcal curves mapped onto the template for cases where the 

alignment constraint is (ρ = 0) and is not (ρ = 3) applied.
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IV. Harmonic mapping

The surface registration procedure described in Section III sets up a point to point 

correspondence between the two cortical surfaces, which represent the boundary of the two 

cerebral volumes. Extrapolating this correspondence from the boundary surface to the entire 

cerebral volume in a one-to-one manner is challenging due to the convoluted nature of the 

cortex. In fact, most of the linear models such as linear elastic or thin-plate splines become 

non-bijective under relatively mild landmark matching constraints [32]. 3D harmonic maps 

are attractive for this purpose due to their tendency to be bijective if the boundary (cortical 

surface) is mapped bijectively, which is the case here. In this section we describe a 

framework for computing a harmonic mapping between two 3D volumes as well as the 

computational approach used for implementation. Details of harmonic maps and their 

properties can be found in [43].

Let u : M → N be a C∞ map from a 3 dimensional Riemannian manifold (M, g) to a 3 

dimensional Riemannian manifold (N, h) where g and h are Riemannian metrics for M and N 

respectively. A Riemannian metric defines an inner product at every point in the manifold 

and thus helps in defining the notion of distance on the manifold [43]. Let {gij; i, j ∈ {1, 2, 

3}} denote components of the Riemannian metric tensor g and {hαβ; α, β ∈ {1, 2, 3}} 

denote the components of the Riemannian metric tensor h. The inverse of the metric g = 

{gij} is denoted by {gij}. Let (x1, x2, x3) and (u1, u2, u3) be local coordinates for x and u(x) 

respectively. Let Du denote the derivative (generalized Jacobian) of the map. The energy 

density function e(u) of map u is defined to be the norm of Du [44] and is given by

(15)

(16)

which can be thought of as the rate of expansion of the map u in orthogonal directions, at 

point x ∈ M [44],. The mapping energy is defined as

(17)

The mapping energy in coordinate form [44], is given by

(18)

where the integration is over the manifold M with respect to the intrinsic measure dμg 

induced by its Riemannian metric g.
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A harmonic map from (M, g) to (N, h) is defined to be a critical point of the mapping energy 

E(u). In this sense harmonic maps are the least expanding maps in C∞(M, N), the space of 

all smooth maps from M to N. Therefore, among all possible smooth maps between two 

manifolds, the harmonic maps have the tendency to avoid overlaps and folds in the map, 

resulting in a bijective map.

A number of existence, uniqueness, and regularity results have been proven for harmonic 

maps [45]. Eells and Sampson [46] proved the existence of a harmonic map from any 

compact Riemannian manifold to a compact Riemannian manifold of non-positive sectional 

curvature. Hamilton [47] generalized this result to manifolds with boundaries. In medical 

imaging, harmonic mappings and p-harmonic mappings, their generalized counterparts [48], 

have been used for various applications such as surface parameterization and registration 

[34], [49], [35] and image smoothing [36]. Wang et al. [50] describe a method for 

volumetric mapping of the brain to the unit ball B(0, 1). Here we use harmonic maps to align 

two brain volumes so that both the brain volumes and cortical surfaces are aligned.

When computing the harmonic maps we could fix the correspondence between the two 

surfaces using the method from Section III and map only the interior of the two volumes. 

This would result in a suboptimal mapping with respect to the 3D mapping energy. To 

overcome this limitation, we instead allow the surface M to flow within the surface of N 

when computing the map. The only constraints placed on the surfaces are that the maps are 

aligned at the set of user defined sulcal landmarks and that the boundary ∂M maps onto ∂N. 

This less restrictive surface mapping constraint cannot be formulated directly in the ambient 

Euclidean 3D space since there is no analytical expression for the surfaces. It could be 

accomplished without parameterizing the surface using a level set approach [36], [51]. Here 

we use an intermediate representation for the manifolds which allows us to enforce the 

boundary matching constraint while allowing one boundary to flow within the other. We 

achieve this by first mapping to the unit ball as described below. This mapping to the unit 

ball results in a non-Euclidean representation of N thus requiring the use of the Riemannian 

metric in computing the harmonic map.

A. Mathematical Formulation

We find the map v of the 3D brain manifold N to the 3D unit ball B(0, 1) [50] using the 

method described in Sec. IV-C. Let v = (v1, v2, v3) denote the three coordinates of the map v. 

This map is bijective and therefore we can treat the unit ball B(0, 1) as an alternative 

representation (N, h) of the manifold N, with associated metric h, that has the advantage over 

the Euclidean space (N, I) that the cortical surface lies on the surface of the sphere (here I 

represents the identity metric for the Euclidean space); h is the metric induced by the map v. 

With this alternative representation of N, the components of its metric hαβ at point x = (x1, 

x2, x3) are given by

(19)
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Now instead of needing to directly compute the harmonic map u : (M, I) → (N, I), we 

instead find the harmonic map ũ : (M, I) → (N, h) ≈ B(0, 1) subject to the constraint that the 

cortical surface ∂M maps to the spherical boundary of the unit ball, as illustrated in Fig. 4.

Since M remains in the Euclidean space, its metric is I, so gij(x) is the identity operator and 

the harmonic mapping problem (18) becomes:

(20)

subject to ‖ũ(x)‖2 = 1 for x ∈ ∂M, the surface of M. Note that this constraint allows the 

surface map to flow within the spherical boundary. We also want to constrain the maps so 

that predefined sulcal landmarks are aligned. To achieve this we impose the additional 

constraints that ũ(c) = uc for c ∈ Mc where Mc are the set of sulcal landmark points in M and 

uc are the locations of the homologous landmarks in (N, h). Having obtained ũ by 

minimizing the integral in (20), the final harmonic mapping from u : (M, I) → (N, I) can 

then be computed as u = v−1 ○ ũ as illustrated in Fig. 4.

B. Initialization Procedure

Because the minimization problem (20) is nonquadratic, it is important to have a good initial 

estimate of the map ũ in order to achieve convergence in reasonable time. We therefore 

generate an initial estimate ũ0 of ũ by computing a map of the second manifold (M, I) to the 

unit ball, just as we do for the first manifold (N, I) (Fig. 4). Thus our initialization generates 

a bijective initial map, which is not necessarily harmonic. The procedure is illustrated in Fig. 

5.

The initialization consists of the following steps. We first compute flat maps to the unit 

square for each hemisphere of the two brains with aligned sulci as described in Section III. 

A stereographic projection then maps the two hemispheres of each brain to the unit sphere 

so that the corpus callosum that forms the boundary of the unit squares maps to the equator. 

Using these surface maps as constraints, we then map N and M to the unit ball to provide, 

respectively, the unit ball manifold (N, h) and an initial estimate ũ0 of the desired map ũ 
from (M, I) to (N, h). The initial map obtained in this manner is smooth and bijective. With 

this initialization, the 3D harmonic map is computed by minimizing (20) to obtain the final 

harmonic mapping from M to N.

C. Mapping to the Unit Ball B(0, 1)

In the special case when (M, g) and (N, h) are 3D Euclidean manifolds, then , 

, the Kronecker delta, or identity tensor, for α, β, i, j ∈ 1, 2, 3, and the mapping 

energy simplifies to

(21)
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where ∇ is the usual gradient operator in 3D Euclidean space and dV is the volume integral 

[50]. In order to map the given cortical brain volume M to the unit ball, this energy is 

minimized subject to the constraint that the surface of M maps to the surface of the unit ball 

using the point-to-point correspondence defined by the flat mapping obtained as described in 

Section III. This is computed by numerical integration over the voxel lattice using finite 

differences to approximate the gradients in (21). The resulting function is minimized using a 

preconditioned conjugate gradient method. The process of mapping to the unit ball is 

illustrated in Fig. 6 where we show iso-surfaces in brain coordinates corresponding to 

different radii, r, within the unit ball. At r = 1 we are at the outer surface of the brain and see 

the full cortical surface. As r is reduced we see successively less distortion since the 

harmonic map is driven entirely by the surface constraint.

D. Harmonic Mapping Between the Two Brains

The mapping to the unit ball is applied to both brain volumes M and N. The mapping of the 

Euclidean coordinates in M to the unit ball provides the initial estimate ũ0 of the harmonic 

map ũ. We then refine this map by minimizing the harmonic energy in (20) from (M, I) to 

(N, h), the unit ball representation of N. Again, the problem is solved using numerical 

integration and finite difference operators, in this case accounting for the metric h according 

to (20) when computing these derivatives. In this mapping, the locations of the sulci in M 

are constrained using their initial mappings ũ0 computed when flattening and matching the 

cortical surfaces. Other points on the surface are allowed to move freely to minimize the 

harmonic energy, subject to the constraint that all points on the surface map to ‖ũ‖2 = 1, 

which is achieved by adding a penalty function ϱ(‖ ũ‖2 = 1)2 to the discretized form of (20). 

The penalty parameter ϱ is set to 1000 for the purpose of numerical implementation.

E. Implementation

We first describe a numerical method for computation of the metric hij (x) and then outline 

the harmonic mapping method.

1) Computation of Metric—The metric hij (x), x ∈ N is associated with the unit ball 

coordinates B(0, 1) given to N by the map v = (v1, v2, v3) (Fig. 4). It is given by 

 with α, β ∈ {1, 2, 3} at x = (x1, x2, x3). Note that although x ∈ N is 

in the regular grid, v(x) ∈ B(0, 1) is not necessarily so, and hence computation of partial 

derivatives with respect to v directly is difficult. In order to compute , first compute 

using finite differences and then use the chain rule identity

(22)

to solve for . The metric hij is computed by substituting these partial derivatives in the 

above equation.
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2) Harmonic Mapping—The harmonic mapping procedure can now be summarized as 

follows:

1. Align the surfaces of both the brains M and N using the procedure described in Sec. 

III.

2. Map the unit squares to unit disks by the transformation 

 and then project them onto two hemispheres using 

.

3. Using this mapping of the cortical surface to the unit sphere as the boundary 

condition, generate volumetric harmonic maps of M and N to the unit ball B(0, 1) as 

described in Sec. IV-C.

4. Compute the metric h associated with the unit ball B(0, 1) coordinates of N as 

described above.

5. Minimize (20) holding the matched sulci fixed, and letting the cortical surface ∂M 

slide along boundary of the unit ball. This is done by minimizing (20) with the 

constraint that ‖ũ(x)‖2 = 1 for x ∈ ∂M and ũ(c) = ũ0(c) for c ∈ Mc where Mc ⊂ M 

denotes the set of sulcal points on M. The partial derivatives in (20) are discretized 

by finite differences and the minimization is done by gradient descent.

6. Compute the displacement vector field u(x) – x where u = v−1 ○ ũ and apply this to 

map brain volume M to N. Trilinear interpolation is used for this deformation.

V. Volumetric Intensity Registration

The surface constrained harmonic mapping procedure described above produces a bijective 

mapping between the two brain volumes. However, it uses only surface shape and sulcal 

labels and does not use the MRI intensity values to compute the map. The result is a large 

scale deformation that aligns surface features but will benefit from an intensity-based 

refinement aimed at aligning subcortical features. In order to do this refinement and also 

make the final map inverse consistent, we use linear elastic inverse consistent registration 

based on Christensen's approach [31] with the modifications described below to ensure that 

the entire mapping process, rather than just this last step, is inverse consistent. Alternatively, 

inverse consistency can be achieved by symmetric intensity based registration method 

suggested by Tagare et al. [52]

A. Formulation

The surface constrained volumetric harmonic mapping procedure described above can be 

used to generate two maps uM : M → N and uN : N → M, each harmonic, but not necessarily 

inverses of each other. The corresponding displacement fields for these maps can be 

expressed as  and . Note that both of 

these displacement fields accurately align the two surfaces and corresponding sulci, and are 

one-to-one. These deformations are used to initialize the volumetric inverse consistent 

intensity registration procedure that we now describe.
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Let fM(x), x ∈ M denote intensity at point x ∈ M and fN(x), x ∈ N denote intensity at point x 

∈ N. The situation can be summarized as follows and is illustrated in Fig. 7: We have 

harmonic maps uM : M → N uN : N → M that change the shapes of domains M and N to 

match their respective targets N and M. In order to align the intensities, we seek refinement 

maps wM : M → M and wN : N → N such that the mapped intensity value fM ○ wM ○ uN 

matches fN (or equivalently fM ○ wM matches fN ○ uN)−1), and fN ○ wN ○ uM matches fM 

(or fN ○ wN matches fM ○ (uM)−1). For inverse consistency, we need wN ≈ (uM ○ wM ○ 

uN)−1 and wM ≈ (uN ○ wN ○ uM)−1. Let ,  denote the displacement fields 

corresponding to wM, wN and let ,  denote the displacement fields for (uN ○ wN ○ 

uM)−1, (uM ○ wM ○ uN)−1.

The inverse consistency similarity cost function C( , ), can now be defined as the sum 

of three terms:

(23)

where the boundary constraints ensure that the cortices remain aligned after registration and 

the three constituent terms are defined as follows:

(24)

The first term is the regularizer where  and 

 denote the Cauchy Navier elasticity operators in M and N 

respectively. The parameter values of α = 10, β = 2 and γ = 0.1 are used for the purpose of 

numerical implementation. The second term measures the intensity match between the 

transformations in both directions and the third term is a measure of deviation from the 

inverse consistent condition. The similarity cost CSIM is linearized by using Tayor series so 

that the approximation is quadratic. Note that the inverse consistency cost CICC and 

regularizing cost CREG are quadratic. The resulting quadratic cost function C can be 
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efficiently minimized by the conjugate gradient method. We use a preconditioned conjugate 

gradient method with Jacobi preconditioner for this purpose.

B. Implementation

1. First, the harmonic maps uM : M → N and uN : N → M are computed using the 

procedure described in Section IV-D.

2. The inverses of the map  is computed. This is done by interpolating 

the correspondence  from points to the regular voxel grid of N 

using Matlab's griddata3 function with linear interpolation. This function 

implements the method based on Delauney triangulation as described in [53] 

although it can also be computed using the method described in [31]. 

is computed similarly.

3. Set  and .

4. Compute the maps , y ∈ N, w̃M = (uN ○ wN ○ uM)−1 and 

.

5. Compute the difference term fN(x) – fM(uN−1(x)).

6. Compute an updated estimate of the displacement field  from (23) using a 

preconditioned conjugate gradient method.

7. Repeat steps 4-6 with M and N interchanged.

8. Test inverse consistency error CICC for convergence, otherwise go to Step 4.

This final refinement completes the surface-constrained registration procedure. While there 

are several steps required to complete the registration, each step can be reduced to either a 

surface or a volume mapping cast as an energy minimization problem, with constraints, and 

can be effectively computed using a preconditioned conjugate gradient method. The 

different effects of the harmonic mapping, producing large scale deformations, and the 

linear elastic intensity-driven refinement, producing small scale deformations, are illustrated 

in Fig. 8

VI. Results and Validation

In order to illustrate the application of our surface constrained registration procedure to T1-

weighted MR brain images and validate its performance, we obtained labeled brain data 

from the Internet Brain Segmentation Repository (IBSR) dataset at the Center for 

Morphometric Analysis at Massachusetts General Hospital. This consists of T1-weighted 

MR images with 1.5mm slice thickness as well as expert segmentations of 43 individual 

structures. The cortical masks were obtained and their topology corrected using the 

BrainSuite software as described in Sec. III-C. The cortical surfaces were then interactively 

labelled with 23 sulcal curves on each hemisphere using a standard labeling protocol [41]. 

Our registration algorithm was applied by performing surface matching, harmonic mapping 

and volumetric intensity registration as described above. Shown in Fig. 9 are three 
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orthogonal views of a subject before and after alignment to the template image. Note that 

before alignment the surfaces of the subject and template are clearly different, while after 

the harmonic mapping the deformed subject surface almost exactly matches the morphology 

of that of the template. However, since at this point we do not take the image intensities into 

account, the interior structures do not align well. Following the final intensity-based 

alignment procedure the subcortical structures of the warped subject show improved 

agreement with those in the the template. Also shown in Fig. 9b are the labels provided by 

the IBSR data set before and after mapping.

Our method for evaluating the quality of our registration results is based on the following 

two desirable features:

1. Alignment of the cortical surface and sulcal landmarks. We expect the sulcal 

landmarks to be accurately aligned after registration and for the two surfaces to 

coincide.

2. Alignment of subcortical structures. We also expect the boundaries of subcortical 

structures (e.g., thalamus, lateral ventricles, corpus callosum) to be well aligned 

after registration.

To evaluate performance with respect to 1, we used a set of 6 MR volumes on which we 

labeled 23 sulci in each hemisphere. For comparison we use a 5th order polynomial 

intensity-driven warp computed using the AIR software [5], [11]. We also compare 

performance with the HAMMER [28], [54] algorithm. HAMMER is an automated method 

for volume registration which is able to achieve improved alignment of geometric features 

by basing the alignment on an attribute vector that includes a set of geometric moment 

invariants rather than simply the voxel intensities. We note that since our approach uses 

explicitly labelled sulci we can expect better performance than either AIR or HAMMER in 

terms of the alignment of these features. However, AIR and HAMMER provide a basis for 

comparison since they are among the most widely used and best performing algorithms for 

volumetric registration.

We measured the mean squared distance between pairs of homologous landmarks 

corresponding to uniform samples along each of the 23 labeled sulci. We repeated this 

procedure for each of the 30 possible pairwise registrations of two from six brains and 

computed the average mean squared distance over all registrations. We found that the mean 

squared misalignment between sulcal landmarks was 11.5mm for HAMMER, 11mm for AIR 

and 2.4mm for our cortically constrained method. Results for individual sulci are included in 

Fig. 10. The significantly lower error for our approach is unsurprising since matching of 

sulci is imposed as a constraint. The reason that the error is not zero is that the constraint is 

imposed using a penalty function rather than strictly using Lagrange multipliers.

To evaluate performance in terms of subcortical structures we used the manually labeled 

regions in the IBSR data set. To evaluate accuracy, we computed the Dice coefficients 

between the template and warped subject for each subcortical structure, where the structure 

names and boundaries were taken from the IBSR database. The Dice coefficient measures 
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overlap between two sets representing regions S1 and S2, and is defined as  where 

| · | denotes size of the set [55]. Values range from zero for disjoint sets to unity for identical 

sets. A comparison of the Dice coefficients for some major subcortical organs is shown in 

Table I, where we show Dice coefficients for our method before and after application of the 

intensity-based alignment step. This comparison shows similar results for all three methods, 

with each producing superior results in some subcortical structures. For example, 

HAMMER produced superior results in thalamus, while our proposed method produced 

superior results in hippocampus. Thus the geometric invariants in HAMMER seem to 

improve performance relative to our intensity based alignment of deeper subcortical 

structures, while our use of a cortical constraint leads to superior performance with respect 

to sulcal alignment and structures that are more superficial with respect to the cerebral 

cortex, such as the hippocampus. This is a preliminary validation and larger scale validation 

is needed on a larger population with a larger range of brain structures.

VII. Conclusion

We have presented a framework for coregistration of brain volume data using harmonic 

maps. Through the use of an intermediate spherical map, we are able to constrain the 

surfaces of the two brain volumes to align while enforcing point matching only at a set of 

hand labeled sulcal curves. Using harmonic maps we are able to compute large scale 

deformations between brain volumes.

We have also described, as an initialization procedure, a new method for cortical surface 

parameterization and sulcal alignment in which the two problems are solved in a single step 

using a finite element method. This method has the properties that it is inverse consistent 

between the two brains and can be computed directly from a tessellated representation of the 

surface, rather than requiring resampling using a regular grid with respect to the induced 

parameterization.

The examples shown here demonstrate the cortical matching properties and the ability to 

also align subcortical structures. One of the limitations of this evaluation was that cortical 

grey matter was not included in the registration since the cortical surfaces were generated by 

BrainSuite [56], which selects the inner grey/white boundary as the cortical surface. 

However, this is a limitation of the preprocessing step rather than the method itself, and the 

process can be applied to the full cerebral volume provided that a genus-zero brain volume 

and sulcal labels are supplied. A second limitation is that the cerebellum and brainstem are 

not included in the analysis since the volume of interest that is mapped is restricted to the 

cerebrum, bounded by the outer cortical sheet. We can address this issue in practice by 

modifying the final intensity-based matching step by first adding the brainstem and 

cerebellum back to the cerebrum. This would also require extrapolation of the displacement 

field from the harmonic map outwards to these structures as an initialization of the intensity 

based warp. Alternatively, the cerebellum could also be explicitly modelled using a surface 

based approach (see, e.g., Hurdal et al. [12]), and its surface and enclosed volume could be 

treated in a similar fashion to the cerebrum.

Joshi et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The authors would like to thank the Center for Morphometric Analysis at Massachusetts General Hospital for 
providing the MR brain data sets and their manual segmentations. The MR and segmentation data sets are available 
at http://www.cma.mgh.harvard.edu/ibsr/. The registration softwares AIR by Dr. Woods was downloaded from 
http://bishopw.loni.ucla.edu/AIR5 and HAMMER was made available for download by Dr. Shen. The authors 
would like to thank Dr. Woods and Dr. Shen for sharing their software. The BrainSuite software is available at 
http://brainsuite.usc.edu/.

This work is supported under grants r01 eb002010 and p41 rr013642. p.m.t. is also supported by ag016570, 
lm05639, eb01651, rr019771 and ns049194.

References

1. Christensen GE, Joshi SC, Miller MI. Volumetric transformation of brain anatomy. IEEE TMI. Dec.
1997 16(6)

2. Thompson PM, Toga AW. A surface-based technique for warping 3-dimensional brain. IEEE 
Transactions on Medical Imaging. 1996; 15(4):1–16.

3. Talairach, J.; Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional 
Proportional System - an Approach to Cerebral Imaging. NY: Thieme Medical Publishers, New 
York; 1988. 

4. Ashburner, J.; Friston, K. Spatial normalization. In: Toga, A., editor. Brain Warping. Academic 
Press; 1999. p. 27-44.

5. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. 
General methods and intrasubject, intramodality validation. Journal of Computer Assisted 
Tomography. 1998; 22:139–152. [PubMed: 9448779] 

6. Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol. Mar; 
2001 46(4):r1–r45. [PubMed: 11277237] 

7. Christensen, GE.; Rabbitt, RD.; Miller, MI.; Joshi, SC.; Grenander, U.; Coogan, TA.; Essen, DCV. 
Topological properties of smooth anatomic maps. In 14 Conference on Information Processing in 
Medical Imaging; France. Kluwer Academic Publishers; 1995. p. 101-112.

8. Christensen GE, Rabbit RD, Miller MI. Deformable templates using large deformation kinematics. 
IEEE Transactions on Image Processing. 1996; 5(10):1435–1447. [PubMed: 18290061] 

9. Glaunés J, Vaillant M, Miller MI. Landmark matching via large deformation diffeomorphisms on 
the sphere. J Math Imaging Vis. 2004; 20(1-2):179–200.

10. Avants BB, Gee JC. Shape averaging with diffeomorphic flows for atlas creation. ISBI. 2004

11. Woods RP, Grafton ST, Watson JDG, Sicotte NL, Mazziotta JC. Automated image registration: II. 
Intersubject validation of linear and nonlinear models. Journal of Computer Assisted Tomography. 
1998; 22:153–165. [PubMed: 9448780] 

12. Hurdal MK, Stephenson K, Bowers PL, Sumners DWL, Rottenberg DA. Coordinate system for 
conformal cerebellar flat maps. NeuroImage. 2000; 11:s467.

13. Fischl B, Sereno MI, Tootell RBH, Dale AM. High-resolution inter-subject averaging and a 
coordinate system for the cortical surface. Human Brain Mapping. 1998; 8:272–284. [PubMed: 
10619420] 

14. Bakircioglu M, Grenander U, Khaneja N, Miller MI. Curve matching on brain surfaces using frenet 
distances. Human Brain Mapping. 1998; 6:329–333. [PubMed: 9788068] 

15. Thompson PM, Wood RP, Mega MS, Toga AW. Mathematical/computational challenges in 
creating deformable and probabilistic atlases of the human brain (invited paper). Human Brain 
Mapping. Feb; 2000 9(2):81–92. [PubMed: 10680765] 

16. Joshi AA, Shattuck DW, Thompson PM, Leahy RM. A framework for registration, statistical 
characterization and classification of cortically constrained functional imaging data. Lecture Notes 
in Computer Science. Jul.2005 3565:186–196.

17. Wang, Y.; Chiang, MC.; Thompson, PM. Automated surface matching using mutual information 
applied to Riemann surface structures. In: Duncan, J.; Gerig, G., editors. MICCAI 2005, LNCS 
3750. Springer-Verlag; Berlin Heidelberg: 2005. p. 666-674.

Joshi et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cma.mgh.harvard.edu/ibsr/
http://bishopw.loni.ucla.edu/AIR5
http://brainsuite.usc.edu/


18. Tosun D, Prince JL. Cortical surface alignment using geometry driven multispectral optical flow. 
Information Processing in Medical Imaging, ser LNCS. 2005; 3565:480–492.

19. Tosun D, Rettmann ME, Prince JL. Mapping techniques for aligning sulci across multiple brains. 
Medical Image Analysis. 2005; 8(3):295–309. [PubMed: 15450224] 

20. Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen CT. Accurate three-dimensional 
registration of CT, PET and/or MR images of the brain. J Comput Assist Tomogr. 1989; 13(1):22–
26.

21. Krahnstover N, Lorenz C. Development of point-based shape representation of arbitrary three-
dimensional medical objects suitable for statistical shape modeling. Proc SPIE-Medical Imaging 
1999:Image Processing. 1999; 3661:620–631.

22. Downs, JH.; Lancaster, JL.; Fox, PT. Brain Warping. San Diego, CA: Academic; 1999. Surface 
based spatial normalization using convex hulls. 

23. Hartkens, T.; Hill, D.; Castellano-Smith, AD.; Hawkes, D.; Maurer, C.; Martin, A.; Hall, W.; Liu, 
CTH. Using points and surfaces to improve voxel-based non-rigid registration; MICCAI. 2002. p. 
565-572.[Online]. Available: citeseer.ist.psu.edu/571972.html

24. Davatzikos C, Prince J, Bryan R. Image registration based on boundary mapping. IEEE 
Transactions on Medical Imaging. 1996

25. Davatzikos C, Prince J. Brain image registration based on curve mapping. IEEE Workshop 
Biomedical Image Anal. 1994:245–254.

26. Joshi SC, Miller MI. Landmark matching via large deformation diffeomorphisms. IEEE 
Transactions on Image Processing. Aug.2000 9(8)

27. Gerig G, Joshi S, Fletcher T, Gorczowski K, Xu S, Pizer SM, Styner M. Statistics of population of 
images and its embedded objects: Driving applications in neuroimaging. ISBI. Apr.2006 :1120–
1123.

28. Liu T, Shen D, Davatzikos C. Deformable registration of cortical structures via hybrid volumetric 
and surface warping. NeuroImage. 2004; 22(4):1790–1801. [PubMed: 15275935] 

29. Christensen GE, Yin P, Vannier MW, Chao KSC, Dempsey JL, Williamson JF. Large-deformation 
image registration using fluid landmarks. Image Analysis and Interpretation, 2000 Proceedings 4th 
IEEE Southwest Symposium. 2000:269–273.

30. Johnson HJ, Christensen GE. Consistent landmark and intensity-based image registration. IEEE 
Transactions on Medical Imaging. 2002; 21(5):450–461. [PubMed: 12071616] 

31. Christensen GE. Consistent linear-elastic transformations for image matching. Lecture Notes in 
Computer Science. 1999; 1613:224–237.

32. Eriksson AP, Åström K. On the bijectivity of thin plate transforms. Swedeish Symposium on 
Image Analysis. 2005:53–56.

33. Thompson PM, MacDonald D, Mega MS, Holmes CJ, Evans AC, Toga AW. Detection and 
mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. Journal of 
Computer Assisted Tomography. Jul-Aug;1997 21(4):567–581. [PubMed: 9216760] 

34. Angenent S, Haker S, Tannenbaum A, Kikinis R. Laplace-Beltrami operator and brain surface 
flattening. IEEE Transactions on Medical Imaging. 1999; 18:700–711. [PubMed: 10534052] 

35. Joshi AA, Leahy RM, Thompson PM, Shattuck DW. Cortical surface parameterization by p-
harmonic energy minimization. ISBI. 2004:428–431.

36. Tang B, Sapiro G, Caselles V. Diffusion of general data on non-flat manifolds via harmonic maps 
theory: The direction diffusion case. International Journal of Computer Vision. 2000; 36(2):149–
161.

37. Segel, LA. Mathematics Applied to Continuum Mechanics. Dover Publications; 1987. 

38. Chefd'Hotel C, Hermosillo G, Faugeras O. A variational approach to multi-modal image matching. 
IEEE Workshop on Variational and Level Set Methods in Computer Vision. 2001:21–28.

39. Shattuck DW, Leahy RM. Brainsuite: An automated cortical surface identification tool. Medical 
Image Analysis. 2002; 8(2):129–142. [PubMed: 12045000] 

40. Shattuck DW, Leahy RM. Graph based analysis and correction of cortical volume topology. IEEE 
Transactions on Medical Imaging. 2001; 20(11):1167–1177. [PubMed: 11700742] 

Joshi et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://citeseer.ist.psu.edu/571972.html


41. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Doddrell DM, 
Cannon TD, Toga AW. Detecting dynamic and genetic effects on brain structure using high 
dimensional cortical pattern matching. Proceedings of ISBI. 2002

42. Han, X.; Xu, C.; Prince, J. A topology preserving geometric deformable model and its application 
in brain cortical surface reconstruction. In: Osher, S.; Paragios, N., editors. Geometric Level Set 
Methods in Imaging, Vision, and Graphics. Springer Verlag; 2003. 

43. Jost, J. Riemannian geometry and geometric analysis. Springer Verlag; 2002. 

44. Nishikawa, S. Variational Problems in Geometry, ser Translations of Mathematical Monographs. 
Vol. 205. AMS; 2001. 

45. Xin, Y. Geometry of harmonic maps. Birkhäuser; 1996. 

46. Eells J, Sampson JH. Harmonic mappings of Riemannian manifolds. Ann J Math. 1964:109–160.

47. Hamilton, R. Lecture Notes in Mathematics, ser. Vol. 471. Springer; 1975. Harmonic maps of 
manifolds with boundary. 

48. Fardoun A, Regbaoui R. Heat flow for p-harmonic maps between compact Riemannian manifolds. 
Indiana Univ Math J. 2002; 51:1305–1320.

49. Kanai T, Suzuki H, Kimura F. Three-dimensional geometric metamorphosis based on harmonic 
maps. The Visual Computer. 1998; 14(4):166–176.

50. Wang Y, Gu X, Yau ST. Volumetric harmonic map. Communications in Information and Systems. 
2004; 3(3):191–202.

51. Mémoli F, Sapiro G, Osher S. Solving variational problems and partial differential equations 
mapping into general target manifolds. J Comput Phys. 2004; 195(1):263–292.

52. Tagare HD, Groisser D, Skrinjar O. A geometric theory of symmetric registration. CVPRW. 2006; 
0:73.

53. Barber CB, Dobkin DP, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM 
Transactions on Mathematical Software. 1996

54. Shen D, Davatzikos C. Hammer: Hierarchical attribute matching mechanism for elastic 
registration. IEEE Transactions on Medical Imaging. 2002; 21(11)

55. Zijdenbos AP, Dawant BM, Margolin RA, Palmer A. Morphometric analysis of white matter 
lesions in mr images. IEEE Transactions on Medical Imaging. Dec.1994 13:716–724. [PubMed: 
18218550] 

56. Shattuck, DW.; Leahy, RM. BrainSuite: An automated cortical surface identification tool. In: Delp, 
SL.; DiGioia, AM.; Jaramaz, B., editors. MICCAI, ser Lecture Notes in Computer Science. Vol. 
1935. Springer; 2000. p. 50-61.

57. Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, 
Janke AL, Rose SE, Semple J, Doddrell DM, Wang YL, van Erp T, Cannon TD, Toga AW. 
Mapping cortical change in Alzheimer's disease, brain development and schizophrenia. 
NeuroImage. Sep; 2004 23(1):S2–S18. [PubMed: 15501091] 

58. Leow A, Thompson PM, Protas H, Huang SC. Brain warping with implicit representations. ISBI 
IEEE. 2004:603–606.

59. Mémoli F, Sapiro G, Thompson P. Implicit brain imaging. NeuroImage. 2004; 23(1):S179–S188. 
[PubMed: 15501087] 

60. Wang Y, Gu X, Hayashi K, Chan T, Thompson P, Yau S. Brain surface parameterization using 
Riemann surface structure. MICCAI. 2005; 2005:657–665. [PubMed: 16686016] 

61. Grenander U, Miller MI. Computational anatomy: an emerging discipline. Q Appl Math. 1998; 
LVI(4):617–694.

62. Christensen GE, Rabbitt R, Miller MI. 3D brain mapping using a deformable neuroanatomy. 
Physics in Medicine and Biology. Mar.1994 39:609–618. [PubMed: 15551602] 

63. Camion V, Younes L. Geodesic interpolating splines. Lecture Notes in Computer Science. 
2001:513–527.

64. Ge, Y.; Fitzpatrick, JM.; Kessler, RM.; Jeske-Janicka, M.; Margolin, RA. Intersubject brain image 
registration using both cortical and subcortical landmarks. In: Loew, Murray H., editor. Proc SPIE 
Vol 2434, p 81-95, Medical Imaging 1995: Image Processing. May. 1995 p. 81-95.

Joshi et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



65. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, Toga AW, Rapoport 
JL. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very 
early-onset schizophrenia. PNAS. 2001; 98(20):11650–11655. [PubMed: 11573002] 

66. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping 
cortical change across the human life span. Nature Neuroscience. 2003; 6:309–315. [PubMed: 
12548289] 

67. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong 
MS, Dittmer SS, Doddrell DM, Toga AW. Dynamics of gray matter loss in Alzheimer's disease. 
The Journal of Neuroscience. 2003; 23(3):994–1005. [PubMed: 12574429] 

68. Shattuck DW, MacKenzie-Graham A, Toga AW. Duff: software tools for visualization and 
processing of neuroimaging data. IEEE International Symposium on Biomedical Imaging: Macro 
to Nano, 2004. Apr.2004 1:644–647.

69. Ray, N.; Levy, B. Hierarchical least squares conformal map. PG'03: Proceedings of the 11th 
Pacific Conference on Computer Graphics and Applications; Washington, DC, USA. IEEE 
Computer Society; 2003. p. 263

70. George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitt HA, Wood CC, Lewine JD, 
Sanders JA, Belliveau JW. Mapping function in the human brain with magnetoen-cephalography, 
anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin 
Neurophysiol. Sep; 1995 12(5):406–431. [PubMed: 8576388] 

71. Bookstein FL. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. Jun.1989 11:567–585.

72. Kreyzig, I. Differential Geometry. Dover; 1999. 

73. Do Carmo, M. Differential Geometry of Curves and Surfaces. Prentice-Hall; 1976. 

74. Thompson, PM.; Mega, MS.; Vidal, C.; Rapoport, J.; Toga, AW. Detecting disease-specific 
patterns of brain structure using cortical pattern matching and a population-based probabilistic 
brain atlas. Proc. 17th IPMI2001; Davis, CA, USA. 2001; p. 488-501.

Joshi et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Cortical surface alignment after using air software for intensity based volumetric alignment 

with a 168 parameter 5th order polynomial. Note that although the overall morphology is 

similar between the brains, the two cortical surfaces do not align well.
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Fig. 2. 
(a),(b) Two cortical surfaces with labeled sulci as colored curves; (c),(d) flat maps of a 

single hemisphere for each brains without the sulcal alignment constraint; (e),(f) flat maps 

with sulcal alignment; (g),(h) overlay of sulcal curves on the flat maps, without and with 

sulcal alignment.

Joshi et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Result of mapping of sulcal landmarks from 5 subjects to a single brain using the linear 

elastic mapping described here (left) without and (right) with the sulcal alignment constraint.
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Fig. 4. 
Illustration of our general framework for surface-constrained volume registration. We first 

compute the map v from brain manifold (N, I) to the unit ball to form manifold (N, h). We 

then compute a map ũ from brain (M, I) to (N, h). The final harmonic map from (M, I) to (N, 

I) is then given by u = v−1 ○ ũ.
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Fig. 5. 
Initialization for harmonic mapping from M to N. First we generate flat square maps of the 

two brains, one for each hemisphere, with pre-aligned sulci. The squares corresponding to 

each hemispheres are mapped to a disk and the disks are projected onto the unit sphere. We 

then generate a volumetric maps from each of the brains to the unit ball. Since all these 

maps are bijective, the resulting map results in a bijective point correspondence between the 

two brains. However, this correspondence is not optimal with respect to the harmonic energy 

of maps from the first brain to the second, but is used as an initialization for minimization of 

(20).
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Fig. 6. 
Illustration of the deformation induced with respect to the Euclidean coordinates by 

mapping to the unit ball. Shown are iso-surfaces corresponding to the Euclidean coordinates 

for different radii in the unit ball. Distortions become increasingly pronounced towards the 

outer edge of the sphere where the entire convoluted cortical surface is mapped to the 

surface of the ball.
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Fig. 7. 
Schematic of the intensity alignment procedure. Once harmonic maps uM and uN are 

computed, we refine these with intensity driven warps wM and wN while imposing 

constraints so that the final deformations are inverse consistent.
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Fig. 8. 
Illustration of the effects of the two stages of volumetric matching is shown by applying the 

deformations to a regular mesh representing one slice. Since the deformation is in 3d, the 

third in-paper value is represented by color. (a) Regular mesh representing one slice in the 

subject; (b) the regular mesh warped by the harmonic mapping which matches the subject 

cortical surface to the template cortical surface. Note that deformation is largest near the 

surface since the harmonic map is constrained only by the cortical surface; (c) Regular mesh 

representing one slice in the harmonically warped subject; (d) the intensity-based refinement 

now refines the deformation of the template to improve the match between subcortical 

structures. In this case the deformation is constrained to zero at the boundary and are 

confined to the interior of the volume.
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Fig. 9. 
Examples of surface constrained volumetric registration. (a) Original subject volume, 

original template, registration of subject to template using surface constrained harmonic 

mapping, intensity-based refinement of the harmonic map of subject to template is shown. 

Note that the surface of the warped subject matches to the surface of the template. (b) 

Anatomical labels of the subject and the template followed by labels of the subject warped 

by surface constrained harmonic mapping and intensity-based refinement of the harmonic 

map are shown.
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Fig. 10. 
RMS errors in alignment of different sulci using AIR (5th order), HAMMER and our 

surface constrained mapping.
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Table I
Comparison of Dice coefficients

Subcortical Structure AIR Harmonic HAMMER Harmonic with intensity

Left Thalamus 0.6588 0.5294 0.7303 0.5856

Left Caudate 0.4426 0.4336 0.5688 0.5716

Left Putamen 0.4079 0.3497 0.4905 0.5092

Left Hippocampus 0.4676 0.3069 0.3916 0.3930

Right Thalamus 0.6326 0.5018 0.7495 0.6230

Right Caudate 0.3671 0.3572 0.5098 0.5116

Right Putamen 0.3096 0.2358 0.4111 0.4679

Right Hippocampus 0.5391 0.3455 0.1989 0.4342

Avg. Dice coeff. for all structures 0.3021 0.3821 0.3621 0.4019

Std. Dev. of Dice coeff. 0.1937 0.2547 0.2390 0.2671
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