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Abstract

The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is 

growing confirmation to support an association between mitochondrial dysfunction and a number 

of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as 

one of the contributing factors for age-related retinal pathophysiology. This review highlights the 

role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal 

diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). 

Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of 

mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this 

review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to 

oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears 

that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, 

failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. 

This review will further summarize the prospective role of mitochondria targeting therapeutic 

agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish 

oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the 

treatment of various retinal degenerative diseases.
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INTRODUCTION

The mitochondrion is a critical organelle for cell function and survival. Its primary roles are 

adenosine triphosphate (ATP) production, control of cellular metabolism and regulation of 

apoptosis (programmed cell death). It consists of inner and outer membranes composed of 

phospholipid bilayers containing numerous integral proteins. Mitochondrial density varies 

among different cell types and is expressed abundantly in highly metabolic active cell types 

such as retinal pigment epithelium (RPE).1 Due to its critical functioning, mitochondrial 

dysfunctions may severely affect tissue homeostasis. Oxidative damage induced 
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mitochondrial dysfunction has been proposed as a most prevalent ageing theory.1–4 

Furthermore, involvement of mitochondrial DNA (mtDNA) damage and mitochondrial 

theory of ageing has been observed in age-related macular degeneration (AMD).5

Acute and chronic mitochondrial dysfunctioning is associated with a number of age-related 

degenerative diseases including Parkinson’s, Alzheimer’s and AMD. In this review, we will 

summarize recent developments in understanding the role of the mitochondrion as a weaker 

link in the antioxidant defenses of retinal cells and a potential contributor to the 

pathogenesis of retinal degenerations such as diabetic retinopathy, glaucoma and AMD. We 

will further highlight the mechanistic basis of mtDNA damage associated to AMD. 

Moreover, the potential role of mitochondria targeting agents for the treatment of retinal 

diseases will be outlined at the end of the review.

Diabetic Retinopathy

Diabetic retinopathy is the most prevalent microvascular complication of diabetes, and 

remains a leading cause of vision loss in many developed countries. The development of this 

microvascular disease occurs gradually and silently in as many as 50% of type I and 10% of 

type II diabetic patients within 15 years of diagnosis.6,7 Chronic hyperglycemia and other 

risk factors (hypertension, dyslipidaemia) are believed to trigger a cascade of biochemical 

and physiological changes that lead to microvascular damage and retinal dysfunction. The 

retinal manifestations of diabetes mellitus are broadly classified as either non-proliferative 

diabetic retinopathy (NPDR) or proliferative diabetic retinopathy (PDR). The progression of 

NPDR, which covers only intraretinal microvascular changes, starts from mild non-

proliferative abnormalities (altered retinal vascular permeability) to moderate and severe 

NPDR (vascular closure). The eventual progression of PDR is characterized by new blood 

vessel formation and sometimes fibrous band proliferation on the retinal surface. Macular 

edema, characterized by retinal thickening from leaky blood vessels, can develop in both 

stages of retinopathy due to increased retinal vascular permeability which leads to fluid 

accumulation in the retina.8–10

Various hyperglycemia-induced metabolic abnormalities, including increased activity of the 

polyol pathway, advanced glycation end products (AGEs) and protein kinase C (PKC) 

activation are implicated in the progress of diabetic retinopathy. These metabolic pathways 

are considered to be interconnected and may mediate oxidative stress. Elevated oxidative 

stress plays a major role in the pathogenesis of diabetic complications.11,12 Oxidative stress 

is the accumulation of reactive oxygen species (ROS) beyond the capacity of a cell to 

defend, because of increased generation or impaired removal of ROS.13 The presence of a 

high content of polyunsaturated fatty acids, high oxygen uptake and glucose oxidation 

renders the retina more susceptible to oxidative stress relative than any other tissue.14 

Critical events suggested in the pathogenesis of diabetic retinopathy are hyperglycemia, 

changes in the redox homeostasis and oxidative stress. Increased oxidative stress is reported 

in diabetic retina of animal models (diabetic and galactosemic rats).15 Elevated retinal levels 

of lipid peroxides, superoxide and hydrogen peroxide and down-regulation of the mRNA of 

the enzymes responsible for scavenging superoxide, superoxide dismutase (SOD), and 

glutathione reductase were reported in diabetic rat and mouse models.16–18 A decreased 
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level of intracellular antioxidant (GSH) and impairment of antioxidant defense enzymes in 

the retina was also reported in diabetic rats.19–20 Furthermore, increased oxidative stress is 

also observed in bovine retinal endothelial cells (BREC) and pericytes incubated in high 

glucose medium and in other non-vascular retinal cells including transformed retinal Muller 

cells (rMC-1) and photoreceptors.16,21 These experiments clearly suggested an important 

role of oxidative stress in the development of retinopathy in diabetes. Moreover, animal 

studies have confirmed that oxidative stress not only contributes to the development of 

diabetic retinopathy but also offers resistance to reversal of the conditions after glycemic 

control.22 However, the mechanism by which oxidative stress can contribute to the 

pathogenesis of diabetic retinopathy remains to be elucidated.

Mitochondrial Dysfunction in Diabetic Retinopathy

Mitochondria are considered to be the prime endogenous source of superoxides, 

peroxynitrite, and hydroxyl radicals, and are also a target for damaging effect of oxidants, 

suggesting the existence of a vicious cycle of oxidative damage.23 Chronic overproduction 

of ROS in the retina results in abnormal mitochondrial functions in diabetes (Figure 

1).13,14,24 Inhibition of antioxidant scavengers is one of the ROS-induced dysfunctions in 

mitochondria that may lead to enhanced sensitivity of retinal cells to oxidative stress. The 

isoform of SOD in the mitochondria (MnSOD) along with GSH may be suppressed in the 

diabetic and high glucose-cultured retinal mitochondria.25–27 Increased mitochondrial DNA 

damage has been reported in the diabetic retina of an animal model.28 ROS mediated 

damage to the mitochondrial lipid membrane enhances permeability of the mitochondrial 

membrane which represents another cellular dysfunction caused by ROS. Increased swelling 

of the mitochondria was observed in the retina of diabetic mice.26 It is widely accepted that 

apoptosis of retinal cells is the most common incident in diabetic retinopathy. Kowluru et al. 

have demonstrated that the release of cytochrome c from mitochondria to the cytoplasm and 

Bax translocation from the cytoplasm to mitochondria that could drive cell apoptosis were 

increased in retinal capillary cells in diabetes.29 Thus, it is evident that mitochondria play a 

crucial role in the development of retinopathy in diabetes, and oxidative stress can modulate 

mitochondrial cytochrome c release resulting in increased retinal capillary cell death.

Diabetic Retinopathy Treatments Targeted to Mitochondrial Dysfunction

Diabetic retinopathy is a complex disease which is difficult to treat due to its multifactorial 

nature. An efficient therapy will probably be a combination of drugs targeting multiple 

pathways involved in the pathogenesis of diabetic retinopathy. Since the disease 

pathogenesis is partially attributed to mitochondrial dysfunction, treatment options should 

also consider restoring normal mitochondrial function. Oxidative stress is the significant 

instigator of hyperglycemia-induced mitochondrial damage. Therefore, treatment strategies 

to improve mitochondrial function by lowering oxidative stress may be an appropriate 

alternative.15,24 Sheu et al. has described a number of antioxidants which can be transported 

into mitochondria but only a few have been tested in diabetic retinopathy.30 Considering the 

role of superoxides in the development of diabetic retinopathy, SOD mimetics may represent 

a class of treatment to counter the effect of oxidative stress. MnSOD mimics are low-

molecular weight, manganese containing, non-peptide molecules with similar function, and 

catalytic rates of native SOD enzymes. Kowluru et al.24,29 have shown that MnTBAP 
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[manganese (III) meso-tetrakis (4-carboxypheny) porphyrin], a MnSOD mimic, can 

significantly inhibit glucose-induced decrease in GSH levels and translocation of 

cytochrome c from mitochondria and Bax into the mitochondria of retinal capillary cells. It 

can also inhibit apoptosis by suppressing caspase-3 activation.24,29

It is therefore essential to recognize treatment strategies that could inhibit superoxide 

production which might represent a possible direction for clinical research in diabetes. 

Although the mimetics appear to be very promising, it is not known whether any of these 

mitochondria-targeted treatments are beneficial in diabetic retinopathy. Furthermore, 

pharmacokinetics and route of administration also need to be addressed. Additional animal 

studies and clinical trials can resolve such issues.15,24

Glaucoma

Glaucoma is a neurodegenerative disease of the optic nerve characterized by the accelerated 

death of retinal ganglion cells (RGCs) and their axons which ultimately leads to progressive 

vision loss. Elevated intraocular pressure (IOP) and age are key risk factors for glaucoma. 

Reducing IOP is the only current treatment option available to retard glaucoma progression 

in clinical practice. However, control of IOP by itself may not be sufficient to arrest the 

progression of glaucoma and strategies that compliment IOP control for protecting the optic 

nerve are required.31,32

MITOC HONDRIA L DYSFUNCTION IN GLAUCOMA

Mitochondrial dysfunction is believed to contribute to the pathogenesis of a number of 

neurodegenerative disorders. Glaucoma has similar etiology to other neurodegenerative 

diseases, such as selective loss of a single neuronal cell population, age related incidence, 

and neuronal cell death. The dense distribution of mitochondria around the optic nerve head, 

the primary site of glaucomatous axonal injury, reflects a high requirement for ATP.31,32 Ju 

et al.33 have recently demonstrated the induction of mitochondrial fission, abnormal cristae 

depletion, and cellular ATP reduction in differentiated RGC-5 cells exposed to high 

hydrostatic pressure over 3 days. This observation suggests that elevated pressure, a major 

risk factor in glaucoma, may disrupt mitochondrial structure and function in RGCs, possibly 

leading to apoptosis (Figure 2).31,33 An association between glaucoma and mitochondrial 

dysfunction has also been suggested in a recent clinical study where a 20% reduction in 

mitochondrial respiratory function and an increase in mitochondrial DNA mutation were 

observed in peripheral blood of primary open-angle glaucoma patients relative to an age-

matched control group.34 The mitochondrion is a key regulator of apoptosis and is 

implicated as the prime factor responsible for neuronal loss in neurodegenerative diseases. 

Evidence has also suggested that apoptosis is an important mechanism of cell death in 

glaucoma neurodegeneration. RGC apoptosis occurs in animal glaucoma models and in the 

retina of glaucoma patients.35,36 There is growing evidence to support involvement of 

mitochondria-mediated ROS-induced RGC injury. ROS generation is noticed in the retina 

and optic nerve of glaucoma animal models and in retinal ischemia reperfusion models.37,38 

Furthermore, human studies have also confirmed the involvement of mitochondria-mediated 

oxidative stress in glaucoma due to up-regulation of various antioxidant proteins (serum 

auto-antibodies, glutathione S-transferase and iron-regulating proteins).39,40
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GLAUCOMA TREATM ENTS TARGETED TO MITOC HONDRIAL 

DYSFUNCTION

As a potential neuroprotective therapy, various antioxidants have been studied in 

neurodegenerative diseases with partial success. Advances have also been made in targeting 

antioxidants directly to the mitochondria, a major site of ROS production, by conjugating 

antioxidants to lipophilic cations.30,41 The mitochondria-targeted cationic plastoquinone 

derivative SkQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) has been investigated 

as a prospective tool for treating experimental glaucoma induced by serial injections of 2% 

hydroxypropyl methyl cellulose to the anterior segment of the rabbit eye. Once, daily drops 

of 5 μM SkQ1 caused a reduction in glaucomatous changes.42 SkQ1 appears to be a 

promising candidate for treating glaucoma. Involvement of mitochondria in glaucoma 

pathogenesis might therefore represent a new therapeutic target for protecting the optic 

nerve and preventing vision loss.

AGE-RELAT ED MACULAR DEGENERATION

AMD is a progressive neurodegenerative disease that primarily affects the central region of 

the retina (macula) and is a leading cause of blindness in the elderly. The presence of 

macroscopically visible soft drusen, with areas of hyper- or de-pigmentation are 

characteristic early symptoms of AMD, whereas atrophy of photoreceptors and RPE or 

choroidal neovascularization are evident during later stages of the disease.43–47

MITOC HONDRIA L DYSFUNCTION IN AMD

Strong evidence showing mitochondrial dysfunction in AMD has been reported. An 

association between AMD and a variant of mitochondrial protein (LOC387715/ARMS2 

(age-related maculopathy susceptibility 2)) has been identified.48 In AMD genetic variants 

at two chromosomal loci, 1q32 and 10q26 confer major disease risks. A consensus from 

multiple studies is that the 1q32 and 10q26 region simultaneously harbors a first and second 

major genetic determinant of AMD susceptibility.49–52 Previous studies have identified 

chromosome 1q32 as harboring a susceptibility locus (complement factor H) for AMD 

which does not have any connection to the mitochondrion.49,50 However, signals at 10q26 

overlap two nearby genes, LOC387715/ARMS2 (age-related maculopathy susceptibility 2) 

and HTRA1/PRSS11 (high-temperature requirement factor A1). The LOC387715/ARMS2 

gene produces a protein of unknown function that localizes in the mitochondria, and 

polymorphisms in LOC387715/ARMS2 alter the risk of AMD by modulating the function 

of this gene.48,51–53 Furthermore, changes in the activity or regulation of LOC387715/

ARMS2 are likely to be responsible for the impact on AMD disease susceptibility.53

Retinal pigment abnormalities and RPE atrophy similar to those present in the early AMD 

phenotypes are detected in 75% of individuals with the MELAS A3243G mitochondrial 

DNA mutation.54 mtDNA haplogroups which are associated with either increased or 

decreased prevalence of age-related maculopathy have been identified.55 So far there is no 

report available which confirms the association of similar mtDNA haplotypes with AMD. 
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Based on this finding one can further explore the possible involvement of mtDNA 

haplogroups in AMD.

In addition, the oxidative stress hypothesis of AMD proposes that cumulative oxidative 

damage to proteins, lipids, and DNA also leads to disease progression. Changes in selected 

redox proteins (an indicator of increased oxidative stress) and altered protein expression 

reflecting impaired mitochondrial biogenesis were found in human donor eyes with the 

progression of AMD.56,57 These findings led to the proposition that bioenergetic 

consequences of mtDNA derangements may be expressed in macular RPE as a maculopathy 

and contribute to the development of AMD. Evidence of mitochondrial dysfunction from 

human tissue examination and animal models has also been reported. Feher et al.58 revealed 

through morphometric studies a significant diminution in number and area of RPE 

mitochondria as well as loss of cristae and matrix density with age in AMD specimens. 

These decreases were significantly greater in AMD than in normal aging. This study has 

further confirmed that besides changes in mtDNA, alterations of mitochondrial membranes 

may also play a crucial role in the development of mitochondrial dysfunctions in AMD.58

Despite the evidence of mitochondrial dysfunction in AMD where emphasis is focused on 

the RPE, only a few studies have been focused the role of mtDNA damage and repair in the 

retina. Barreau et al. has identified mtDNA deletions in aged human retina.59 Increased 

mtDNA damage and decreased repair, along with reduced mitochondrial respiration in RPE 

and choroid of rodents are also observed with progression of ageing.60–62 Thus, mtDNA 

damage in RPE is associated with aging and may be a susceptibility factor in the 

development of AMD.

Cell culture studies have shown damage to mtDNA but not to nuclear DNA (nDNA) of 

human RPE cells when exposed to oxidizing or alkylating agents.63 Furthermore, nDNA 

damage repair appears to be rapid relative to mtDNA repair in the RPE, which appears to be 

slow and relatively inefficient. The lack of evidence for mtDNA repair in response to 

oxidative stress further suggests that the mitochondrion is a weaker link in the RPE cell’s 

defense against oxidative damage.5,64,65 A collective outcome of mtDNA damage will be 

the reduction in metabolic activity and/or an increased propensity for apoptosis. However, 

mtDNA repair capacity appears to be overwhelmed, resulting in diminished mtDNA repair 

which may play a significant role in the commencement of AMD.5,60 Further evidence has 

shown that human RPE cells treated with H2O2 resulted in mtDNA damage, which leads to 

compromised mitochondrial redox function due to impaired repair mechanism.5,63 This 

impaired repair mechanism clearly explains the susceptibility of mtDNA to oxidative 

damage in human RPE cells, together with the age-related decrease of the cellular 

antioxidant system.5

The susceptibility of RPE mtDNA to oxidative damage along with failure of mtDNA repair 

provides an intriguing and plausible mechanism for a mitochondria-based model of AMD 

and retinal degeneration. Figure 3 summarizes the possible mechanisms of AMD.1,5,66
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AMD TREATM ENTS TARGETED TO MITOC HONDRIAL DYSFUNCTION

Treatment of AMD has always been a challenge for ophthalmologists. Therapeutic strategies 

targeted to the VEGF-signaling pathway has shown some success in the treatment of 

neovascular wet AMD, however, there are no proven medical treatments for the more 

common ‘dry’ AMD. Potential use of antioxidants for delaying later stage progression of 

AMD has been confirmed by the AREDS study.67 However, success of this study was likely 

limited by the choice of dietary antioxidants (which was later addressed in a new NEI 

funded clinical trial) and the subsequent realization that dietary antioxidants provide 

differential subcellular protection in the epithelial cells.68 In support of the therapeutic 

concept for retinal degeneration, a study by Jarrett et al. has further confirmed that dietary 

interventions can provide oxidative protection to hippocampal mtDNA and can lower ROS 

levels in rats.69 Reports have further proven that Bcl-2 overexpression, melatonin, ascorbic 

acid and glutathione-S-transferase can prevent mtDNA damage in cultured RPE.68,70–72 

Several studies have also reported that SOD2 up-regulation, resveratrol, N-tertbutyl 

hydroxylamine, a-crystallin and l-carnitine have the ability to protect against mitochondrial 

dysfunction in the RPE.73–77 Whether these antioxidants simply act by reducing ROS levels 

or act by a more direct effect on mtDNA is yet to be fully elucidated.

An alteration of mitochondrial membranes in AMD has immediate clinical significance as 

several in vitro and in vivo studies showed that mitochondrial membranes may be a target 

for the treatment of mitochondrial dysfunctions. Compounds with specific affinity for 

mitochondrial membranes (mitochondriotropic) can restore mitochondrial functions.42 

Alterations of mitochondrial membranes are accompanied by considerable accumulation of 

lipofuscin which may account for oxidative damage to the RPE.78 It may result in impaired 

lipid metabolism and apoptosis, characteristics of late AMD.79 Improvement in lipid 

metabolism in the RPE may be an innovative therapeutic approach for preventing AMD. As 

mitochondria and peroxisomes are implicated in both lipid biosynthesis and catabolism, 

Feher et al.80 suggested that the most effective dietary intervention may be achieved by 

targeting these organelles. These researchers developed a new metabolic approach by 

combining mitochondriotropic compounds including acetyl-l-carnitine (ALC), n-3 fatty 

acids, coenzyme Q10 and vitamin E for improvement of retinal function in early AMD. 

Clinical studies have confirmed this finding, since a combination of ALC, ω-3 fatty acids 

and coenzyme Q10, after an initial improvement, stabilized several visual functions in early 

AMD.80 Recently, these preliminary results were confirmed by a randomized, double-

masked, placebo controlled, clinical trial that showed improvement in both visual functions 

and fundus alterations in early AMD.81 These results on restoration of mitochondrial 

function are certainly very promising for a new therapeutic approach for the treatment of 

AMD.

CONCLUSION

Mitochondria are attractive targets for drug-delivery because of their roles in cellular energy 

metabolism, programmed (apoptotic) cell death, and cell signaling. This review highlights 

the importance of mitochondria derived oxidative stress and to some extent mtDNA damage 

in the etiology of various retinal diseases (diabetic retinopathy, glaucoma and AMD). 
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substantial efforts must be devoted to developing strategies to target small and large 

therapeutic molecules to mitochondria. A number of possibilities exist for mitochondrial 

targeted drug delivery such as (i) therapeutic drug targeting based on negative inner 

membrane potential of mitochondria, (ii) mitochondrial based enzyme catalyze drug release 

from prodrugs, and (iii) mitochondrial localized transporter or receptor mediated prodrug 

delivery (Figure 4).82–86 Continued research in this exciting area will undoubtedly provide a 

greater understanding of how oxidative stress and deficiencies of the mtDNA contribute to 

the pathogenesis of neurodegenerative retinal diseases. Future therapeutic strategies should 

target mitochondria with the ultimate goal of blocking or retarding the effects of chronic 

mitochondrial dysfunction.
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FIGURE 1. 
Hyperglycemia mediated mitochondrial dysfunctioning in diabetic retinopathy.
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FIGURE 2. 
Involvement of mitochondrial dysfunctioning in glaucoma pathogenesis.
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FIGURE 3. 
ROS-induced mtDNA damage based model for development of AMD (1,5,66).
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FIGURE 4. 
Strategies for targeted delivery of drugs to Mitochondria.
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